
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Practical Construction for Decomposing Numerical
Abstract Domains

ANONYMOUS AUTHOR(S)

Numerical abstract domains such as Polyhedra, Octahedron, Octagon, Interval, and others are an essential

component of static program analysis. �e choice of domain o�ers a performance/precision tradeo� ranging

from cheap and imprecise (Interval) to expensive and precise (Polyhedra). Recently, signi�cant speedups were

achieved for Octagon and Polyhedra by manually decomposing their transformers to work with the Cartesian

product of projections associated with partitions of the variable set. While practically useful, this manual

process is extremely time consuming, error-prone and has to be applied from scratch for every domain.

In this paper, we present a novel approach that can soundly decompose any sub-polyhedra domain. Unlike

prior work, the method is generic in nature and does not require changes to the original abstract transformers

or additional manual e�ort per domain. Further, it presents guarantees on the partitions achievable by each

decomposed transformer. In general, our method achieves �ner partitions than prior work.

We implemented our approach and applied it to the domains of Zones, Octagon, and Polyhedra. We then

compared the performance of the decomposed transformers obtained with our generic method versus state-

of-the art PPL and the faster ELINA (which uses manual decomposition). Against the la�er we demonstrate

�ner partitions and an associated speedup of about 2x on average. Our results indicate that the construction

presented in this work is a viable method for improving the performance of numerical domains. It enables

designers of abstract domains to bene�t from decomposition without re-writing all of their transformers from

scratch (as required by prior methods).

CCS Concepts: •�eory of computation→ Program veri�cation; Program analysis; Abstraction;

Additional Key Words and Phrases: Abstract Interpretation, Numerical Domains, Domain Decomposition

ACM Reference format:
Anonymous Author(s). 2017. A Practical Construction for Decomposing Numerical Abstract Domains. PACM
Progr. Lang. 1, 1, Article 1 (January 2017), 27 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Numerical abstract domains are a key component of modern static program analyzers (Blanchet

et al. 2003; Gur�nkel et al. 2015). �e design of these domains remains an art as designers of

domains are faced with two critical choices while �ne-tuning the cost and the precision of their

domain. �ese are: (a) the shape of constraints which determines the domain’s expressivity, and (b)

the precision and scalability of the abstract transformers.

Improving scalability of abstract transformers is an inherently hard problem as limiting the

shape of the constraints allowed in the domain does not necessarily guarantee reduction in the

transformer’s asymptotic complexity. Indeed, the most precise transformer for assignments in

weakly relational domains such as Octagon (Miné 2006), Zones (Miné 2002) and TVPI (Simon

and King 2010) have the same worst-case exponential complexity as the transformers in the most

expensive Polyhedra (Cousot and Halbwachs 1978) domain.

To improve scalability of the overall analysis, designers of abstract domains may introduce

approximations (of the best transformer) with the hope of improving performance in practical

A note.

2017. 2475-1421/2017/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:2 Anon.

scenarios while maintaining su�cient precision needed to verify the property of interest. Because

of the importance of scaling the analysis to realistic applications, there has been increased interest

in improving the performance of existing domains. Existing approaches can be roughly divided

into two classes: (a) implement less precise transformers tuned to the speci�c veri�cation task

(Blanchet et al. 2003; Heo et al. 2016; Venet and Brat 2004), or (b) maintain the same precision as the

existing implementation and improve performance by designing specialized algorithms and data

structures optimized for the particular domain (Gange et al. 2016; Jourdan 2017). While challenging

to devise, the la�er approach is appealing because it does not explicitly lose precision like (a) yet

increases performance.

A technique for achieving this goal is the concept of decomposition. It is based on the observation

that abstract elements may be decomposed into Cartesian products over independent subsets of

variables; hence, a given domain transformer does not need to be applied on the complete abstract

element but rather on some part of it, thus reducing cost. �e �rst a�empt at decomposition was for

the Polyhedra (Halbwachs et al. 2006, 2003) domain where the abstract elements were decomposed

based on partitioning a variable set into subsets such that constraints exist only between the

variables in the same subset. �e partitioning was performed on the �y, however the partitions

produced were too coarse.

Recently, the concept of online decomposition where the partitions are maintained and updated

based on the transformer semantics has been applied to achieve speed-ups by orders of magnitude

over standard implementations for the Octagon (Singh et al. 2015) and the Polyhedra (Singh et al.

2017) domain. However, in both cases the decomposition was manually designed from scratch

for the standard transformers of the particular domain. �e downside of this approach is that

the substantial e�ort invested in decomposing the transformers of the particular domain cannot

be reused and needs to be repeated for every new domain. �is task is extremely di�cult and

error-prone as it requires devising new algorithms and data structures from scratch.

To illustrate the issue, consider an element I = {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0} in the Octagon

domain which captures constraints of the form ±xi ±x j ≤ c between the program variables and the

conditional statement x2 + x3 + x4 ≤ 1. �ere are multiple ways to implement a sound conditional

transformer in the Octagon domain for the given conditional statement. One may de�ne a sound

conditional transformer T1 that adds the non-redundant constraint −x1 − x4 ≤ 1 to I resulting

in the output I ′ = {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0,−x1 − x4 ≤ 1} whereas another transformer

T2 may add −x2 − x3 ≤ 1 to I resulting in I ′′ = {−x1 − x2 ≤ 0,−x3 ≤ 0,−x4 ≤ 0,−x2 − x3 ≤ 1}.

�e set of variables in the constraints added by the two transformers are disjoint. �e specialized

decomposition for the Octagon domain (Singh et al. 2015) requires access to the exact de�nition of

the transformer, i.e., it will produce di�erent decomposition for T1 and T2.

�is Work. �e key objective of this work is to bring the power of decomposition to all numerical

(sub-polyhedra) domains without requiring complex manual e�ort from the domain designer. �is

would enable domain designers to achieve speed-ups without requiring them to re-write all of their

abstract transformers from scratch each time.

More formally, our goal is to provide a systematic correct-by-construction method that given an

abstract transformer T in a sub-polyhedra domain (e.g., Zones), generates a decomposed version of

T that is faster than T and does not require any change to the internals of T. In this paper we present

a construction that achieves this objective and show that it leads to decomposed transformers that

are faster than prior, hand-tuned decomposed implementation of domains (Singh et al. 2015, 2017).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:3

Main Contributions. Our paper makes the following contributions:

• For designers of new transformers in existing or future numerical domains, we provide

speci�cations on how to achieve and maintain decomposition. �e speci�cations are based

on static criteria that a transformer should satisfy (Section 5).

• We introduce a general construction for obtaining decomposed transformers of existing

numerical domains. �is includes guarantees on the achievable decomposition (i.e., which

granularity is possible) (Section 6).

• We applied our method to decompose standard end-to-end implementations of three popular

and expensive domains: Polyhedra, Octagons, and Zones. �e existing implementation of

non-decomposed transformers in these domains did not require any modi�cation. In some

cases, our decomposed transformers are more precise than the original non-decomposed

transformers.

• We evaluated the e�ectiveness of our decomposed analysis against state-of-the-art imple-

mentations on large real-world benchmarks including Linux device drivers. Our evaluation

shows up to 6x and 2x speedups on the overall end-to-end Polyhedra and Octagon domain

analysis over state-of-the-art, manual decomposition tuned to the particular implementa-

tions of these domains. For Zones, we achieve speedups of about 2 to 5x compared to our

own, non-decomposed implementation. All speedups are due to our method and not due

to implementation techniques.

2 GENERIC MODEL FOR NUMERICAL ABSTRACT DOMAINS
An abstract domain consists of a set of abstract elements and a set of transformers that model

the e�ect of program statements and expressions (assignment, conditionals, etc.) on the abstract

elements. Let X = {x1,x2, . . . ,xn } be a set of variables. In this paper, we consider sub-polyhedra

domains, i.e., numerical abstract domains D that encode linear relationships between the variables

in X of the form:

n∑
i=1

aixi ⊗ c, where xi ∈ X,ai ∈ Z, ⊗ ∈ {≤,=}, c ∈ C. (1)

Typical choices for C include Q (rationals) and R (reals). As with any abstraction, the design of a

numerical domain is guided by the cost vs. precision tradeo�. For instance, the Polyhedra domain

(Cousot and Halbwachs 1978) is the most precise numerical domain yet is also the most expensive.

On the other hand, the Interval (Box) domain is cheap but is also very imprecise as it does not

preserve relational information between variables. Between these two sit a number of domains

with varying degrees of precision and cost; examples include Two Variables Per Inequality (TVPI)

(Simon and King 2010), Octagons (Miné 2006), and Zones (Miné 2002).

Representing domain constraints. We introduce notation for describing the set of constraints a

given domain D can express for variables X. �is set of constraints is referred to as LX,D and is

determined by four components (n,R,T ,C):

• �e size n of the variable set X.

• A relation R ⊆ R1 × R2 × . . . × Rn to describe the universe of possible coe�cients. Each

Ri ⊆ Z is a set of integers de�ning the allowed values for the coe�cients ai . Typical

examples for Ri include Z,U = {−1, 0, 1}, and L = {−2
k , 0, 2k | k ∈ Z}.

• �e set T ⊆ {≤,=} determining equality/inequality constraints.

• �e set C containing the allowed values for the constant c in (1). Typical examples include

Q and R.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:4 Anon.

Table 1 shows prototype constraints allowed by di�erent numerical domains in the above notation.

�e set of constraints LX,D representable by a domain D contains all constraints of the form∑n
i=1

aixi ⊗ c where: (i) the coe�cient list of each expression

∑n
i=1

aixi is a permutation of a tuple

in R, (ii) ⊗ ∈ T , and (ii) the constant c ∈ C. For instance, the possible constraints LX,octagon for

the Octagon domain over real numbers are described via the tuple (n,U2 × {0}n−2, {≤,=},R).

Table 1. Instantiation of constraints expressible in various numerical domains.

Domain R T C Reference

Polyhedra Zn {≤,=} Q,R (Cousot and Halbwachs 1978)
Linear equality Zn {=} Q,R (Karr 1976)
Octahedron Un {≤,=} Q,R (Claris and Cortadella 2007)
Stripes {(a,a,−1, 0, . . . , 0) | a ∈ Z} {≤,=} Q,R (Ferrara et al. 2008)
TVPI Z2 × {0}n−2 {≤,=} Q,R (Simon and King 2010)
Octagon U2 × {0}n−2 {≤,=} Q,R (Miné 2006)
Logahedra L2 × {0}n−2 {≤,=} Q,R (Howe and King 2009)
Zones {1, 0} × {0,−1} × {0}n−2 {≤,=} Q,R (Miné 2002)
Strict upper bound {1} × {−1} × {0}n−2 {≤} {−1} (Logozzo and Fähndrich 2008)
Interval {1,−1} × {0}n−1 {≤,=} Q,R (Cousot and Cousot 1976)

Example 2.1. Consider a program with four variables and a �ctive domain that can relate at most

two:

X = {x1,x2,x3,x4} and LX,D : (4,U2 × {0}2, {≤,=}, {1, 2}).

Here, the constraint 2x1 + 3x4 ≤ 2 < LX,D as no permutation of tuples in U2 × {0}2 can produce

(2, 0, 0, 3). Similarly, x2 − x3 ≤ 3 < LX,D even though there exists a permutation of tuples in

U2 × {0}2 that can produce (0, 1,−1, 0), but 3 < C. However, the constraints x2 − x3 ≤ 1 and

x2 − x3 = 2 are in LX,D .

De�ning an abstract domain. An abstract element I in a domain D is a conjunction of a �nite

number of constraints from LX,D . By abuse of notation we will represent I as a set of constraints

(interpreted as a conjunction of the constraints in the set). �e set of all possible abstract elements

is denoted by PD and typically forms a la�ice (PD ,v,t,u,>,⊥) with respect to the domain order

v. Given abstract elements I and I ′, I t I ′ is the smallest element approximating the union

I ∪ I ′ of the polyhedra and is computed by the join transformer. Similarly I u I ′ = I ∩ I ′ is

the meet transformer. �ere are usually 40 abstract transformers in a given domain D. While our

theory handles all 40 transformers, we focus on the join (t), meet (u), conditional, assignment,

and widening (5) transformers in this paper. We chose these because they are the most expensive

transformers in the domain and thus their design shows the most variation, i.e., they can be

implemented in multiple ways. We note that there is an equivalent representation of an abstract

element based on the generator representation where the element is encoded as a collection

of vertices, rays and lines. In this paper, we use the constraint representation as it leads to a

clearer exposition of the ideas. However, our technical results are also valid with the generator

representation.

As standard, we use the concretization function γ to denote with γ (I) the concrete element

(polyhedron) represented by the abstract element I. We note that in the constraint representation,

it is possible for I to include redundant constraints, that is, removing a constraint from I may not

change the represented concrete element γ (I). Further, the minimal representation of a concrete

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:5

element γ (I) is not unique as there could be two non-comparable abstract elements I and I ′

where γ (I) = γ (I ′):

Example 2.2. I = {x1 = 0,x2 = 0} and I ′ = {x1 = 0,x2 = 0,x1 = x2} represent the same concrete

element γ (I) in the Polyhedra domain. However, I ′ contains the redundant constraint x1 = x2. I

is not the only minimal representation as I ′′ = {x1 = 0,x1 = x2} is also minimal for γ (I).

We say an abstract domainD is closed for an abstract transformer
1 T i� for any abstract element

I in D, γ (T (I)) = T # (γ (I)), where T #
is the corresponding concrete transformer (that is, the

abstract transformer does not lose precision). �e Polyhedra domain is closed for the conditional,

assignment and meet transformers but it is not closed for the join transformer. All other domains in

Table 1 are only closed under the meet transformer. Indeed, a crucial aspect of abstract interpretation

is to permit sound approximations for transformers that are not closed.

Example 2.3. Consider the abstract element I = {x1 ≤ 1,x2 ≤ 0} in the Octagon domain. �e

conditional transformer T for the linear constraint x1 − 2x2 ≤ 0 is not closed as the concrete

element produced by T #
is I ′ = T # (γ (I)) = {x1 ≤ 1,x2 ≤ 0, 2x1 − x2 ≤ 0}. �ere does not exist a

representation for I ′ in the Octagon domain as the constraint 2x1 − x2 ≤ 0 is not representable.

A useful concept in analysis (and one we refer to throughout the paper) is that of the best abstract

transformer.

De�nition 2.1. A (unary) abstract transformerT inD is best i� for any unary abstract transformer

T ′ (corresponding to the same concrete transformer T #
) it holds that for any element I in D, T

always produces a more precise result (in the concrete), that is, γ (T (I)) ⊆ γ (T ′(I)). �e de�nition

is naturally extended to multiple arguments.

In example 2.3, a possible sound approximation for the output in the Octagon domain is I ′′ = I

while the best transformer would produce {x1 ≤ 0,x2 ≤ 0,x1 − x2 ≤ 0}.

3 DECOMPOSING ABSTRACT ELEMENTS
In this section we introduce the needed notation and concepts for decomposing abstract elements

and transformers. As in (Halbwachs et al. 2003; Singh et al. 2015, 2017), our approach to decom-

position is based on the observations that: (a) not all variables get related by a constraint in a

given abstract element I, and (b) the number of variables a�ected by a given program statement

is small compared to the size n of the set of program variables X. �ese observations enable us

to decompose I into smaller pieces which, in turn, enables the decomposition of the domain

transformers to reduce their complexity. �e decomposition is not �xed and varies over iterations

for the same element and thus needs to be determined and maintained dynamically. �is results in

be�er performance with respect to the original non-decomposed transformer.

We address the decomposition of abstract elements and transformers forD based on partitioning

the variable set X. �e set PX consisting of all partitions of X forms a partition la�ice (PX,v
,t,u,⊥,>). �e elements π of the la�ice are ordered as follows: π v π ′, if every block of

π is included in some block of π ′ (π “is �ner” than π ′). �e la�ice contains the usual least
upper bound (t) and greatest lower bound (u) operators. In the partition la�ice, > = {X} and

⊥ = {{x1}, {x2}, . . . , {xn }}.
Given an abstract element I, we partition the set of program variables X into subsets Xk that we

call blocks such that constraints only exist between variables in the same block. Each unconstrained

variable xi yields the singleton block {xi }. We use πI,D = {X1,X2, . . . ,Xr } to denote the unique

1
�roughout the paper we will simply use the term transformer to mean an abstract transformer.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:6 Anon.

�nest such partition for an element I. For simplicity, we usually omit D from the subscript and

just write πI .

�e partition πI decomposes I into a set of smaller abstract elements Ik on the variables in a

block Xk which we call factors. Each factor Ik ⊆ I is de�ned by the constraints that exist between

the variables in the corresponding block Xk . I can be recovered from the set of factors by taking

the union of the constraint sets Ik .

Example 3.1. Consider the element I = {x1 − x2 ≤ 1,x3 ≤ 0,x4 ≤ 0} in the TVPI domain

X = {x1,x2,x3,x4} and LX,TVPI : (4,Z2 × {0}2, {≤,=},Q).

Here X can be partitioned into three blocks with respect to I resulting in three factors,

πI = {{x1,x2}, {x3}, {x4}},I1 = {x1 − x2 ≤ 1},I2 = {x3 ≤ 0} and I3 = {x4 ≤ 0}.

For a given D, π⊥ = π> = ⊥ = {{x1}, {x2}, . . . , {xn }}. More generally, if I v I ′, then πI′ may

be �ner as, coarser as, or not comparable with πI .

Di�erent partitions for equivalent elements. To gain a deeper understanding of the issues with

partitions, there are two interesting points worth noting. First, it is possible that two semantically

equivalent abstract elements I,I ′ in the domain have di�erent partitions. �at is, even if γ (I) =
γ (I ′), it may be the case that πI , πI′ or πI @ πI′ :

Example 3.2. Consider I = {x1 ≤ x2,x2 = 0,x3 = 0} with the �nest partition πI = {{x1,x2}, {x3}},

I ′ = {x1 ≤ 0,x2 = 0,x3 = 0} with πI′ = {{x1}, {x2}, {x3}} and I ′′ = {x1 ≤ x3,x2 = 0,x3 = 0} with

πI′′ = {{x1,x3}, {x2}} in the Polyhedra domain. Here γ (I) = γ (I ′) = γ (I ′′), but the partitions are

pairwise di�erent.

Second, it is possible that for a given abstract element I, there exists an equivalent element I ′

with �ner partition but I ′ is not representable in the domain:

Example 3.3. Consider the �ctive domain,

X = {x1,x2,x3,x4},LX,D : {4,U4, {≤,=}, {1, 3}},

I = {x1 = 1,x1 + x2 − x3 = 3,x2 + x3 + x4 = 1} with πI = {x1,x2,x3,x4}.

�is domain cannot represent the equivalent element {x1 = 1,x2 − x3 = 2,x2 + x3 + x4 = 1} which

has the partition {{x1}, {x2,x3,x4}} that is �ner than πI . �is is because the constraint x2 − x3 = 2

is not representable in D.

It is important we guarantee that regardless of how approximate a given transformer T is, the

partition we end up computing forT is always sound (permissible) w.r.t. the output abstract element

I produced by T . Next, we de�ne this notion formally following (Singh et al. 2017).

De�nition 3.1. A partition π is permissible w.r.t. an abstract element I if it is coarser than πI ,

that is, π w πI .

�e variables related in πI are also related in any permissible partition of I, but not vice-versa.

In example 3.1, {{x1,x2}, {x3,x4}} is permissible w.r.t. I while {{x1}, {x2,x3,x4}} is not. We will

generally use π I to denote a permissible partition for I.

4 RECIPE FOR DECOMPOSING TRANSFORMERS
One primary objective of this work is to de�ne a mechanical recipe which takes as input a sound

abstract transformer and produces as output a decomposed variant of that transformer, thus

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:7

resulting in be�er analysis performance. In this section we describe the general recipe and illustrate

its actual use.

At �rst glance the above challenge appears fundamentally di�cult, because there are multiple

ways to de�ne a sound transformer in a domainD. Standard implementations of popular numerical

domains, e.g., Octagon, Zones, TVPI, do not necessarily implement the best transformer as it can

be expensive; instead they usually approximate it. Interestingly, as pointed out earlier, such an

approximation can make the associated partition coarser or �ner. �at is, the partitioning function

is not monotone. Here is an example illustrating this point:

Example 4.1. Consider the elements I = {x1 ≤ 0,x2 ≤ 0,x1 − x2 ≤ 0} with πI = {{x1,x2}} and

I ′ = {x1 ≤ 0,x2 ≤ 0} with πI′ = {{x1}, {x2}} in the Polyhedra domain. Here, γ (I) ⊂ γ (I ′) and

πI w πI′ . On the other hand, for the elements I = {x1 ≤ 0,x2 ≤ 0} with πI = {{x1}, {x2}} and

I ′ = {x1 + x2 ≤ 0} with πI′ = {{x1,x2}}. Now, γ (I) ⊂ γ (I ′) but πI v πI′ .

De�nition 4.1. A transformer T in D is decomposable w.r.t to its input I in D i� the output I ′

a�er applying T on I results in a partition where πI′ , >.

�ere are multiple ways to de�ne a sound approximation of the best transformer in D. It is

possible to have two transformers T1,T2 in D on the same input I such that one produces >

partition for the output while the other not. �ere are two principal ways to obtain a decomposable

transformer. �e �rst approach is to design each transformer from scratch, maintaining the (chang-

ing) partitions during analysis. �e other approach is to provide a construction for decomposing

existing transformers without knowing their internals. In Sections 4 and 6 we elaborate on this

approach and show which partitions are achievable. We now elaborate on the steps that one needs

to perform dynamically when decomposing a given transformer.

A construction for online transformer decomposition. �ere are four main steps for decomposing a

given (decomposable) transformer:

(1) compute (if needed) partitions for the input(s),

(2) compute a partition for the output based on the statement/expression and input partition(s)

of step 1,

(3) re-factor the inputs according to the computed output partition in step 2, and

(4) apply the transformer on one or more factors of the inputs from step 3.

We next describe these steps in greater detail.

In an ideal se�ing, one would always work with the �nest partition for the inputs and the

output so to (optimally) reduce the cost of the transformer. �e �nest partition for the inputs of

a given transformer can always be computed from scratch by taking the abstract element and

connecting the variables that occur in the same constraint in that element. �e downside is that

this computation may incur signi�cant overhead. For example, computing the �nest partition

for an element in the Octagon domain from scratch has the same quadratic complexity as the

conditional, meet and assignment transformers which basically nulli�es potential performance

gains from decomposing these transformers.

To compute the output partition, a naive way is to �rst run the transformer, obtain an abstract

element as a result, and then compute the partition for that element. Of course, this approach is

useless since running the standard transformer prevents performance gains. �us, the challenge is

to devise an approach that keeps track of the partitions dynamically without recomputing them

from scratch. Indeed, in our construction we always compute a permissible partition for the

output based on permissible partitions of the input, the program statement, and possibly additional

information that is cheaply available. Once the output partition is obtained, the associated abstract

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:8 Anon.

element is computed directly in decomposed form by applying the original transformer to the

factors of the input.

�e third step in our construction involves refactoring the input(s) according to the output

partition. For all transformers discussed in this paper, the permissible partition for the output

is coarser than the permissible partition(s) for the input(s). Refactoring the inputs just means

viewing them as partitioned with the (coarser, and thus permissible) output partition. �is is done

by collecting the constraints of blocks that get merged to one block.

�e last step of the construction involves computing the output abstract element by applying

the user-provided transformer on one or more factor(s) of the refactored input(s). Applying this

transformer on smaller factors reduces its complexity and results in increased performance. In

certain cases, the permissible partition for the output can be further re�ned a�er applying the

transformer and without adding signi�cant overhead. We identify such cases in Section 6.

Our construction performs be�er than state-of-the-art manual decomposition. Our approach is

generic in nature and can decompose the standard transformers of the existing sub-polyhedra

numerical abstract domains. We implemented our recipe and applied it to several practical numerical

domains (e.g., Polyhedra, Octagon and Zones). Using a set of large Linux device drivers, we then

evaluated the performance of our generated decomposed transformers vs. transformers obtained

via state-of-the-art hand-tuned decomposition (Singh et al. 2015, 2017) showing that our approach

leads to 2.4x (for Polyhedra) and 1.4x (for Octagon) speed-ups, on average. We believe this speed-up

is due to our theorems (discussed next) which enable, in certain cases, �ner decomposition of

abstract elements than previously possible (indeed, we experimentally show that our permissible

partitions are close to the �nest partitions). Speedups compared to the original transformers without

decomposition are orders of magnitude larger. Further, we decomposed the Zones domain using

our approach (for which no previous decomposition exists) without changing the existing domain

transformers. We obtain a speedup of 3x on average over non-decomposed implementation of the

Zones domain. In summary, our recipe is generic in nature yet leads to state-of-the-art performance

for classic abstract transformers.

5 DECOMPOSABLE TRANSFORMERS
When designing a decomposable transformer a key question is what partition is achievable for

the output, given a partition of the input(s). In this section we de�ne achievable partitions for all

sub-polyhedra domains, focusing again on the conditional, assignment, meet, and join transformers.

In the next section we will explain how to design the associated transformers either from scratch,

or from an existing transformer (using our construction). Compared to (Halbwachs et al. 2003;

Singh et al. 2015, 2017), we thus generalize decomposition to all sub-polyhedra domains. Further,

in Section 6 we also show how to obtain �ner partitions, including for Polyhedra and Octagon than

(Singh et al. 2015, 2017), thus also obtaining signi�cant speed-ups in our implementation.

In this section, we assume that inputs I,I ′ for binary transformers are partitioned according to

a common permissible partition π common. �is partition can always be computed, that is, we have

that π common = π I t π I′ where π I ,π I′ are any permissible partitions for I,I ′, respectively. For

the examples shown in this section, the permissible partitions for the inputs used and the obtained

output are the �nest.

5.1 Conditional
We consider conditional statements of the form e ⊗ c where e :=

∑n
i=1

aixi with ai ∈ Z, ⊗ ∈ {≤,=}
and c ∈ Q,R on an abstract element I with an associated permissible partition π I in domain D.

�e conditional transformer computes the e�ect of adding the constraint e ⊗ c to I. As discussed in

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:9

Section 2, a number of existing domains are not closed for the conditional transformer. Moreover,

computing the best transformer is expensive in these domains and thus is usually approximated to

strike a balance between precision and cost. �e example below illustrates two sound conditional

transformers on the same inputs, where the �rst transformer results in > partition and the second

produces a decomposable output.

Example 5.1. Consider

X = {x1,x2,x3,x4,x5,x6},LX,polyhedra : (6,Z6, {≤,=},Q),

I = {{x1 + x2 ≤ 0}, {x3 + x4 ≤ 5}} with π I = πI = {{x1,x2}, {x3,x4}, {x5}, {x6}}.

For the conditional x5 + x6 ≤ 0, a sound conditional transformer T1 could produce output I ′ with

partition >:

I ′ = {{x1 + x2 + x3 + x4 + x5 + x6 ≤ 5}} with π I′ = πI′ = >.

Here, the output partition is > and thus T1 is non-decomposable for this input. Another sound

conditional transformer T2 may return output I ′′:

I ′′ = {{x1 + x2 ≤ 0}, {x3 + x4 ≤ 5}, {x5 + x6 ≤ 0}} with π I′′ = πI′′ = {{x1,x2}, {x3,x4}, {x5,x6}}.

In this case, πI′′ , > and thus, T2 is decomposable for input I.

Let Bcond = {xi | ai , 0} be the set of variables with non-zero coe�cients in the constraint∑n
i=1

aixi ⊗ c . �e block B∗
cond
=
⋃
Xk∩Bcond,∅Xk fuses all blocks Xk ∈ π I that have non-empty

intersection with Bcond. We de�ne the setUc = {xi | xi < B
∗
cond
} to contain the variables not in

B∗
cond

.

Example 5.2. Consider X = {x1,x2,x3,x4,x5,x6} and an element I in the Polyhedra domain

with π I = {{x1,x2,x3}, {x4,x5}, {x6}}. For the conditional x3 + x6 ≤ 0, Bcond = {x3,x6} and

B∗
cond
= {x1,x2,x3,x6}.

Next, we de�ne a class of conditional transformers that provide a well-de�ned partitioned output.

In Section 6 we then show that this class is not empty, i.e., the partitions are achievable in all

sub-polyhedra domains.

De�nition 5.1. A transformer T in D for the conditional statement e ⊗ c is in [[cond,D]] i� for

any element I with the permissible partition π I in D, the output I ′ can be computed without

creating non-redundant constraints between the variables from B∗
cond

and the variables inUc .

While the construction of the output partition seems natural (and, as one can easily convince

oneself, is satis�ed by most standard transformers already in use), best transformers are not

necessarily in this class due to constraints in the coe�cient set R or the constant set C in the

domain. We provide a counter example.

Example 5.3. We consider a �ctive domain

X = {x1,x2} and LX,D : (2,Z2, {≤,=}, {0, 1, 1.5}).

We assume I = {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} with partition {{x1}, {x2}} and the conditional x2 ≤ 0.5.

In this case B∗
cond
= {x2}. Using only constraints with variables in B∗

cond
yields I ′ = I as the most

precise result since 0.5 < C. However, the best transformer would produce I ′ = I ∪ {x1 +x2 ≤ 1.5}
or an equivalent abstract element. As a consequence, no best transformer in this domain is in

[[cond,D]].

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:10 Anon.

5.2 Assignment
We consider linear assignments of the form x j := e on an abstract element I with an associated

permissible partition π I in D where e :=
∑n

i=1
aixi + c with ai ∈ Z and c ∈ Q,R. An assignment is

invertible if aj , 0 (for example x1 := x1 + x2). Ix j ⊆ I is the set of constraints with aj , 0 in I.

As discussed in Section 2, a number of existing domains are not closed for the assignment

transformer. As for the conditional, the best assignment transformer is usually expensive for these

domains and is overapproximated with a less precise one. �e example below shows two sound

approximations of the best assignment transformer on the same inputs, the �rst transformer results

in the > partition whereas the second transformer keeps the output decomposed.

Example 5.4. Consider

X = {x1,x2,x3,x4,x5,x6},LX,Polyhedra : (6,Z6, {≤,=},Q),

I = {{x1 + x2 ≤ 0}, {x3 + x4 ≤ 5,x5 − x3 ≤ 0}} with π I = πI = {{x1,x2}, {x3,x4,x5}, {x6}}.

For the assignment x5 := −x6, a sound assignment transformer T1 can produce the output I ′ with

> partition:

I ′ = {{x1 + x2 + x3 + x4 + x5 + x6 ≤ 5}} with π I′ = πI′ = >.

Here, the output partition is >. �us, T1 in non-decomposable w.r.t. the input I. Another sound

assignment transformer T2 may return the output I ′′:

I ′′ = {{x1 + x2 ≤ 0}, {x3 + x4 ≤ 5}, {x5 + x6 = 0}} with π I′′ = πI′′ = {{x1,x2}, {x3,x4}, {x5,x6}}.

In this case, πI′ , > and thus, T2 is decomposable w.r.t. I.

Let Bassign = {xi | ai , 0} ∪ {x j } be the set of variables containing x j and all variables with

non-zero coe�cient in the linear expression e :=
∑n

i=1
aixi +c . �e block B∗

assign
=
⋃
Xk∩Bassign,∅Xk

fuses all blocks Xk ∈ π I having non-empty intersection with Bassign. We de�ne the setUa = {xi |
xi < B

∗
assign

} to contain variables not in B∗
assign

.

Example 5.5. Consider X = {x1,x2,x3,x4,x5,x6} and an element I in the Polyhedra domain

with π I = {{x1,x2}, {x3,x4}, {x5,x6}}. For the assignment x3 := x1 + x2, Bassign = {x1,x2,x3} and

B∗
assign

= {x1,x2,x3,x4}.

Generic transformer for invertible assignment. �e invertible assignment transformer removes all

constraints in Ix j from I. It then computes a set of constraints Iinv by substituting (x j −
∑

i,j aixi −
c)/aj for x j in all constraints in Ix j . Finally, it adds a set of representable constraints I ′

inv
capturing

the e�ect of the addition of Iinv to I \ Ix j using the conditional transformer.

Generic transformer for non-invertible assignment. �e non-invertible assignment transformer

removes all constraints in Ix j from I. Next, it computes a set of constraints Inon-inv by projecting
x j from all constraints in Ix j using variable elimination. Finally, it adds a set of representable

constraints I ′
non-inv

capturing the e�ect of the addition of Inon-inv ∪ {x j − e = 0} to I \ Ix j using the

conditional transformer.

We use the above constructions to de�ne a class [[assign,D]] of decomposed assignment trans-

formers for the statement x j := e based on B∗
assign

in D.

De�nition 5.2. An assignment transformer T in D for the statement x j := e is in [[assign,D]] i�

for any element I with the permissible partition π I in D, the output I ′ can be computed without

creating non-redundant constraints between the variables in B∗
assign

and the variables inUa .

An example of a domain in which no best transformer ∈ [[assign,D]] can be constructed as for

the conditional.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:11

5.3 Meet (u)
As discussed in Section 2, all existing domains are closed for the meet (u) transformer. Moreover,

they always implement the best transformer as it is simply the union of the inputs I,I ′ making it

easy to compute. An approximation of the best transformer may result in loss of the la�ice property

I u I ′ v I and I u I ′ v I ′. An arbitrary approximation can again result in the > partition.

De�nition 5.3. A meet transformer T in D is in [[u,D]] i� for input elements I,I ′ with the

common permissible partition π common the output T (I,I ′) can be computed from I,I ′ without

creating non-redundant constraints between the variables in di�erent blocks of π common.

In this case, the best transformer is in [[u,D]] since it is simply obtained as I ∪ I ′, which is

representable in the domain and does not create non-redundant constraints between the variables

in di�erent blocks of π common.

5.4 Join (t)
As discussed in Section 2, none of the existing domains are closed for the join (t) transformer.

�e join transformer approximates the union of I and I ′ in D and is usually the most expensive

transformer in D and thus approximated. As with other transformers, an arbitrary approximation

can result in the > partition for all equivalent outputs. �e example below shows two sound join

transformers in the Zones domain. �e �rst transformer produces the > partition whereas the

second one preserves it.

Example 5.6. Consider

X = {x1,x2,x3,x4,x5,x6},LX,zones : (6, {1, 0} × {0,−1} × {0}4, {≤,=},R),

I = {{x1 = 1}, {x2 = 2}, {x3 ≤ 3}, {x4 = 4}, {x5 = 0}, {x6 = 0}} and

I ′ = {{x1 = 1}, {x2 = 2}, {x3 ≤ 3}, {x4 = 4}, {x5 = 1}, {x6 = 1}} with

π I = π I′ = πI = ⊥.

One sound transformer T1 for the join transformer could produce the output I ′′ with > partition:

I ′′ = {{x2 − x1 ≤ 1,x1 − x5 ≤ 1,x3 − x2 ≤ 1,x4 − x3 ≤ 1,x5 = x6}}

with π I′′ = πI′′ = >.

�us T1 is not decomposable w.r.t. the inputs I,I ′. Another sound transformer T2 may return the

output I ′′′:

I ′′′ = {{x1 = 1}, {x2 = 2}, {x3 ≤ 3}, {x4 = 4}, {−x5 ≤ 0,x5 ≤ 1}, {−x6 ≤ 0,x6 ≤ 1}}

with π I′′′ = πI′′′ = ⊥.

In this case πI′′′ , > and thus T2 is decomposable w.r.t the inputs I,I ′.

Let E = {Xk | Xk ∈ π common,Ik = I
′
k } be the set of blocks such that the corresponding factors

Ik ,I
′
k are equal. Let N =

⋃
{Xk | Xk ∈ π common,Ik , I

′
k } be the union of all remaining blocks.

De�nition 5.4. A join transformer T in D is in [[t,D]] i� for input elements I,I ′ with the

common permissible partition π common the outputT (I,I ′) can be computed from I,I ′ by creating

non-redundant constraints between only the variables in the set N .

In example 5.6, we have E = {{x1}, {x2}, {x3}, {x4}} and N = {x5,x6}. T1 < [[t,D]] as T1

creates a non-redundant constraint between x1 and x2 which are in di�erent blocks of E whereas

T2 ∈ [[t,D]].

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:12 Anon.

5.5 Widening (5)
�e widening transformer (5) is applied during analysis to accelerate convergence towards a

�xpoint. It is a binary transformer and guarantees that: (i) the output I ′′ w I, (ii) I ′′ w I ′, and

(iii) the analysis terminates a�er a �nite number of steps. �e best widening transformer does

not exist for any numerical domain. In theory, it may be possible to design arbitrary widening

transformers that always result in the > partition. In practice, the standard widening transformers

are of two types:

Syntactic. For syntactic widening, the set of constraints in the output element I ′′ is ⊆ I. A

constraint ι :=
∑n

i=1
aixi ≤ c ∈ I is in the output I ′′ i� there is a constraint ι′ :=

∑n
i=1

aixi ≤ c ′ ∈
I ′ with the same linear expression and c ′ ≤ c .

Semantic. �e semantic widening (Cousot et al. 2005) requires the input I to be minimal. �e set

of constraint in the output I ′′ is ⊆ I ∪ I ′. I ′′ contains the constraints from I that are satis�ed

by I ′ and the constraints ι′ from I ′ that are mutually redundant with a constraint ι in I.

Both these transformers are decomposable in practice. �e following example illustrates the

semantic and the syntactic widening on the Octagon domain.

Example 5.7. Consider

X = {x1,x2,x3,x4},LX,octagon : (4,U2 × {0}2, {≤,=}, I),

I = {{x1 − x2 ≤ 0,x2 ≤ 0}, {x3 ≤ 0}, {x4 ≤ 1}},I ′ = {{x1 ≤ 0}, {x3 + x4 ≤ 2}}, with

π I = πI = {{x1,x2}, {x3}, {x4}} and π I′ = πI′ = {{x1,x2}, {x3,x4}}.

�e semantic widening transformer T1 yields:

I ′′ = {{x1 ≤ 0}} with π I′′ = πI′′ = ⊥.

On the other hand, the syntactic widening transformer T2 yields:

I ′′′ = ∅ with π I′′′ = πI′′′ = ⊥.

For both T2 and T2 the output partition is , > and thus both are decomposable w.r.t. the inputs

I,I ′.

We de�ne the class [[5,D]] of widening transformers in D to contain the standard transformers.

De�nition 5.5. A widening transformer T is in [[5,D]] i� for input elements I,I ′ with the

common permissible partition π common the output T (I,I ′) can be computed from I,I ′ without

creating non-redundant constraints between the variables in di�erent blocks of π common.

In example 5.7, bothT1 andT2 are in [[5,D]]. We writeT5 for a transformer in [[5,D]]. It can be

shown that the standard transformer T stan

5 in existing domains is in [[5,D]].

6 DECOMPOSING DOMAIN TRANSFORMERS
In this section, we show a construction which takes as input a transformer (e.g., for a conditional or

an assignment) in a given domainD and produces a (decomposed) transformer in the classes de�ned

in Section 5, i.e., it guarantees an upper bound for the partition of the output. �e decomposed

transformer is obtained as already sketched informally in Section 4, i.e., the given transformer is

applied on smaller abstract elements and then the result assembled, which reduces complexity and

thus improves analysis performance.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:13

Algorithm 1 Decomposed conditional transformer

1: function Conditional(I,π I , stmt,T
cond

)

2: Parameters:
3: I ← {I1,I2, . . . ,Ip }
4: π I ← {XI1 ,XI2 , . . . ,XIp }
5: stmt← e ⊗ c
6: T

cond
← conditional transformer

7: B∗
cond

:= extract block(stmt,π I)

8: Uc := {xi | xi < B
∗
cond
}

9: π
cond

:= {B∗
cond
, {u1}, . . . , {ur }},ui ∈ Uc

10: π := π I t πcond
:= {XIr

1

,XIr
2

, . . . ,XIrl
}

11: Ir := refactor(I,π I ,π)
12: I ′ := ∅
13: for k ∈ {1, 2, . . . , l } do
14: if XIrk = B

∗
cond

then
15: I ′.add(T

cond
(Irk))

16: else
17: I ′.add(Irk)

18: π I′ := π

Soundness. �e main task is to show that for a given transfomer T , our obtained decomposed T ′

is sound. As usual, this is the case i� for any element I ∈ D, γ (T best (I)) ⊆ γ (T ′(I)) (the criterion

is naturally extended to transformers with multiple arguments). Note that in general it can happen

that γ (T (I)) ⊂ γ (T ′(I)) or γ (T (I)) ⊃ γ (T ′(I)), i.e., the decomposed transformer T ′ may have

be�er or worse precision with respect to the original non-decomposed transformer T .

�ality of partition. Our construction guarantees that the output partitions obey the de�nitions

in Section 5. In the process, we show how to obtain re�nements for the output partition that do

not create signi�cant overhead while yielding signi�cant performance gains.

In this section, we use the notation βB (I) to denote the projection of I de�ned over X to a

subset B of X.

6.1 Conditional
Algorithm 1 shows a construction for decomposing a given conditional transformerTcond. Given an

input element I with a permissible partition π I in domainD, the algorithm �rst extracts the block

B∗
cond

based on the conditional statement and the permissible partition π I . It then computes the set

of variablesUc that are not inB∗
cond

followed by a partition πcond = {B
∗
cond
, {u1}, . . . , {ur }}},ui ∈ Uc

corresponding to the conditional statement e ⊗ c. �e input I is refactored with respect to the

partition π = π I t πcond producing Ir . �e transformer Tcond is applied only on the factor Ir
cond

of

Ir corresponding to the block B∗
cond

. By applying Tcond to Ir
cond

only, we reduce complexity and

thus increase performance. �e following example illustrates the decomposition of a conditional

transformer in the TVPI domain using Algorithm 1.

Example 6.1. Let

X = {x1,x2,x3,x4,x5},LX, tvpi : (Z2 × {0}3, {≤,=},Q),

I = {{x1 ≤ x2}, {x3 + x4 ≤ 5}, {x5 = 7}} with π I = πI = {{x1,x2}, {x3,x4}, {x5}}.

Consider the conditional statement 2x4 + x5 ≤ 8 with Bcond = {x4,x5}. Algorithm 1 computes

B∗
cond
= {x3,x4,x5}, πcond = {{x1}, {x2}, {x3,x4,x5}} and π = π I t πcond = {{x1,x2}, {x3,x4,x5}}. It

then refactors I with respect to π producing Ir :

Ir = {{x1 ≤ x2}, {x3 + x4 ≤ 5,x5 = 7}}.

Finally, Tcond is applied only on Ir
2

:

I ′ = {Ir
1
,Tcond (I

r
2
)} = {{x1 ≤ x2}, {x3 + x4 ≤ 5,x5 = 7, 2x4 + x5 ≤ 8}}.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:14 Anon.

By construction, the decomposed transformer in Algorithm 1 is in [[cond,D]]; it remains to show

soundness.

Theorem 6.1. Let Tcond be a conditional transformer for the statement e ⊗ c. �en the associated
decomposed transformer TD

cond (Algorithm 1) is sound, i.e., γ (T best
cond (I)) ⊆ γ (T

D
cond (I)) for all I.

Proof. By construction I = Ir . Algorithm 1 applies Tcond on Ir
cond

de�ned over B∗
cond

only.

�us, we can writeTD
cond

(Ir) = Tcond (βB∗
cond

(Ir
cond

))∪Ir
Uc

where Ir
Uc

contains the set of constraints

in Ir that are not in Ir
cond

.

T best

cond
(Ir) = T best

cond
(Ir

cond
∪ Ir
Uc

)

v βB∗
cond

(T best

cond
(Ir

cond
)) × βUc (T

best

cond
(Ir
Uc

))

v βB∗
cond

(T best

cond
(Ir

cond
)) × βUc (I

r
Uc

) (By de�nition T best

cond
(I) v I)

= T best

cond
(βB∗

cond

(Ir
cond

))) ∪ Ir
Uc

v Tcond (βB∗
cond

(Ir
cond

)) ∪ Ir
Uc

= TD
cond

(Ir).

Since γ is monotone, we have γ (T best

cond
(I)) ⊆ γ (TD

cond
(I)) and thus the theorem holds.

�

�e de�nition of B∗
cond

guarantees that βB∗
cond

(Tcond (I
r
B∗

cond

)) = Tcond (βB∗
cond

(Ir
cond

)) holds for any

conditional transformer Tcond in D. �e proof of �eorem 6.1 requires that βB (T
best

cond
(Ir
B
)) v

T best

cond
(βB (I

r
B
))) which may not hold for any arbitrary B. �e following example illustrates this for

a conditional transformer in the Octagon domain.

Example 6.2. Consider

X = {x1,x2,x3},LX,octagon : (3,U3, {≤,=},R),B = {x1,x2},I
r
B
= {x1 ≤ 0,x2 ≤ 0}.

�e best conditional transformer for the statement x3 ≤ 0 which adds the constraint x3 ≤ 0 is:

βB (T
best

cond
(Ir
B
)) = {x1 ≤ 0,x2 ≤ 0} A T best

cond
(βB (I

r
B
))) = {x1 ≤ 0,x2 ≤ 0,x3 ≤ 0}.

In general, the block B should contain Bcond to ensure soundness. Tcond in Algorithm 1 creates

constraints between the variables in B∗
cond

only. �e partition π I′ = π I t πcond contains B∗
cond

as

a block and is thus permissible for the output I ′. Since we do not know the exact constraints in

the output I ′, π I′ , πI′ in general even if π I = πI . �e following corollary provides conditions

when the output partition π I′ computed by Algorithm 1 is �nest, i.e., π I′ = πI′ .

Corollary 6.2. π I′ = πI′ , if π I = πI and I ′ = I ∪ {e ⊗ c}.

6.2 Assignment
Algorithm 2 shows our construction of a decomposed transformer for a given assignment trans-

former Tassign for an input element I with the associated permissible partition π I in domain D.

�e algorithm extracts the block B∗
assign

based on the assignment statement and the input partition

π I . Next, It computes the set of variables Ua that are not in B∗
assign

followed by the partition

πassign = {B
∗
assign
, {u1}, . . . , {ur }}},ui ∈ Ua corresponding to the assignment statement x j := e. �e

input I is refactored with respect to the partition π = π I t πassign producing Ir . �e algorithm

applies the transformer Tassign only on the factor Ir
assign

of Ir corresponding to the block B∗
assign

.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:15

Algorithm 2 Decomposed assignment transformer

1: function Assignment(I,π I , stmt,Tassign)

2: Parameters:
3: I ← {I1,I2, . . . ,Ip }
4: π I ← {XI1 ,XI2 , . . . ,XIp }
5: stmt← x j := e
6: Tassign ← Assignment transformer

7: B∗
assign

:= extract block(stmt,π I)

8: Ua := {xi | xi < B
∗
assign

}

9: πassign := {B∗
assign

, {u1}, . . . , {ur }},ui ∈ Ua

10: π := π I t πassign := {XIr
1

,XIr
2

, . . . ,XIrl
}

11: Ir := refactor(I,π I ,π)
12: I ′ := ∅
13: for k ∈ {1, 2, . . . , l } do
14: if XIrk = B

∗
assign

then
15: I ′.add(Tassign (I

r
k))

16: else
17: I ′.add(Irk)

18: π I′ := π

Algorithm 2 applies Tassign on the factor Ir
assign

only which reduces its complexity. �e following

example illustrates the decomposition of an assignment transformer for the Polyhedra domain

using Algorithm 2.

Example 6.3. Let:

X = {x1,x2,x3,x4,x5,x6},LX,polyhedra : (Z6, {≤,=},Q),

I = {{x1 ≤ x2,x2 + x3 ≤ 5}, {x4 − x5 ≤ 3}, {x6 ≤ 7}} with π I = πI = {{x1,x2,x3}, {x4,x5}, {x6}}.

Consider an invertible assignment x4 := x4 + x6 with Bassign = {x4,x6}. Algorithm 2 computes

B∗
assign

= {x4,x5,x6}, πassign = {{x1}, {x2}, {x3}, {x4,x5,x6}} andπ = π Itπassign = {{x1,x2,x3}, {x4,x5,x6}}.

It then refactors I with respect to π producing Ir :

Ir = {{x1 ≤ x2,x2 + x3 ≤ 5}, {x4 − x5 ≤ 3,x6 ≤ 7}}.

It then applies Tassign on Ir
2

only to produce the output I ′:

I ′ = {Ir
1
,Tassign (I

r
2
)} = {{x1 ≤ x2,x2 + x3 ≤ 5}, {x4 − x5 − x6 ≤ 3,x6 ≤ 7}}.

By construction the decomposed transformer is in [[assign,D]]; it remains to show soundness.

Theorem 6.3. Let Tassign be an assignment transformer for the assignment statement x j := e. �en
the associated decomposed transformerTD

assign (Algorithm 2) is sound, i.e., γ (T best
assign (I)) ⊆ γ (T

D
assign (I))

for all I.

Proof. By construction I = Ir . Algorithm 2 applies Tassign on Ir
assign

de�ned over B∗
assign

only. �us, we can write TD
assign

(Ir) = Tassign (βB∗
assign

(Ir
assign

)) ∪ Ir
Ua

where Ir
Ua

contains the set of

constraints inIr that are not inIr
assign

. Since x j ∈ B
∗
assign

, it follows thatIr \Ix j = (Ir
assign

\Ix j)∪I
r
Ua

.

If the assignment statement is non-invertible, all constraints in Inon-inv created by eliminating x j
from Ix j can be obtained by eliminating x j from Ir

assign
only. Similarly for the invertible assignment,

all constraints in Iinv created by substituting (x j −
∑

i,j aixi −c)/aj for x j in all constraints in Ix j can

be obtained by substituting for x j in Ir
assign

. Tassign adds each constraint ι ∈ Inon-inv ∪ {x j − e = 0} or

ι′ ∈ Iinv to Ir \ Ix j through the conditional transformer. Each ι or ι′ contains variables from B∗
assign

only. By the de�nition of B∗
assign

and the soundness of �eorem 6.1, each ι can be soundly added

to Ir \ Ix j by applying the conditional transformer on Ir
assign

. �us, γ (T best

assign
(I)) ⊆ γ (TD

assign
(I))

holds. �

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:16 Anon.

Algorithm 3 Decomposed meet transformer

1: functionMeet(I,I ′,π I ,π I′ ,Tu)

2: Parameters:
3: I ← {I1,I2, . . . ,Ip }
4: I ′ ← {I ′

1
,I ′

2
, . . . ,I ′q }

5: π I ← {XI1 ,XI2 , . . . ,XIp }

6: π I′ ← {XI′
1

,XI′
2

, . . . ,XI′q }

7: Tu ← meet transformer

8: I ′′ := ∅
9: π common := π I t π I′

10: Ir := refactor(I,π I ,π common)
11: I ′r := refactor(I ′,π I′ ,π common)
12: for k ∈ {1, 2, . . . , l } do
13: I ′′.add(Tu (I

r
k ,I

′r
k))

14: π I′′ := π common

It is easy to see that it is unsound to apply Tassign on a factor corresponding to a block that does

not contain x j . Tassign in Algorithm 2 creates constraints between the variables in B∗
assign

only. �us,

π I′ = π I t πassign contains B∗
assign

as a block and is permissible for the output I ′.

Re�nement. Let Bx j be the block containing x j in π I . If Bx j ∩ (Bassign \ {x j }) = ∅ and the

assignment statement is non-invertible (e.g., x1 := x2 + x3), we can modify Algorithm 2 to work

on �ner partitions. We de�ne the block B ′∗
assign

= B∗
assign

\ (Bx j \ {x j }) to contain all variables

from B∗
assign

except the variables in Bx j \ {x j }. LetU ′
a
= {xi | xi < B

′∗
assign

} be the set of variables

not in B
′∗
assign

and π ′
assign

= {B
′∗
assign
, {u ′

1
}, . . . , {u ′r }} where u ′i ∈ U

′
a is the partition corresponding

to the non-invertible assignment with Bx j ∩ (Bassign \ {x j }) = ∅. We compute the partition

π ′ = (π I u {X \ {x j }, {x j }}) t π
′
assign

which is �ner than π in Algorithm 2. π ′ splits the block

B∗
assign

∈ π into two blocks Bx j \ {x j } and B
′∗
assign

. Ix j and Inon-inv is computed by applyingTassign on

Ir
assign

as before. Ir
assign

is then split into two factors: Ir
Bxj

and Ir
assign

′ corresponding to the blocks

Bx j and B
′∗
assign

respectively. �en, the constraints in Inon-inv contain variables from Bx j \ {x j } and

can be added to I \ Ix j by applyingTassign on the factor Ir
Bxj

while the constraint x j − e = 0 can be

added by applying Tassign on the factor Ir
assign

′ .

�e modi�ed algorithm applies Tassign on smaller factors and is sound by construction. π ′I′ = π
′

is permissible for I ′. �e following corollary provides conditions for checking when π I′ = πI′
a�er applying Tassign for the invertible assignment statement.

Corollary 6.4. For the invertible assignment statement x j := e, π I′ = πI′ if π I = πI and
I = (I \ Ix j) ∪ Iinv.

�e following corollary de�nes conditions for checking when the output partition π I′ or the

re�nement π ′I′ a�er applying Tassign for the non-invertible assignment statement on I is �nest.

Corollary 6.5. For the non-invertible assignment statement x j := e with Bx j ∩ (Bassign \ {x j }) = ∅,
π ′I′ = πI′ if π I = πI , I

′ = (I \ Ix j) ∪ (Inon-inv ∪ {x j − e = 0}). If Bx j ∩ (Bassign \ {x j }) , ∅ then
π I′ = πI′ if the same conditions on I ′ and π I are satis�ed.

6.3 Meet (u)
Algorithm 3 shows our construction of a decomposed transformer for a given meet transformer

Tu ∈ [[u,D]] on input elements I,I ′ with the respective permissible partitions π I ,π I′ in domain

D. �e algorithm computes a common permissible partition π common = π I t π I′ for the inputs

and then refactors I,I ′ with respect to π common producing Ir ,I ′r respectively. �e output I ′′ is

computed by applying Tu on individual factors of Ir ,I ′r separately which reduces its complexity.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:17

�e following example illustrates the decomposition of a meet transformer in the Octahedron

domain using Algorithm 3.

Example 6.4. Consider

X = {x1,x2,x3,x4},LX,octahedron = (U4, {≤,=},Q),

I = {{x1 ≤ 1}, {x2 ≤ 0}, {x3 + x4 ≤ 1}},I ′ = {{x1 − x3 − x4 ≤ 2}, {x2 ≤ 1}},

with π I = {{x1}, {x2}, {x3,x4}} and π I′ = {{x1,x3,x4}, {x2}}.

Algorithm 3 computes a common partition π common = π I t π I′ = {{x1,x3,x4}, {x2}} and refactors

I,I ′ with respect to π common producing Ir ,I ′r respectively:

Ir = {{x1 ≤ 1,x3 + x4 ≤ 1}, {x2 ≤ 0}},I ′r = {{x1 − x3 − x4 ≤ 2}, {x2 ≤ 1}}.

It then computes the output I ′′ by applying Tu on each individual factor Ir ,I ′r separately:

I ′′ = {Tu (I
r

1
,I ′r

1
),Tu (I

r
2
,I ′r

2
)} = {{x1 ≤ 1,x3 + x4 ≤ 1,x1 − x3 − x4 ≤ 2}, {x2 ≤ 0}}

with π I′′ = {{x1,x2,x3}, {x4}}.

By construction, the decomposed transformer is in [[u,D]]; it remains to show soundness.

Theorem 6.6. Let Tu be a meet transformer. �en the associated decomposed transformer TD
u

(Algorithm 3) is sound, i.e., γ (T best
u (I,I ′)) ⊆ γ (TD

u (I,I ′)) for all I,I ′.

Proof. �e e�ect of applying Tu on I,I ′ is equivalent to adding each ι ∈ I ′r to Ir using a

conditional transformer Tcond in D. Since both Ir ,I ′r are partitioned according to π common, there

exists a block B ∈ π common such that B ⊇ Bcond for a given ι where Bcond is the set of variables

with non-zero coe�cient in ι. Let Ir
B

be the factor corresponding to B so that Ir = Ir
B
∪ Ir

Uc
where Ir

Uc
contains the set of constraints not in Ir . For each ι we have,

T best

cond
(Ir , ι) = T best

cond
(Ir
B
∪ Ir
Uc

) = (Ir
B
∪ ι) ∪ Ir

Uc
= T best

cond
(Ir
B
) ∪ Ir

Uc
v Tcond (I

r
B
) ∪ Ir

Uc
.

�us, the theorem holds. �

Tu in Algorithm 3 does not create constraints between the variables in di�erent blocks of the

common partition in the output I ′′. From �eorem 6.6, it follows that π I′′ = π common = π I t π I′ .
Since the exact syntactic form of I ′′ is not known, π I′′ , πI′′ . �e following corollary provides

conditions to check when the output partition π I′′ = πI′′ .

Corollary 6.7. π I′′ = πI′′ if π I = πI , π I′ = πI′ and I ′′ = I ∪ I ′.

6.4 Join (t)
Algorithm 4 shows our construction for a join transformer Tt ∈ [[t,D]] on input elements I,I ′

with the respective permissible partitions π I ,π I′ in domainD. �e algorithm computes a common

permissible partition π common = π Itπ I′ and refactorsI,I ′with respect to this partition producing

Ir and I ′r respectively. For each pair of factors Irk ,I
′r
k , the algorithm checks whether they are

equal. If the equality holds, then the algorithm addsIrk to the outputI ′′ and adds the corresponding

blockXk to the partition π . �e algorithm combines the factors which are not equal by taking union

into bigger factors Irt ,I
′r
t respectively. It combines the corresponding blocks by taking union to

form the set N . �e algorithm then applies Tt on factors Irt ,I
′r
t which reduces its complexity.

Finally, the algorithm adds N to π .

�e following example illustrates the decomposition of a join transformer in the Octagon domain

using Algorithm 4.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:18 Anon.

Algorithm 4 Join transformer

1: function Join(I,I ′,π I ,π I′ ,Tt)

2: Parameters:
3: I ← {I1,I2, . . . ,Ip }
4: I ′ ← {I ′

1
,I ′

2
, . . . ,I ′q }

5: π I ← {XI1 ,XI2 , . . . ,XIp }

6: π I′ ← {XI′
1

,XI′
2

, . . . ,XI′q }

7: Tt ← join transformer

8: π common := π I t π I′ := {X1,X2, . . . ,Xl }
9: Ir := refactor(I,π I ,π common)

10: I ′r := refactor(I ′,π I′ ,π common)
11: I ′′ := ∅
12: π I′′ = ∅

13: N = ∅
14: It := I ′t := ∅
15: for k ∈ {1, 2, . . . , l } do
16: if Irk = I

′r
k then

17: I ′′.add(Irk)

18: π I′′ .add(Xk)
19: else
20: It := It ∪ I

r
k

21: I ′t := I ′t ∪ I
′r
k

22: N := N ∪ Xk
23: I ′′.add(Tt (It,I

′
t))

24: π I′′ .add(N)

Example 6.5. Consider

X = {x1,x2,x3},LX,Octagon : (U2 × {0}, {≤,=},R),

I = {{x1 ≤ 2}, {x2 ≤ 1}, {x3 ≤ 3}},I ′ = {{x1 ≤ 1}, {x2 ≤ 3}, {x3 ≤ 3}} with

π I = π I′ = {{x1}, {x2}, {x3}}.

Since π I = π I′ , Algorithm 4 does not refactor I and I ′. Here we have, I1 , I
′

1
, I2 , I

′
2

and

I3 = I
′

3
. �us the algorithm combines I1,I2 into a single factor It. Similarly, it combines I ′

1
,I ′

2

into I ′t:

It = {x1 ≤ 2,x2 ≤ 1},I ′t = {x1 ≤ 1,x2 ≤ 3}.

�e algorithm applies T best

t only on It and I ′t whereas I3 is added to the output directly:

I t I ′ = {{x1 ≤ 2,x2 ≤ 3,x1 + x2 ≤ 4}, {x3 ≤ 3}} with π ItI′ = {{x1,x2}, {x3}}.

By construction the decomposed transformer is in [[t,D]]; it remains to show soundness.

Theorem 6.8. Let Tt ∈ [[t,D]] be a join transformer. �en the associated decomposed transformer
TD
t (Algorithm 4) is sound, i.e., γ (T best

t (I,I ′)) ⊆ γ (TD
t (I,I ′)) for all I,I ′.

Proof. By construction Ir = I and I ′r = I ′. Algorithm 4 applies Tt on the factors It and I ′t
corresponding to the block N . LetM = X \ N and IM ,I

′
M

be the corresponding factors. We can

writeTD
t (Ir ,I ′r) = Tt (βN (It,I

′
t))∪IM . We know that IM = I

′
M

and thusT best

t (IM ,I
′
M
) = IM .

T best

t (Ir ,I ′r) = T best

t (It ∪ IM ,I
′
t ∪ I

′
M
)

v βN (T
best

t (It,I
′
t)) × βM (T best

t (IM ,I
′
M
))

= βN (T
best

t (It,I
′
t)) × βM (IM)

= T best

t (βN (It,I
′
t))) ∪ IM

v Tt (βN (It,I
′
t)) ∪ IM

= TD
t (Ir ,I ′r).

Since γ is monotone, we have γ (T best

cond
(I)) ⊆ γ (TD

cond
(I)) and thus the theorem holds. �

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:19

Algorithm 5 Widening transformer

1: functionWidening(I,I ′,π I ,π I′ ,T5)

2: Parameters:
3: I ← {I1,I2, . . . ,Ip }
4: I ′ ← {I ′

1
,I ′

2
, . . . ,I ′q }

5: π I ← {XI1 ,XI2 , . . . ,XIp }

6: π I′ ← {XI′
1

,XI′
2

, . . . ,XI′q }

7: T5 ← widening transformer

8: I ′′ := ∅
9: π common := π I t π I′

10: Ir := refactor(I,π I ,π common)
11: I ′r := refactor(I ′,π I′ ,π common)
12: for k ∈ {1, 2, . . . , l } do
13: I ′′.add(T5 (I

r
k ,I

′r
k))

14: π I′′ := π common

As for the conditional and the assignment, an arbitraryN does not ensure soundness. Algorithm 4

appliesTt only on the factors It,I
′
t corresponding to the blockN . �us the factors corresponding

to the other blocks in π remain unchanged. From this, it follows that π I′′ as computed in Algorithm

4 is permissible for I ′′.

Re�nement. We can re�ne the output partition π I′′ a�er computing the output I ′′ without

inspecting I ′′. For this we need to check the inputs I,I ′. If a variable xi is unconstrained in either

I or I ′, then it is also unconstrained in I ′′. π I′′ can be re�ned by removing xi from the block

containing it and adding the singleton set {xi } to π I′′ . �is re�nement can only be performed a�er

applying Tt. �e following theorem formalizes this re�nement:

Theorem 6.9. LetI,I ′ be abstract elements inD with the associated permissible partitions π I ,π I′
respectively. Let U = {xi | xi is unconstrained in either I or I ′}. �en the following partition is
permissible for the output I ′′:

π ′I′′ = {N ,X1, . . . ,Xr } u {X \ U , {u1}, . . . , {ur ′ }},

where Xi ∈ E and ui ∈ U .

�e proof of �eorem 6.9 is immediate from the discussion above. Unlike other transformers, we

do not know of any conditions for checking whether π ′I′′ = πI′′ .

6.5 Widening (5)
Algorithm 5 shows our construction for a widening transformer T5 ∈ [[5,D]] on input elements

I,I ′ with the respective permissible partitions π I ,π I′ in D. �e algorithm computes a common

permissible partition π common = π Itπ I′ and refactorsI,I ′with respect to this partition producing

Ir and I ′r respectively. �e widening transformer T5 is then applied on each factor Irk ,I
′r
k

separately which reduces its complexity.

�e following example illustrates the decomposition of the standard semantic TVPI widening

transformer using Algorithm 5.

Example 6.6. Consider

X = {x1,x2,x3,x4},LX, tvpi = (Z2 × {0}2, {≤,=},Q),

I = {{x1 ≤ 1}, {x2 ≤ 0}, {x3 + x4 ≤ 1}},I ′ = {{2x1 − 3x2 ≤ 2,x1 + x2 ≤ 1}, {x3 ≤ 0}, {x4 ≤ 0}},

with π I = {{x1}, {x2}, {x3,x4}} and π I′ = {{x1,x2}, {x3}, {x4}}.

Algorithm 5 computes a common permissible partition π common = π I t π I′ = {{x1,x2}, {x3,x4}}

and then refactors I,I ′ with respect to π common yielding Ir ,I ′r respectively:

Ir = {{x1 ≤ 1,x2 ≤ 0}, {x3 + x4 ≤ 1}},I ′r = {{2x1 − 3x2 ≤ 2,x1 + x2 ≤ 1}, {x3 ≤ 0,x4 ≤ 0}}.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:20 Anon.

It then computes the output I ′′ by applying T5 on individual factors Ir ,I ′r separately:

I ′′ = {T5 (I
r

1
,I ′r

1
),T5 (I

r
2
,I ′r

2
)} = {{x1 + x2 ≤ 1}, {x3 + x4 ≤ 1}} with π I′′ = {{x1,x2}, {x3,x4}}.

In contrast to prior transformers, for a general widening transformer the construction of the

decomposed transformer is not sound in general. �us we have to require that the given widen-

ing transformer is already in [[5,D]], which trivially guarantees soundness. Standard widening

transformers satisfy this condition.

T5 in Algorithm 5 does not create constraints between variables in di�erent blocks of the

common partition in the output I ′′. By construction, it follows that π I′′ = π common = π I t π I′ .
For syntactic widening, the output partition π I′′ can be re�ned to π I a�er computing the outputI ′′.

�e following corollaries provide conditions when π I′′ = πI′′ for the semantic and the syntactic

widening respectively.

Corollary 6.10. For semantic widening, π I′′ = πI′′ if π I = πI , π I′ = πI′ and I ′′ = I ∪ I ′.

Corollary 6.11. For syntactic widening, π I′′ = πI′′ if π I = πI and I ′′ = I.

7 EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our generic decomposition approach on three popular

domains: Polyhedra, Octagons, and Zones. Using standard implementations of these domains, we

show that our decomposition of their transformers leads to substantial performance improvements,

o�en surpassing existing transformers designed for speci�c domains.

Experimental Setup. All of our experiments were performed on a 3.5 GHz Intel �ad Core i7-4771

Haswell CPU. �e machine has L1, L2, and L3 caches of sizes 256 KB, 1024 KB, and 8192 KB,

respectively, while main memory has 16 GB. Turbo boost and Hyper threading were disabled for

consistency of measurements. All libraries were compiled with gcc 5.2.1 using the �ags -O3 -m64
-march=native. We used a time limit of 4 hours for our experiments.

Benchmarks. �e benchmarks for our experiments were taken from the popular so�ware veri�-

cation competition (Beyer 2016). �e benchmark suite is divided into categories suited for di�erent

kinds of analysis e.g., pointer, array, numerical etc. We chose two categories suited for numerical

analysis: (i) Linux Device Drivers (LD), and (ii) Control Flow (CF). Each of these categories contains

hundreds of benchmarks and we evaluated the performance of our analysis on each of these. We use

the crab-llvm analyzer which is part of the SeaHorn veri�cation framework (Gur�nkel et al. 2015)

for performing the analysis. �e analyzer is wri�en in C++ and performs intraprocedural analysis

of LLVM bitcode. �e analyzer explicitly checks for unconstrained variables during runtime and

removes them. �us, the total number of variables for Polyhedra, Octagon, and Zones can be

di�erent on the same benchmark.

7.1 Polyhedra
�e standard implementation of the Polyhedra domain is based on the double representation

method, i.e., it keeps both the constraints and the generator representation. �is is because

transformers such as meet are cheap with the constraint representation but expensive with the

generator representation. On the other hand transformers such as join are cheap with the generator

representation but expensive with the constraint representation. �e Polyhedra analysis thus

applies the domain transformer on one representation and then updates the other representation

using a standard conversion algorithm (Chernikoba 1968; Verge 1994). �e standard implementation

contains the best conditional, assignment, meet and join transformers together wtih a (semantic)

widening operator. All of these transformers satisfy the (decomposable) de�nitions from Section 5.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:21

Table 2. Asymptotic time complexity of the Polyhedra transformers with and without decomposition.

Transformer Non-Decomposed Decomposed

Conditional O (n) O (nmax)
Assignment O (nд) O (nmaxдmax)

Meet (u) O (nm) O (
∑l
i=1

nimi)

Join (t) O (nд) O (
∑l
i=1

niдimi + nmaxдmax)

Widening (∇) O (nдm) O (
∑l
i=1

niдimi)

Conversion O (exp (n,д)) O (
∑l
i=1

exp (ni ,дi))

Table 2 shows the asymptotic complexity of Polyhedra transformers in the standard implementa-

tion with and without decomposition (Singh et al. 2017). For the non-decomposed column in the

table, n is the number of variables,m is the number of constraints and д is the number of generators

whereas for the decomposed column, l is the number of blocks in the partition, ni is the number

of variables in the i-th block, nmax is the number of variables in the largest block, mi and дi are

the number of constraints and generators respectively in the i-th factor and дmax is the number

of generators in the largest factor. It holds that n =
∑l

i=1
ni , m =

∑l
i=1

mi and д =
∏n

i=1
дi . We

also show the complexity of the conversion algorithm for converting from the constraints to the

generators. It has the same exponential complexity (in terms of n and д) for the conversion in the

other direction. �us, it is the most expensive operation in the standard implementation.

We compare the runtime and memory consumption for the end-to-end Polyhedra analysis with

our generic decomposed transformers versus the original non-decomposed transformers from

Parma Polyhedra Library (PPL) (Bagnara et al. 2008) and the decomposed transformers from ELINA

(Singh et al. 2017). PPL, ELINA and our decomposition store the constraints and the generators

using matrices with 64-bit integers. PPL stores a single matrix for either representation whereas

both ELINA and our decomposition use a set of matrices corresponding to the factors. It can require

exponential space in the worst case to store the representations. Table 3 shows the results on 13

large, representative benchmarks. �ese benchmarks were chosen based on the following criteria:

• �e most time consuming function in the benchmark did not produce any integer over�ow

with PPL, ELINA, or our approach.

• �e benchmark ran for at least 2 minutes with PPL.

Our decomposition maintains semantic equivalence with both ELINA and PPL as long as there

is no integer over�ow. All three implementations set the polyhedron to > whenever an integer

over�ow occurs. �e total number of integer over�ows on the chosen benchmarks were 58, 23 and

21 for PPL, ELINA, and our decomposition, respectively. We also had fewer integer over�ows than

both ELINA and PPL on the remaining benchmarks. �us, our decomposition improves in some

cases also the precision of the analysis with respect to both ELINA and PPL.

Table 3 shows our experimental �ndings. �e entry MO (memory-out) in the table means that

the analysis ran out of memory whereas the entry TO (time-out) means the analysis did not �nish

within 4 hours. Whenever there is memory over�ow and our analysis �nishes, we show the

corresponding speedup as∞, because the analysis can never �nish on the given machine even if

given arbitrary time. We specify lower bounds for the speedups in case of a time-out.

In the table, PPL either ran out of memory or did not �nish within 4 hours on 8 out of the

13 benchmarks. Both ELINA and our decomposition are able to analyze all benchmarks. We

are faster than ELINA on all benchmarks. We achieve speedup over ELINA on all benchmarks

with the maximum speedup being 5.9x on the P19 l59 benchmark. It can also be seen that our

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:22 Anon.

Table 3. Speedup for the Polyhedra domain analysis with our decomposition over PPL and ELINA.

Benchmark PPL ELINA Our Decomposition Speedup vs.

time(s) memory(GB) time(s) memory(GB) time(s) memory(GB) PPL ELINA

firewire firedtv 331 0.9 0.4 0.2 0.2 0.2 1527 2

net fddi skfp 6142 7.2 9.2 0.9 4.4 0.3 1386 2

mtd ubi MO MO 4 0.9 1.9 0.3 ∞ 2.1

usb core main0 4003 1.4 65 2 29 0.7 136 2.2

tty synclinkmp MO MO 3.4 0.1 2.5 0.1 ∞ 1.4

scsi advansys TO TO 4 0.4 3.4 0.2 >4183 1.2

staging vt6656 TO TO 2 0.4 0.5 0.1 >28800 4

net ppp 10530 0.1 924 0.3 891 0.1 11.8 1

p10 l00 121 0.9 11 0.8 5.4 0.2 22.4 2

p16 l40 MO MO 11 3 2.9 0.4 ∞ 3.8

p12 l57 MO MO 14 0.8 6.5 0.3 ∞ 2.1

p13 l53 MO MO 54 2.7 25 0.9 ∞ 2.2

p19 l59 MO MO 70 1.7 12 0.6 ∞ 5.9

decomposition saves signi�cant memory over ELINA. �e speedups on the remaining benchmarks

over the decomposed version of ELINA varies from 1.1x up to 4x.

Table 4. Partition statistics for the Polyhedra domain analysis.

Benchmark Category LOC n nelina

max
nour

max
n�nest

max

max avg max avg max avg max avg

firewire firedtv LD 14506 159 25 81 7 40 4 39 3

net fddi skfp LD 30186 589 88 111 25 45 9 13 4

mtd ubi LD 39334 528 59 111 14 28 5 23 4

usb core main0 LD 52152 365 72 267 30 60 11 40 7

tty synclinkmp LD 19288 332 49 48 10 40 6 26 4

scsi advansys LD 21538 282 63 117 18 49 12 41 9

staging vt6656 LD 25340 675 53 204 17 25 4 12 3

net ppp LD 15744 218 58 112 40 51 28 43 20

p10 l00 CF 592 303 174 234 54 79 16 14 6

p16 l40 CF 1783 874 266 86 31 39 14 5 3

p12 l57 CF 4828 921 261 461 78 21 7 4 3

p13 l53 CF 5816 1631 342 617 111 26 10 9 3

p19 l59 CF 9794 1272 358 867 187 31 8 12 3

Be�er partitioning leads to performance improvements. Table 4 shows further statistics for the

category (LD or CF) and the number of lines of code in each benchmark. As can be seen, the

benchmarks are quite large and contain up to 50K lines of code. A�er each join, we measured

the total number of variables (which is the same for all benchmarks) n and report the maximum

and the average. For the decomposed analyses (ELINA and ours) we measured the size of the

largest block and report again maximum and average under nelina

max
, nour

max
. To assess the quality of

the partitions, we also computed (with the needed overhead) the �nest partition a�er each join and

show the largest blocks under n�nest

max
(maximum and average). As can be observed, our partitions

are strictly �ner than the ones produced by ELINA on all benchmarks due to the re�nements for

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:23

the assignment and the join transformer. Moreover, it can be seen that our partitions are sometimes

close to the �nest partition but in many cases there is room for further improvement.

7.2 Octagon
�e standard implementation of the Octagon domain approximates the best conditional and best

assignment transformers whereas it implements the best join and meet transformers. �e widening

is de�ned syntactically. All of these transformers satisfy the de�nitions in Section 5. �e implemen-

tation keeps only the constraint representation. �e implementation also requires strong closure

operation for the e�ciency and precision of transformers such as join, conditional, assignment, etc.

Table 5. Asymptotic time complexity of the Octagon transformers with and without decomposition.

Transformer Non-Decomposed Decomposed

Conditional O (n2) O (n2

max
)

Assignment O (n2) O (n2

max
)

Meet (u) O (n2) O (
∑l
i=1

n2

i)

Join (t) O (n2) O (
∑l
i=1

n2

i)

Widening (∇) O (n2) O (
∑l
i=1

n2

i)

Strong Closure O (n3) O (
∑l
i=1

n3

i)

Table 5 shows the asymptotic complexity of standard Octagon transformers as well as the strong

closure operation with and without decomposition (Singh et al. 2015). In the table n,ni ,nmax have

the same meaning as in Table 2. In can be seen that strong closure is the most expensive operation

in this domain (it has cubic complexity). It is possible to apply it incrementally for the conditional

and the assignment transformers.

We compare the performance of our approach against the standard Octagon analysis, using the

non-decomposed ELINA (ELINA-ND) and the decomposed (ELINA-D) transformers from ELINA.

All of these implementations store the constraint representation using a single matrix with 64-bit

doubles. �e matrix requires quadratic space in terms of n. �us, overall memory consumption is

the same for all implementations. We compare the runtime and report speedups for the end-to-end

Octagon analysis in Table 6. We achieve up to 40x speedup for the end-to-end analysis over the

non-decomposed implementation. More importantly, we are faster than the decomposed version of

ELINA on all benchmarks bar one. �e maximum speedup over the decomposed version of ELINA

is 2.2x. �e speedups on the remaining benchmarks vary between 1x to 1.6x.

Table 7 shows the partition statistics for the Octagon analysis (as we did for the Polyhedra analy-

sis). It can be seen that while our re�nements o�en produce �ner partitions than the decomposed

version of ELINA, they are coarser on 3 of the 13 benchmarks. �is is because the decomposed

transformers in ELINA are quite specialized for the standard approximations of the conditional and

assignment transformers. We still achieve comparable performance on these benchmarks. Note

that the partitions are quite close to the �nest in most cases.

7.3 Zones
�e standard conditional and assignment transformers in the Zones domain are approximate

whereas the meet and join are the best transformer (Miné 2002). �e widening is de�ned syntacti-

cally. All of these transformers satisfy the de�nitions in Section 5. �e transformers require only

the constraint representation. As for the Octagon domain, a cubic closure operation is required.

�e domain transformers have the same asymptotic complexity as the Octagon domain.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:24 Anon.

Table 6. Speedup for the Octagon domain analysis with our decomposition over the non-decomposed and
the decomposed versions of ELINA.

Benchmark ELINA-ND ELINA-D Our Decomposition Speedup vs.

time(s) time(s) time(s) ELINA-ND ELINA-D

firewire firedtv 0.4 0.07 0.07 5.7 1

net fddi skfp 28 2.6 1.9 15 1.4

mtd ubi 3411 979 532 6.4 1.8

usb core main0 107 6.1 4.9 22 1.2

tty synclinkmp 8.2 1 0.8 10 1.2

scsi advansys 9.3 1.5 0.8 12 1.9

staging vt6656 4.8 0.3 0.2 24 1.5

net ppp 11 1.1 1.2 9.2 0.9

p10 l00 20 0.5 0.5 40 1

p16 l40 8.8 0.6 0.5 18 1.2

p12 l57 19 1.2 0.7 27 1.7

p13 l53 43 1.7 1.3 33 1.3

p19 l59 41 2.8 1.2 31 2.2

Table 7. Partition statistics for the Octagon domain analysis.

Benchmark Category LOC n nelina

max
nour

max
n�nest

max

max avg max avg max avg max avg

firewire firedtv LD 14506 159 25 31 6 40 4 27 3

net fddi skfp LD 30186 573 86 49 18 30 10 14 7

mtd ubi LD 39334 553 46 111 65 22 9 16 9

usb core main0 LD 52152 364 72 59 22 39 9 35 7

tty synclinkmp LD 19288 324 49 84 15 26 6 25 4

scsi advansys LD 21538 293 64 94 19 41 6 20 5

staging vt6656 LD 25340 651 52 63 7 25 4 14 3

net ppp LD 15744 218 54 40 23 55 29 39 19

p10 l00 CF 592 305 173 19 10 77 16 17 9

p16 l40 CF 1783 874 266 32 12 13 7 10 5

p12 l57 CF 4828 954 265 55 15 13 4 11 4

p13 l53 CF 5816 1635 337 41 12 22 7 10 5

p19 l59 CF 9794 1291 363 79 14 22 4 18 3

We implemented both, a non-decomposed version of the transformers as well as a version

with our decomposition method of the standard transformers. Both implementations store the

constraints using a single matrix with 64-bit doubles that requires quadratic space. We compare

the runtime and report speedups for the end-to-end Zones analysis in Table 8. Our decomposition

achieves speedup up to 6x over the non-decomposed implementation. �e speedups over the

remaining benchmarks not shown in the table also vary from 1.1x up to 5x.

Table 9 shows the partition statistics for the Zones analysis. It can be seen that partitioning

works (and is the core reason for the speed-ups) and the obtained partitions are close to the �nest.

Summary. Overall, we can see that the generic decomposition proposed in this paper is a suitable

construction for speeding-up analysis with numerical domains. We also show that the partitions

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:25

Table 8. Speedup for the Zones domain analysis with our decomposition over non-decomposed implemen-
tation.

Benchmark Non-Decomposed Our Decomposition Speedup vs.

time(s) time(s) Non-Decomposed

firewire firedtv 0.05 0.05 1

net fddi skfp 3 1.5 2

mtd ubi 1.4 0.7 2

usb core main0 10.3 4.6 2.2

tty synclinkmp 1.1 0.7 1.6

scsi advansys 0.9 0.7 1.3

staging vt6656 0.5 0.2 2.5

net ppp 1.1 0.7 1.5

p10 l00 1.9 0.4 4.6

p16 l40 1.7 0.7 2.5

p12 l57 3.5 0.9 3.9

p13 l53 8.7 2.1 4.2

p19 l59 9.8 1.6 6.1

Table 9. Partition statistics for the Zones domain analysis.

Benchmark Category LOC n nour

max
n�nest

max

max avg max avg max avg

firewire firedtv LD 14506 159 25 40 4 17 3

net fddi skfp LD 30186 578 88 30 9 13 5

mtd ubi LD 39334 553 59 23 5 14 3

usb core main0 LD 52152 362 71 37 8 33 7

tty synclinkmp LD 19288 328 49 26 6 25 5

scsi advansys LD 21538 293 65 41 8 21 7

staging vt6656 LD 25340 675 53 25 3 13 2

net ppp LD 15744 219 58 54 29 47 24

p10 l00 CF 592 303 174 77 16 17 8

p16 l40 CF 1783 856 261 13 7 10 6

p12 l57 CF 4828 882 249 12 4 10 3

p13 l53 CF 5816 1557 317 22 7 20 5

p19 l59 CF 9794 1243 331 14 4 13 3

computed during analysis are close to optimal for Octagons and Zones but with further room for

improvement for Polyhedra. �e challenge is how to obtain those with reasonable cost. Further

speed-ups can also be obtained by di�erent implementations of the transformers that are, for

example, selectively approximate to further partition.

8 RELATEDWORK
We have discussed dynamic partitioning specialized for the standard implementations of the sub-

polyhedra domains throughout the paper (Halbwachs et al. 2003; Singh et al. 2015, 2017). In this

section, we discuss other related work which is related to increasing the performance of numerical

domain analysis.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1:26 Anon.

Variable packing (Blanchet et al. 2003; Heo et al. 2016) has been used for decomposing the

Octagon transformers. X is partitioned statically before running the analysis based on a critieria,

e.g., if two variables are in the same pack if they are in the same program statement. Although

the variable packing can be generalized to decompose the transformers of other domains, more

precise results for the transformers can be obtained by maintaining partitions dynamically. For

example, the join transformer usually relates the variables that do not occur in the same program

statement and thus variable packing is bound to lose precision. �e work of (Venet and Brat 2004)

dynamically maintains partitions based on a syntactic criteria for the Zones domain. �e generated

transformers are less precise than the ones generated using our approach.

�e work of (Gange et al. 2016) and (Jourdan 2017) is focussed on designing sparse algorithms

for the standard transformers of the Zones and the Octagon domain respectively. While these

algorithms cannot be extended to more expressive domains, they can certainly be combined with

our decomposition to potentially achieve be�er performance.

Both (Simon and King 2005) and (Miné et al. 2010) focus on improving the performance of the

best join transformer in the Polyhedra domain based on the constraint representation. In (Simon

and King 2005) the authors exploit sparsity by noticing that a given variable occurs only a few

times in the constraint representations of the Polyhedra. If the output becomes too large, they

approximate. Frequent calls to the linear solve limit the performance of their approach. In (Miné

et al. 2010) the authors decompose the best join transformer by decomposing the inputs into two

pieces each. �e join transformer is then applied on one of the pieces. �e partitions obtained with

this method are very coarse and thus the decomposed transformer has worse performance than

achieved using our decomposition.

9 CONCLUSION
Partitioning abstract elements is a promising avenue to make abstract domain analysis faster,

possibly by orders of magnitude, and thus practical for many real world veri�cation tasks. It is

possible due to the inherent “locality” in the way program statements, and sequences of such, access

variables. �is paper advances partitioning by showing that it is applicable to all sub-polyhedra

domains and shows how to construct decomposed transformers from existing, non-decomposed

transformers. �is way, existing implementations can be re-factored to incorporate decomposition.

�e construction provides guarantees on the quality of the achievable partitions. Finally, we

provide techniques to re�ne the partitions of the output of important transformers in certain cases,

which improves over prior work. We evaluated our approach on three expensive abstract domains:

Zones, Octagons, and Polyhedra and show signi�cant speed-ups compared to prior work, including

domains that were previously decomposed manually.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Practical Construction for Decomposing Numerical Abstract Domains 1:27

REFERENCES
Roberto Bagnara, Patricia M. Hill, and Enea Za�anella. 2008. �e Parma Polyhedra Library: Toward a Complete Set of

Numerical Abstractions for the Analysis and Veri�cation of Hardware and So�ware Systems. Sci. Comput. Program. 72,

1-2 (2008), 3–21.

Dirk Beyer. 2016. Reliable and Reproducible Competition Results with BenchExec and Witnesses (Report on SV-COMP

2016). In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 887–904.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2003. A static analyzer for large safety-critical so�ware. In Proc. ACM Conference on Programming Language
Design and Implementation (PLDI). 196–207.

N.V. Chernikoba. 1968. Algorithm for discovering the set of all the solutions of a linear programming problem. U. S. S. R.
Comput. Math. and Math. Phys. 8, 6 (1968), 282 – 293.

Robert Claris and Jordi Cortadella. 2007. �e octahedron abstract domain. Science of Computer Programming 64 (2007), 115 –

139.

Patrick Cousot and Radhia Cousot. 1976. Static determination of dynamic properties of programs. 106–130.

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program. In

Proc. Symposium on Principles of Programming Languages (POPL). 84–96.

Radhia Cousot, Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Za�anella. 2005. Precise widening operators for

convex polyhedra. Science of Computer Programming 58, 1 (2005), 28 – 56.

Pietro Ferrara, Francesco Logozzo, and Manuel Fähndrich. 2008. Safer Unsafe Code for .NET. SIGPLAN Not. 43 (2008),

329–346.

Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey. 2016. Exploiting Sparsity in
Di�erence-Bound Matrices. 189–211.

Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. �e SeaHorn Veri�cation Framework. In

Proc. Computer Aided Veri�cation (CAV). 343–361.

N. Halbwachs, D. Merchat, and L. Gonnord. 2006. Some ways to reduce the space dimension in polyhedra computations.

Formal Methods in System Design (FMSD) 29, 1 (2006), 79–95.

Nicolas Halbwachs, David Merchat, and Catherine Parent-Vigouroux. 2003. Cartesian Factoring of Polyhedra in Linear
Relation Analysis. 355–365.

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a Variable-Clustering Strategy for Octagon from Labeled Data

Generated by a Static Analysis. In Proc. Static Analysis Symposium (SAS). 237–256.

Jacob M. Howe and Andy King. 2009. Logahedra: A New Weakly Relational Domain. 306–320.

Jacques-Henri Jourdan. 2017. Sparsity Preserving Algorithms for Octagons. Electronic Notes in �eoretical Computer Science
331 (2017), 57 – 70. Workshop on Numerical and Symbolic Abstract Domains (NSAD).

Michael Karr. 1976. A�ne relationships among variables of a program. Acta Informatica 6 (1976), 133–151.

Francesco Logozzo and Manuel Fähndrich. 2008. Pentagons: A Weakly Relational Abstract Domain for the E�cient

Validation of Array Accesses. In ACM Symposium on Applied Computing. 184–188.

Antoine Miné. 2002. A Few Graph-Based Relational Numerical Abstract Domains. 117–132.

Antoine Miné. 2006. �e Octagon Abstract Domain. Higher Order and Symbolic Computation 19, 1 (2006), 31–100.

Antoine Miné, Enric Rodrguez-Carbonell, and Axel Simon. 2010. Speeding up Polyhedral Analysis by Identifying Common

Constraints. Electronic Notes in �eoretical Computer Science 267, 1 (2010), 127 – 138.

Axel Simon and Andy King. 2005. Exploiting Sparsity in Polyhedral Analysis. In Proc. Static Analysis Symposium (SAS).
336–351.

Axel Simon and Andy King. 2010. �e Two Variable Per Inequality Abstract Domain. Higher Order Symbolic Computation
(HOSC) 23 (2010), 87–143.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2015. Making Numerical Program Analysis Fast. In Proc. ACM
Conference on Programming Language Design and Implementation (PLDI). 303–313.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast Polyhedra Abstract Domain. In Proc. Symposium on
Principles of Programming Languages (POPL). 46–59.

Arnaud Venet and Guillaume Brat. 2004. Precise and E�cient Static Array Bound Checking for Large Embedded C Programs.

In Proc. Programming Language Design and Implementation (PLDI). 231–242.

H. Le Verge. 1994. A note on Chernikova’s Algorithm. Technical Report.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 Generic Model for Numerical Abstract Domains
	3 Decomposing Abstract Elements
	4 Recipe for Decomposing Transformers
	5 Decomposable Transformers
	5.1 Conditional
	5.2 Assignment
	5.3 Meet (normalnormal)
	5.4 Join ()
	5.5 Widening ()

	6 Decomposing Domain Transformers
	6.1 Conditional
	6.2 Assignment
	6.3 Meet ()
	6.4 Join ()
	6.5 Widening ()

	7 Experimental Evaluation
	7.1 Polyhedra
	7.2 Octagon
	7.3 Zones

	8 Related Work
	9 Conclusion
	References

