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Abstract

Neural networks are becoming more and more important. They are applied in many real-world
applications, such as speech recognition [Hinton et al. 2012], medical diagnostic [Al-Shayea
2011], and autonomous driving [Bojarski et al. 2016] among other fields. Thus it is critical that
neural networks behave reliably. This has led to the need to verify the safety of these networks.
A number of efforts have been made in this direction, from less scalable but complete verifiers
based on SMT solving [Katz et al. 2017, Ehlers 2017, Bunel et al. 2017], mixed-integer linear
programming [Tjeng and Tedrake 2017], or Lipschitz optimization [Ruan et al. 2018] to more
scalable but incomplete verifiers based on abstract interpretation [Gehr et al. 2018, Singh et al.
2018, Singh et al. 2019a], duality [Dvijotham et al. 2018, Kolter and Wong 2017], semidefinite
programming [Raghunathan et al. 2018, Dvijotham et al. 2019] or linear relaxations [Weng et al.
2018, Zhang et al. 2018, Boopathy et al. 2019]. All of the above works require specific network
formats, which limits usability.

The Secure, Reliable, and Intelligent Systems Lab (SRI) at ETH aims to provide all of its
state-of-the-art research on neural network verification in one tool with the ETH Robustness
Analyzer for Neural Networks (ERAN). The goal of this work is to extend ERAN for handling
more diverse network formats and architectures and add testing support to increase the trust in
the verification process.

This thesis describes the newest version of the ERAN, which offers complete and incomplete
verification methods for feedforward, convolutional and residual neural networks. ERAN can
analyze ONNX and TensorFlow models directly, making it accessible and easy to use.
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1
Introduction

ETH Robustness Analyzer for Neural Networks (ERAN) [Singh et al. 2020a] is a state-of-the-
art precise and scalable verifier for the safety properties of neural networks. The properties
include proving robustness against adversarial perturbations based on changes in pixel intensity
[Singh et al. 2018, Singh et al. 2019a], geometric transformations of images [Singh et al. 2019a,
Balunovic et al. 2020], and more. The verifier supports both exact and approximate verification
of feedforward, convolutional, and residual networks based on abstract domains [Singh et al.
2018, Singh et al. 2019a] and Mixed Integer Linear Programming (MILP) solvers [Singh et al.
2019b]. ERAN is also the only verifier that is sound with respect to floating-point arithmetic.
Figure 1.1 provides an overview of the capabilities of ERAN.

1.1 Structure of this Document

This document is structured as follows:

Chapter 2 provides the required background information for understanding the rest of the thesis.

Chapter 3 addresses the related works about neural network analysis frameworks.

Chapter 4 describes all options that are available in ERAN, their possible values and their inter-
actions with each other.

Chapter 5 describes the implementation of the ERAN.

Chapter 6 describes the testing framework and how to use it.

Chapter 7 concludes the project and summarizes shortly the most important points. Future
works will be proposed for further investigation.
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Figure 1.1: ERAN network verification overview
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1.2 Conventions

1.2 Conventions

Next, we introduce conventions made for the sake of readability and briefness of the complete
document. This document adheres to the following conventions throughout:

• To increase readability, italic writing will be used for all names that are in the code.

• Nodes in the TensorFlow and ONNX graphs will be called nodes and nodes in the ana-
lyzer deep nodes.
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2
Background

This chapter will look at the following building blocks of ERAN:

1. The abstract domains are the mathematical basis for network analysis.

2. The input formats and their intricacies.

2.1 Abstract domains

Abstract domains allow us to statically reason about the safety properties of neural networks.
Using abstract domains, ERAN can prove that a neural network behaves as desired for all pos-
sible inputs within a convex set. These sets are in the form of domain-specific constraints.

2.1.1 DeepZono

DeepZono [Singh et al. 2018] is a specialized implementation of the Zonotope abstract domain
tailored for handling neural network operations. The Zonotope domain uses affine arithmetic to
keep track of relations between the values of neurons with respect to a convex input set. For a
neuron x, the corresponding affine form x̂ is given by:

x̂ = αx
0 +

n∑
i=1

αx
i ηi (2.1)

where (αx
i )0≤i≤n ∈ R and (ηxi )0≤i≤n ∈ [−1, 1].

5



2 Background

The interval bounds for x can be computed as:

[αx
0 −

n∑
i=1

|αx
i |, αx

0 +
n∑

i=1

|αx
i |] (2.2)

2.1.2 DeepPoly

DeepPoly [Singh et al. 2019a] is a specialized domain tailored for neural network analysis
and can produce more precise and scalable results than DeepZono. The DeepPoly domain
associates two polyhedral constraints a≤x , a

≥
x and interval bounds [lx, ux] with each neuron x

where lx, ux ∈ R. The polyhedral constraints relate the neuron x to the neurons in preceding
layers via their linear combinations. The polyhedral constraints provide lower and upper bounds
on the set of values that x can take, i.e., a≤x ≤ x ≤ a≥x where a≤x , a

≥
x are of the form v+

∑
iwi ·xi

where xi is a neuron from a preceding layer and v, wi ∈ R.

2.1.3 DeepG

The set of images produced after geometrical transformations on images is not usually convex.
DeepG [Balunovic et al. 2019] provides a method based on sampling and Lipschitz optimization
to compute a convex approximation of the set produced after geometric transformations. To
reduce the approximation error, DeepG splits the parameter space of the transformation into
smaller pieces and then computes convex approximation for each piece separately. The resulting
convex sets are analyzed using the DeepPoly domain.

2.1.4 Vector Field Deformations

Vector field transformations, i.e., moving pixels instead of manipulating pixel values, generally
cause large `p-norm distances between original and deformed images, which makes noise-based
distance measures unsuited for certification. Thus, [Ruoss et al. 2020] parametrize vector field
deformations by the displacement magnitude, denoted by δ, and the smoothness, denoted by γ.
This enables the derivation of convex relaxations that capture all images deformed by smooth
vector fields, and thus allows for certification against vector field attacks. These convex re-
laxations can be efficiently integrated with the DeepPoly domain, the k-ReLU framework, and
complete certification.

2.1.5 ELINA

The above mentioned abstract domains are implemented in the ETH Library for Numerical
Analysis (ELINA) [Singh et al. 2020b]. The DeepZono (implemented as zonoml) and DeepPoly
(implemented as fppoly) domains in ELINA are sound for arithmetic operations implemented
according to the IEEE floating-point standard for 64-bit floating-point numbers. This means
that the result from ELINA captures all possible values that the neurons can take under any
rounding mode and any order of execution of operations.

6



2.2 Network format

2.2 Network format

ERAN can analyze neural networks in ONNX and TensorFlow formats directly. Both formats
are based on a computation graph. The nodes of this directed acyclic graph save the operations
and parameters needed for the execution. One of the main differences between the two formats
is in the representation of tensors. TensorFlow uses NHWC (batch, height, width, channel)
while ONNX uses NCHW representation. For a better understanding of the code snippets
shown later, this section will show the relevant parts of the model, graph, and nodes of both
frameworks.

2.2.1 ONNX

ONNX stands for Open Neural Network Exchange format. It is developed to make moving
models between different formats easier. In ERAN it is mainly used to import models trained
in PyTorch, but the format is also supported by Caffe2, Microsoft Cognitive Toolkit, MXNet
and many more. These frameworks provide an export function that gives an ONNX represen-
tation of the model. By adding ONNX support, ERAN can import models from any of these
frameworks.

Of the ONNX model, only the field graph is relevant for understanding the ERAN code. It is
a representation of the execution graph. The graph has the fields node, initializer, input, and
output, which are accessed by the ERAN code. The field node is the list of nodes, ordered
by input/output dependencies. A node in the list node has the fields input, output, op_type,
and attribute. Both node.input and node.output are lists of strings representing the names of
the node inputs and outputs respectively. Two nodes are connected if a name in node.output
of one node matches a name in node.input of the other. The op_type is a string representation
of the operation, e.g. "Conv" for convolution. These strings are sometimes different from the
ones TensorFlow uses, e.g. "Conv2D". The attribute is a list, the content of which is operation
dependent. The graphs initializer is also a list and contains all named tensors of the model,
e.g. weight matrices, etc. At last, the graph.input and graph.output fields contain the input and
output parameters of the graph. To increase the readability, every access of an input field in the
ERAN code and reference to these fields from here on reads either graph.input or node.input.
The same applies to output.

The ONNX operation types encountered in this thesis are shown in Table 2.1.

2.2.2 TensorFlow

TensorFlow is an open-source machine learning framework developed by Google. It was the
first model format ERAN supported.

As before, the only relevant part of the TensorFlow model is the graph. On the graph, ERAN
calls two methods as_graph_def and get_operations. The as_graph_def method is used to
set the graph in the TensorFlow session. The get_operations method returns the list of nodes,
similar to the node field of the ONNX graph. Every node has the fields type, name, inputs,

7



2 Background

Table 2.1: Relevant ONNX operations

Name Description

Constant Is constant tensor

MatMul Calculates matrix multiplication

Gemm Calculates general matrix multiplication, Y = alpha * A’ * B’ + beta * C

Add Applies element-wise binary addition

Sub Applies element-wise binary subtraction

Mul Applies element-wise binary multiplication

Conv Applies Convolution with an optional bias addition

MaxPool Applies max pooling across input tensor, according to kernel, stride, and padding

Relu Applies the rectified linear function element-wise, y = max(0, x)

Sigmoid Applies sigmoid function element-wise, y = 1 / (1 + exp(-x))

Tanh Applies the hyperbolic tangent function element-wise

Gather Gathers elements from tensor according to indices

Shape Returns the tensors shape

Reshape Reshapes tensor

Concat Concatenates multiple tensors into a single tensor

Unsqueeze Inserts dimensions of value 1

8



2.2 Network format

Table 2.2: Relevant TensorFlow operations

Name Description

Placeholder The placeholder tensor for the input

Constant Is constant tensor

MatMul Calculates matrix multiplication

Add Applies element-wise binary addition

BiasAdd Applies element-wise binary addition

Conv2D Applies Convolution

MaxPool Applies max pooling across input tensor, according to kernel, stride, and padding

Relu Applies the rectified linear function element-wise, y = max(0, x)

Sigmoid Applies sigmoid function element-wise, y = 1 / (1 + exp(-x))

Tanh Applies the hyperbolic tangent function element-wise

outputs, and shape which are relevant to ERAN. Additionally, the get_attr method is available
to get the attributes needed for the execution of the model. Type is the string representation of
the operation, like op_type. The name is comparable to the node.output in ONNX. The inputs
and outputs are the lists of input and output nodes. Two nodes are connected in the graph if they
are in each other’s inputs and outputs, respectively. The shape describes the shape of the tensor
after the operation in NHWC format.

The TensorFlow operation types used in this thesis are listed in Table 2.2.

9
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3
Configuring ERAN for network
analysis

This chapter describes all the options that ERAN provides for analyzing neural networks. The
first section provides an overview of the options providing their names, default values, and a
short description. The following sections give a more detailed description of these options.
Finally, the last section provides examples of how these options can be used for tuning the
neural network analysis with ERAN. ERAN is a generic neural network analyzer and can serve
as a backend for a range of network verification tasks. It can be accessed via command-line
or a configuration file. The configuration file config.py defines the default option values. If no
default value is set for an option, it has to be set to None. In the command-line, the option value
can be defined by the option name prefixed with a double dash and followed by the value. For
flags, the presence of the option name means true and its absence means keeping the default.
The command-line option has priority if both the configuration file and command-line define
conflicting values for an option.

3.1 Option Overview

Table 3.1 provides an overview of all the options available for analyzing neural networks with
ERAN.

11



3 Configuring ERAN for network analysis

Table 3.1: ERAN Option Description

Name Default Short description

netname None The network name, the extension can be .pb, .tf, .pyt, .meta, or .onnx

dataset None The dataset, can be either mnist, cifar10, acasxu1, or fashion2

mean 0.5, 0.5, 0.53 The mean(s) used to normalize the data

std 1, 1, 1 The standard deviation(s) used to normalize the data

num_tests None Number of the last image to test

from_test 0 From which image to test

debug False Whether to display debug info

epsilon 0 The epsilon for L∞ perturbation

domain None Either deepzono, refinezono, deeppoly or refinepoly

input_box None The input box(es) with which the output_constraints are verified

output_constraints None The constraints verified, ignored if dataset is defined

zonotope None The file to specify the zonotope matrix

complete False The flag specifying whether to use complete verification or not

timeout_complete 60 The timeout in seconds for the complete verifier

timeout_lp 1 The timeout in seconds for the LP solver

timeout_milp 1 The timeout in seconds for the MILP solver

use_default_heuristic True Whether to use area heuristic for ReLU approximation

use_milp True Whether to use MILP or not

dyn_krelu False Whether to dynamically select parameter k for k-ReLU

use_2relu False Whether to use 2-ReLU

use_3relu False Whether to use 3-ReLU

refine_neurons False Whether to refine intermediate neurons

numproc #CPU The number of processes to use for MILP / LP / k-ReLU solver

geometric False Whether to do geometric analysis

geometric_config None The geometric configuration file location

data_dir None The geometric data location

num_params 0 The number of transformation parameters

attack False Whether to verify attack images

spatial False Whether to do analysis of vector field deformations

t-norm inf Vector field norm, can be 1, 2, or inf

delta 0.3 Vector field displacement magnitude

gamma ∞ Vector field smoothness constraint

12



3.2 Options applicable to all types of analysis

3.2 Options applicable to all types of analysis

The options described next can be used for all types of analysis.

3.2.1 netname

The netname specifies the absolute or relative path to the network file. It must be present for all
forms of analysis. The supported network types are TensorFlow (.pb), TensorFlow checkpoint
(.meta), a text-based version of TensorFlow (.tf), a text-based version of PyTorch (.pyt), and
ONNX (.onnx). To analyze a network trained with PyTorch it has to be either translated into
the text-based version by hand or converted to ONNX using the integrated ONNX export of
PyTorch.

3.2.2 dataset

For the dataset, the values of mnist (MNIST [LeCun and Cortes 2010]), cifar10 (CIFAR-10
[Krizhevsky et al. ]), acasxu (ACAS Xu [Manfredi and Jestin 2016]), and fashion (Fashion-
MNIST [Xiao et al. 2017]) can be chosen. The acasxu dataset is only available for analysis
with box inputs, while fashion is only available for geometric analysis. The dataset defines the
size and dimensions of the input to the neural network. Choosing one of these options will load
the corresponding dataset and pass the adversarial region through the network. Note that for
image-classification networks, the adversarial region is only passed through the network if the
original image is first classified correctly by the network. This option is mutually exclusive with
the option zonotope, but one of them must be given.

3.2.3 mean

This option needs a float for every channel in the input. The mean(s) is used to normalize the
data. For .pyt networks, this option is ignored, as the normalization is already defined in the
.pyt file. The default is 0.5, 0.5, and 0.5, for all datasets, except mnist without geometric, where
it is 0.

3.2.4 std

This option needs a float for every channel in the input. The std values are used as the standard
deviation to normalize the data. For .pyt networks, this option is ignored, as the normalization

1Only for box inputs.
2Only for geometric analysis.
3For MNIST dataset and non-geometric analysis, the default is 0.

13



3 Configuring ERAN for network analysis

is already defined in the .pyt file. The default is 1, 1, and 1, for all datasets.

3.2.5 num_tests

If present, the num_tests option defines the index of the last image in test set that is analyzed.

3.2.6 from_test

If present, the from_test option defines the index of the first image in test set that is analyzed.

3.2.7 debug

If this flag is present, then additional debug output is displayed.

3.3 Box input options

In this section, the options for analysis with box inputs are presented. These options are ignored
if geometric is true.

3.3.1 epsilon

Epsilon specifies the radius of the L∞ ball. Note that epsilon denotes αxi
i in the affine form of

DeepZono input. In DeepPoly the lower and upper bounds for the input are calculated by taking
the image and subtracting or adding epsilon respectively. This option is also mutually exclusive
with the option zonotope. If no epsilon is provided, an epsilon of 0 is used for the analysis.

3.3.2 domain

The domain can be either deepzono (DeepZono), refinezono (RefineZono), deeppoly (Deep-
Poly) or refinepoly (RefinePoly). Refinezono and refinepoly build on deepzono and deeppoly
respectively. The refining part is done by based on linear programming with triangle ReLU
approximation (LP), mixed-integer linear programming (MILP), or k-ReLU approximations to
narrow the lower and upper bounds in neurons. The choice of the refine method depends on
use_milp, use_2relu, use_3relu, dyn_krelu, and refine_neurons options. As mentioned in Sec-
tion 3.4 only DeepZono and RefineZono can be used in combination with zonotope. If the
geometric flag is set, the analysis will be done with the DeepPoly domain and this option is
ignored.
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3.4 Option for zonotope input (zonotope)

3.3.3 intput_box

The intput_box defines one or more box inputs to be verified. This option is mutually exclusiv
with the option epsilon. The format of the input box is as follows: Every line describes a
dimension and can have multiple intervals in it. Every interval is desctibed by a opening square
bracket followed by the lower bound, a comma, the upper bound and a closing square bracket
(e.g. [1.2, 3.4]). The combination of every interval combination will be checked.

3.3.4 output_constraints

The output_constraints defines the properties ERAN tries to verify. This option is ignored, if
the dataset (and spec_number) is defined. The format for the constraints is: On the first line is
the number of output labels, the following lines start with one or more output labels, followed
by a constraint. The labels are described by the letter y followed by the label index (e.g. y0 for
the first label). The supported constraints are: min (one of the previous labels is the minimum),
max (one of the previous labels is the maximum), notmin (this label is not the minimum, this
constraint makes only sense for a single label), notmax (this label is not the minimum, this
constraint makes only sense for a single label), < or > label (all previous labels are smaller or
bigger then following label, only one label can follow < or >).

3.3.5 use_default_heuristic

This value can either be true or false and defines whether to use default heuristic for the ReLU
approximation for the DeepZono and DeepPoly domains. The default is true.

3.3.6 complete

This value can be either true or false. If true, complete verification is performed when incom-
plete verification fails. For geometric analysis, the value of this option is ignored. The default
is false.

3.3.7 timeout_complete

This option is the timeout in seconds for the complete verifier (above). The default is 60.

3.4 Option for zonotope input (zonotope)

For DeepZono and RefineZono, a zonotope can be used as an input for the neural network.
As with netname, zonotope is the path to the file specifying the zonotope. The zonotope file
has two integers followed by a number of floats. The numbers can be separated by spaces,
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3 Configuring ERAN for network analysis

commas, or newlines. The first integer denotes the input dimension (e.g. 784 for MNIST).
The second integer is one plus the number of error terms of the zonotope. The number of
floats is the two integers multiplied. Looking at an input of i = [x0, x1, ... , xk], the file
has all α values of the affine forms following each other. The file would have the format:
k, 1 + n, αx0

0 , α
x0
1 , ..., α

x0
n , α

x1
0 , ..., α

xk
n .

3.5 Options for refined analysis

The options in this section can be used in RefineZono and RefinePoly analysis. They are ignored
for all other domains.

3.5.1 use_milp

This value can either be true or false. If true, the MILP solver is used otherwise the LP solver
is employed. The default value is true.

3.5.2 timeout_lp

With this option, the timeout in seconds used by the linear program (LP) solver can be defined.
The default value is 1.

3.5.3 timeout_milp

This option is the timeout in seconds for the mixed-integer linear program (MILP) solver. The
default is 1.

3.5.4 dyn_krelu

If the dyn_krelu flag is present, the value is true and otherwise, the default is kept. With this
option, the analyzer chooses parameter k in the k-ReLU analysis dynamically. This flag can be
used together with use_2relu and use_3relu. The default is false.

3.5.5 use_2relu

If the use_2relu flag is present, the value is true and otherwise, the default is kept. The k-ReLU
analysis is done with k = 2 if this option is active. This flag can be used together with dyn_krelu
and use_3relu. The default is false.
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3.6 Geometric analysis options

3.5.6 use_3relu

If the use_3relu flag is present, the value is true and otherwise, the default is kept. The k-ReLU
analysis is done for k = 3 if this option is active. This flag can be used together with dyn_krelu
and use_2relu. The default is false.

3.5.7 refine_neurons

If the refine_neurons flag is present, the value is true and otherwise, the default is kept. Inter-
mediate neurons are refined by calling the solver if this option is active. This flag can be used
together with dyn_krelu,

3.5.8 use_3relu

,

3.5.9 use_milp

and use_2relu. The default is false.

3.5.10 numproc

This defines the number of processes the LP/MILP solver and k-ReLU analysis will run on. The
default is the number of processors on the machine.

3.6 Geometric analysis options

This section describes all the options for neural network verification against geometric attacks.
Every option here is ignored if geometric is false. A look at the DeepG repository [Balunovic
et al. 2020] is recommended, for more information and details on geometric_config.

3.6.1 geometric

If the geometric flag is present, the value is true and otherwise, the default is kept. The ge-
ometric analysis is done with the DeepPoly domain and the domain option is ignored. There
are two ways to do geometric analysis in ERAN. The first is to pass a geometric configuration
(geometric_config) and the second is to create the necessary files as described in DeepG and pass
the folder location (data_dir). For both, the number of transform parameters (num_params) has
to be given. If the attack flag is true, then random attack images will also be tested. The default
for geometric is false.
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3 Configuring ERAN for network analysis

3.6.2 geometric_config

This is the path to the geometric configuration file. If this value is present, then data_dir is
ignored. From this file, the transformed images and attack images are generated.

3.6.3 data_dir

This is the location of the generated files with the transformed images and attack images. If
geometric_config is present, then this option is ignored.

3.6.4 num_params

This is the number of parameters for the geometric transformation.

3.6.5 attack

This flag is true if it is present and keeps its default value otherwise. With this option, images are
passed through the network. These images are generated by taking an original image and adding
random noise. The number of images and the amount of noise is defined in the geometric_config
file or the attack file in the data_dir folder.

3.7 Options for Vector Field Analysis

This section describes all the options for neural network verification against vector field attacks.
Every option here is ignored if spatial is false.

3.7.1 spatial

If the spatial flag is present, the value is true and otherwise, the default is kept. The default for
spatial is false. For certification against non-smooth vector fields (γ = ∞) any domain can be
used. However, certification against smooth vector fields (γ < ∞) is only compatible with the
DeepPoly and RefinePoly domains. Finally, to increase precision, the k-ReLU framework or
complete certification can be employed (with the corresponding parameters).

3.7.2 t-norm

The T -norm is the vector field norm that characterizes the pixel displacement magnitude (more
details are provided in [Ruoss et al. 2020]). Acceptable values are 1, 2, or inf.
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3.7.3 delta

This option corresponds to the maximum pixel displacement magnitude. Any float larger than
zero is an acceptable input, and a value of 1 corresponds to a displacement by one grid length.

3.7.4 gamma

This parameter characterizes the smoothness of the deforming vector field. Any float larger than
zero is an acceptable input, but only values smaller than 2δ will effectively constrain the vector
fields to be smooth.

3.8 Call examples

This section shows examples of how ERAN can be used for neural network verification. The
script to access ERAN is __main__.py in the tf_verify folder.

As a first use case, the user wants to verify robustness for the network cifarNet.onnx against L∞
norm perturbations. The dataset is CIFAR-10. The means and standard deviations the network
was trained with are 0.5, 0.5, and 0.4 and 0.2, 0.2, and 0.2 respectively.

First, he wants a fast result, so he uses DeepZono with an epsilon of 0.1 as shown in Listing 3.1.

$ python3 . −−netname /path/cifarNet .onnx −−dataset cifar10 −−mean 0.5 0.5 0.4
−−std 0.2 0.2 0.2 −−domain deepzono −−epsilon 0.1

Listing 3.1: Run DeepZono analysis

For a more precise result, he uses RefinePoly, without MILP, but with area heuristic and k-
ReLU. For k-ReLU, he runs the analysis with k = 2 and a dynamically chosen k. Listing 3.2
shows the command to run this analysis.

$ python3 . −−netname /path/cifarNet .onnx −−dataset cifar10 −−mean 0.5 0.5 0.4
−−std 0.2 0.2 0.2 −−domain refinepoly −−epsilon 0.1 −−use_milp false
−−use_area_heuristic true −−dyn_krelu −−use_2relu

Listing 3.2: Run RefinePoly analysis

Now he has the assumption that changes in pixels are completely dependent. Meaning if there
is a change in the red channel the same change is affecting the green and blue channel. He can
use the zonotope input for that. First, he takes a CIFAR-10 image and creates a zonotope out of
it. The following Listing 3.3 shows a mock example of such a script.
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3 Configuring ERAN for network analysis

def create_cifar_zonotope (image, epsilon ):
normalize(image)
# image is in NHWC format
channel_length = len (image)/3
zonotope = []

# write input size and 1 + number of dimension of the zonotope
zonotope.append(len(image))
zonotope.append(1 + channel_length ))
for i in range( channel_length ):

# Calculate alpha 1 though 1024
alphas = [ epsilon if i == j else 0 for j in range( channel_length )]

# Prepend pixel value as alpha 0
red = [image[i * 3]] + alphas
green = [image[i * 3 + 1]] + alphas
blue = [image[i * 3 + 2]] + alphas

# Add alphas to zonotope
zonotope.extend(red)
zonotope.extend(green)
zonotope.extend(blue)

save(zonotope)

Listing 3.3: Script for creating zonotope

Of course, the analysis would now include values outside of [0, 1] for a color, where only values
inside have meaning. This should be corrected before the zonotope is utilized. For a working
example of a zonotope-creation script see create_zonotope.py in folder data.

Listing 3.4 shows the command to run the analysis for the zonotope input with RefineZono, the
refinement is performed with MILP, and 3-ReLU.

$ python3 . −−netname /path/cifarNet .onnx −−zonotope /path/zonotope
−−domain refinezono −−use_3relu

Listing 3.4: Run Zonotope analysis

The next example shows verification against geometric perturbations. For this, the user needs
a geometric config file to generate the transformed images. Two examples are provided in the
folder deepg/code/examples. An example geometric configuration file is shown in Listing 3.5.
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dataset cifar10
noise 0
chunks 1
inside_splits 500

method polyhedra
spatial_transform Rotation(−1,1)

num_tests 100
ub_estimate Triangle
num_attacks 20
poly_eps 0.0001
num_threads 20
max_coeff 20
lp_samples 1000
num_poly_check 50
set test

Listing 3.5: Geometric configuration file

The reason for the redundant information, e.g. cifar10, is so the same geometric configuration
file can be used for generating the files containing the transformed and attack images. The
command to run the geometric analysis with additional attack images is shown in Listing 3.6.

$ python3 . −−netname /path/cifarNet .onnx −−dataset cifar10 −−geometric
−−geometric_config /path/ config . txt −−num_params 1 −−attack

Listing 3.6: Run geometric analysis

If the attack flag is not set, then num_attacks is treated as 0. While the geometric_config option
is the more convenient way to do geometric analysis, for repeated use of the same configura-
tion file, it is faster to first generate the files and then read them repeatedly. The same is also
suggested for reproducibility.

After generating the files, Listing 3.7 shows a call to run geometric analysis by reading the files.

$ python3 . −−netname /path/cifarNet .onnx −−dataset cifar10 −−geometric
−−data_dir /path / −−num_params 1 −−attack

Listing 3.7: Run geometric analysis by reading files

Listing 3.8 shows the command for replicating the complete verification of Acas Xu of the paper
[Singh et al. 2019b]. The dataset is Acas Xu and the network acasxu_prop9_net.tf is provided
in the folder data/acasxu/nets of ERAN.
$ python3 . −−netname ../data/acasxu/ nets /acasxu_prop9_net. tf −−dataset acasxu
−−domain deepzono −−complete True

Listing 3.8: Complete verification of a Acas Xu network

The next two examples show certification against vector field deformations. Recall that we can
certify both smooth (γ < ∞) and non-smooth (γ = ∞) vector fields. Listing 3.9 shows the
command for incomplete certification of smooth vector fields. Spatial certification is also com-
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3 Configuring ERAN for network analysis

patible with more precise methods including the k-ReLU framework and complete certification.
To invoke these methods, the user can just add the corresponding flags, as can be seen in Listing
3.10 for the complete certification case.

$ python3 . −−netname ../path/ cifarNet .onnx −−dataset cifar10 −−domain deeppoly
−−spatial −−t−norm inf −−delta 0.3 −−gamma 0.1

Listing 3.9: Incomplete verification of smooth vector fields

$ python3 . −−netname ../path/ cifarNet .onnx −−dataset cifar10 −−domain deeppoly
−−spatial −−t−norm inf −−delta 0.3 −−gamma 0.1 −−complete True

Listing 3.10: Complete verification of smooth vector fields
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4
Implementation

This chapter describes the implementation of ERAN. The first section gives a top-down view
of the pipeline for verifying neural network properties. The following sections describe the
different components of ERAN in detail. Figure 4.1 shows the folder structure of the ERAN.

4.1 Pipeline

In the first step, the network is read in by the __main__.py script and a TensorFlow or ONNX
model is created. Second, ERAN class eran.py is initialized and the model is passed to a trans-
lator, which takes this model and puts it in an intermediate representation (IR). Third, the IR
is used by the optimizer to create domain-specific nodes. In the end, the analyzer passes input
through the deep nodes to verify network properties. Figure 4.2 shows a rough overview of how
classes interact with each other and where they are defined.

4.2 Reader

For saved TensorFlow and ONNX models, the reader is trivial. It only uses the framework’s
load methods, since the representation of both already is a directed acyclic graph.

For the TensorFlow files .meta and .pb a TensorFlow session is created with tensorflow.Session()
and the model graph is loaded into it. Listing 4.1 shows the calls to load the TensorFlow
checkpoint files, which have the extension .meta. The TensorFlow Protobuf files, extension .pb,
are loaded as demonstrated in Listing 4.2. For ONNX, the method is a literal load method as
shown in Listing 4.3.
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ERAN
data

acasxu
nets

acasxu_prop9_net.tf
specs

acasxu_prop9_spec.txt
cifar10_test.csv
create_zonotope.py
mnist_test.csv

deepg
ELINA
testing

test_nets
cifar10
mnist

check_models.py
tf_verify

__main__.py
ai_milp.py
analyzer.py
config.py
deeppoly_nodes.py
deepzono_nodes.py
eran.py
eranlayers.py
krelu.py
onnx_translator.py
optimizer.py
read_net_file.py
read_zonotope_file.py
tensorflow_translator.py

README.md
gurobi_setup_path.sh
install.sh
install_geometric.sh
overview.png
requirements.txt

Figure 4.1: ERANs folder structure
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Command-line Interface

main.py

read_net_file.py

ERAN

eran.py

ONNXTranslator

onnx_translator.py

TFTranslator

tensorflow_translator.py

Optimizer

optimizer.py

Deepzono nodes

deepzono_nodes.py

Deeppoly nodes

deeppoly_nodes.py

Analyzer

analyzer.py
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MILP

ai_milp.py

k-ReLU

krelu.py

Figure 4.2: Class Dependency Graph
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saver = tensorflow . train . import_meta_graph(netname)
saver . restore ( sess , tensorflow . train . latest_checkpoint ( netfolder +’/’))

Listing 4.1: Load .meta

graph_def = tf .GraphDef()
graph_def .ParseFromString( f . read ())
sess .graph. as_default ()
tf . graph_util . import_graph_def(graph_def , name=’’)

Listing 4.2: Load .pb

onnx_model = onnx.load( net_file )
onnx.checker .check_model(onnx_model)

Listing 4.3: Load .onnx

For the text-based .tf and .pyt format, the reader translates them into a TensorFlow model and
pass it on for further analysis. The .pyt format additionally has mean(s) and standard devia-
tion(s) to normalize the input before passing it through the network. With the new options mean
(subsection 3.2.3) and std (subsection 3.2.4), this can be accomplished without going through
this format.

4.3 ERAN

This section explains the implementation of class ERAN. First, the initialization method is
looked at and, then the method analyze_box, where the method analyze_zonotope is analogous.

On initialization, ERAN gets a model as an argument. With it, ERAN calls the appropriate
translator and gets the IR, which contains operations and resources. The IR is then used to
initialize the optimizer. Figure 4.3 shows an overview of the initialization process. At the end
of the initialization process, the number of neurons in the network is printed. The number of
neurons is defined as the sum of the output size of all activation layers in the network.

The method analyze_box takes as input the lower and upper bounds of the input box, the do-
main, the timeouts for MILP and LP solvers, a boolean determining whether to use area heuris-
tic, a boolean indicating testing mode and six arguments for geometric analysis, that will be
ignored in this chapter. ERAN uses this input to get the domain-specific nodes from the opti-
mizer. The list of deep nodes is then given to the analyzer and analyzed by it. The result is a
tuple with the following:

• The class with a higher lower bound than the upper bound of every other class, or minus
one if no such class exists.

• The special network representation

• The list of lower bounds

• The list of upper bounds
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ERAN

optimizer: Optimizer

model

ONNXTranslator TFTranslator

Optimizer

operations: IR operations list

resources: IR operation resources

model modelIR IR

IR

optimizer

Figure 4.3: ERAN Initialization

ERAN

optimizer: Optimizer

Caller

Optimizer

operations: IR operations list

resources: IR operation resources

Analyzer

input bounds

deep nodes

deep nodes + input

result
input

result

Figure 4.4: ERAN analyze_box

• If testing is true, the list of tensor names and shapes

Figure 4.4 illustrates this method.

ERAN creates new deep nodes for every input region. Input node changes are unavoidable, as
they encode the input bounds, but reusing the rest is an option. Reusing might be optimal from
a performance perspective, but the effect is negligible. The advantage of this approach is that
the same instance of ERAN can analyze in all domains. The testing framework makes use of
this possibility.
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4.4 Translators

The TensorFlow translator tensorflow_translator.py and ONNX translator onnx_translator.py
are similar. Both first prepare the model and then translate it.

Model preparation The model preparation of the TensorFlow translator consists of cre-
ating a session and using the TensorFlow graph_util to convert variables into constants with
convert_variables_to_constants and removing training nodes with remove_training_nodes.

There are three reasons the ONNX translator has to do more to prepare the model. First, as men-
tioned in section 2.2, ONNX works with NCHW format while TensorFlow uses NHWC. Due
to the TensorFlow legacy, the ERAN IR also uses NHWC. The second reason is that ERAN has
to do shape inference on the graph nodes. The last reason is that the nodes in the ONNX model
graph are only connected by name and not reference like the TensorFlow nodes. This makes
traversing the graph difficult. These problems are addressed in the prepare_model method of
the ONNX translator.

In the prepare_model method, four maps are created. The first map shape_map is from a node’s
output name to its output shape. The second map constants_map has also output names as keys
and the corresponding constant as value. The third and fourth maps are output_node_map and
input_node_map, respectively. The map from output and input names of a node to the node
itself. Those two maps are used to make graph traversal easier.

To get the shapes for the shape_map, the built-in shape inference of ONNX could not be used.
The reason for this is the common practice in PyTorch to use the operation Reshape(N, -1)
to flatten the input. This is translated to Shape, Gather, Concat, Unsqueeze, and Reshape in
ONNX. While the output of the Shape operation is a constant, for ONNX it is a tensor and only
calculated at runtime. Therefore, the shape inference includes constant propagation, for which
the constants_map is created. If all inputs to an operation are in the map, the translator calculates
the result using the NumPy library [Oliphant 2006] and puts it in as well. The calculation of
the output shape of every operation is based on the constant inputs and input shapes. In the
TensorFlow model, all the shapes are already saved in the nodes.

Listing 4.4 is the matrix multiplication and element-wise operation cases of prepare_model and
stands as an example of the shape inference and constant propagation implementation.

The conversion from NCHW to NHWC is done every time an array is put into the
constants_map by the nchw_to_nhwc method. This method transposes every array with four
dimensions and returns the unchanged array otherwise.

Translation After all required information is collected, the translator then creates a list
of operation types operation_types and a list with the resources needed for these operations
operation_resources. This is done by iterating over the list of operations in the graph. For
TensorFlow, that means calling get_operations and for ONNX, accessing the node field. The
first operation of a TensorFlow model is always Placeholder node, while for ONNX the input is
not considered a node. At the start of the ONNX model translation, a Placeholder operation is
appended to operation_types and graph.input[0] is used to get the necessary information to put
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for node in model.graph.node:
...

# matrix multiplication
elif node.op_type in ["MatMul", "Gemm"]:

# Find out if A or B are transposed
transA = 0
transB = 0
for attribute in node. attribute :

if ’transA’ == attribute .name:
transA = attribute . i

elif ’ transB’ == attribute .name:
transB = attribute . i

# Calculate shape
M = shape_map[node.input[0]][ transA]
N = shape_map[node.input [1]][1 − transB]

# Save shape for value
shape_map[node.output[0]] = [M, N]

# element−wise operations
elif node.op_type in ["Add", "Sub", "Mul"]:

# Shape stays the same
shape_map[node.output[0]] = shape_map[node.input [0]]

# Propagate constant if possible
if node. input [0] in constants_map and node.input [1] in constants_map:

# Calculate the resulting constant
if node.op_type == "Add":

result = np.add(constants_map[node. input [0]],
constants_map[node. input [1]])

elif node.op_type == "Sub":
result = np. subtract (constants_map[node. input [0]],

constants_map[node. input [1]])
elif node.op_type == "Mul":

result = np. multiply (constants_map[node. input [0]],
constants_map[node. input [1]])

# Save constant
constants_map[node.output [0]] = result

...

Listing 4.4: prepare_model excerpt
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in operation_resources. Depending on the operation type, the translators handle the node by
ignoring it or extracting all necessary information out of it. To ignore a node, the translators put
the node in the reshape_map. The ignored nodes output name is the key and its input name the
value. Later, if another node has an input contained in the reshape_map, the input is replaced
with the mapped value, the ignored nodes input. The information extraction is of course opera-
tion type dependent. The information required from every relevant node is input names, output
name, and output dimensions.

For ONNX, there is an interesting mixed case in the operation Reshape. Because of the dif-
ference in format, between NHWC in ERAN and NCHW in ONNX, the Reshape operation is
relevant. Equations 4.1 and 4.2 illustrate how the Reshape operation is handled in TensorFlow
and ONNX format respectively.

1 2

3 4

 Reshape−−−−→
(
1 2 3 4

)
(4.1)

1 2

3 4

 Format change−−−−−−−→

1 3

2 4

 Reshape−−−−→
(
1 3 2 4

)
(4.2)

The Reshape operation is relevant and treated like a Gather operation, except if a matrix multi-
plication follows, then the matrix is adjusted to correct the problem and the Reshape is ignored.

The other case, which is not exactly standard is Add. If one of the addends is constant the
operation type is Add, but if no addend is constant, then the operation type is Resadd.

As previously stated, every relevant operation needs information on input names, output name,
and output shape. Table 4.1 shows for every operation the additionally needed resources. For
operations that are ignored, the entry Ignored is used.
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Table 4.1: Resources needed for operations

Operation Resources

Placeholder None

Constant Ignored without reshape_map entry

MatMul The matrix

Gemm The matrix and the bias

Add The addend if it is constant, otherwise none1

BiasAdd The bias

Sub The constant one of minuend or subtrahend and a boolean denoting the choice

Mul The array with the elements to multiply

Conv The filters, bias, input shape, strides, padding2, and kernel shape

Conv2D The filters, input shape, strides, padding2

MaxPool The input shape, window size, strides, padding2

Relu None

Sigmoid None

Tanh None

Gather The input shape, indexes, axis

Shape Ignored

Reshape Ignored, if followed by a matrix multiplication, otherwise like Gather

Concat Ignored

Unsqueeze Ignored

4.5 Optimizer

The optimizer is defined in optimizer.py. On initialization, the optimizer is given the
operation_types and operation_resources of the translator. The optimizer takes these and
creates a list of domain-specific deep nodes execute_list and a list of tensor names and shapes
output_info. The list of deep nodes will be used by the analyzer to verify the network property.
The list of tensor names and shapes is for testing purposes. These lists are returned by

0In this case, the translation is Resadd.
0The padding is divided into vertical and horizontal.
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the get_deepzono or get_deeppoly method. The get_deepzono takes 3 arguments, a special
representation of the neural network nn, the lower and the upper bound of the input. The
special representation nn is used for the LP or MILP part of the refined analysis. To analyze a
zonotope as an input, get_deepzono is called without providing the lower or upper bound, but
passing the zonotope instead. The get_deeppoly method takes ten arguments. The first three are
the same as for get_deepzono, and the additional ones are all only important for the input of the
geometric analysis. To create the list of nodes the optimizer iterates over the operation_types
and uses operation_resources to create the deep nodes. In DeepZono, every operation has its
node, while in DeepPoly a matrix multiplication or convolution followed by an activation layer
is put together. Additionally, DeepPoly differentiates between first, intermediate, and last layer
nodes. Table 4.2 shows translation from operations to nodes. For DeepZono and DeepPoly,
only the deep nodes are relevant, while for RefineZono and RefinePoly the optimizer also has
to provide the information necessary to do the refined analysis. For that purpose, the special
representation of the neural network nn is filled with this information, while iterating over
operation_types. The information put into nn is very similar to Table 4.1, which is expected as
the refined analysis is trying to do the same as the nodes.

For DeepZono and RefineZono, the optimizer has to add a DeepzonoDuplicate node to the
execute_list for every Resadd operation present. For residual network, the DeepzonoDuplicate
node creates a copy of the node that is input to the two branches.
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Table 4.2: IR to deep nodes

Operation sequence DeepZono nodes1 DeepPoly nodes2

Placeholder Input3 Input

MatMul Matmul -

MatMul→ Add/BiasAdd Affine Relu4

Gemm Affine Relu4

Add Add -

BiasAdd Add -

Resadd Resadd5 Resadd6

Sub Sub Sub

Mul Mul Mul

Conv2D Conv -

Conv2D→ BiasAdd Convbias Conv2d6

Conv Convbias Conv2d6

MaxPool Maxpool Maxpool

Relu Relu -

Sigmoid Sigmoid -

Tanh Tanh -

Gather Gather Gather

Reshape Gather Gather

Gemm7 → ReLU Affine→ Relu Relu8

Gemm7 → Sigmoid Affine→ Sigmoid Sigmoid8

Gemm7 → Tanh Affine→ Tanh Tanh8

1All names have Deepzono prepended.
2All names have Deeppoly prepended and Node appended.
3This can also be InputZonotope.
4This is only true if this is the last node.
5This also adds a DeepzonoDuplicate node to the execute_list.
6This is the same node if a Relu operation follows. The node has a boolean has_relu, which denotes just that.
7Gemm is interchangeable with MatMul→ Add/BiasAdd
8This node has First, Intermediate or Last appended depending on its position
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4.6 Deep nodes

As previously stated the deep nodes are domain-specific. DeepZono nodes are defined in
deepzono_nodes.py and DeepPoly nodes defined in deeppoly_nodes.py. All deep nodes have
an initialization and a transformer method. In the initialization method, all parameters needed
in the transformer method are saved. If a parameter is an array it is put in continuous memory.
The transformer method is mainly a wrapper for a call to ELINA. The transformer method
takes 10 and 11 arguments for DeepZono and DeepPoly respectively. The arguments are all the
same except for the additional parameter use_area_heuristic for DeepPoly. The transformer
arguments are:

• nn, a special network representation

• man, the zonoml or fppoly manager

• element, the abstract element

• nlb, the lower bounds for refined analysis

• nub, the upper bounds for refined analysis

• relu_groups, a list needed for k-ReLU

• refine, the boolean to decide whether to do refined analysis

• timeout_lp, the timeout for the LP solver

• timeout_milp, the timeouts for the MILP solver

• testing, the boolean determining whether to return additional test bounds

• use_area_heuristic, the boolean for DeepPoly to decide whether to use area heuristic

A special case, are the Input nodes as their transformer call initializes element and has only
the domain manager man as input. The transformer method of all other deep nodes returns the
manipulated element or a tuple with the element and the lower and upper bound for the current
node if testing is true. The lower and upper bounds returned for testing are numerically the
same as the bounds used to do refined analysis with, but the list of bounds could not be reused
because for refined analysis, not every node’s bounds are needed, e.g. Relu node. This will be
further elaborated in Section 4.8.

4.7 Analyzer

The analyzer analyzer.py is where the network is finally analyzed. The analyzer is initialized
with the list of deep nodes provided by the optimizer ir_list and nn, the special representation
of the neural network. To analyze the network property the analyze method is called. In it, the
analyzer iterates over the deep nodes and calls transformer on every node. At the end of this
iteration, the analyzer has an abstract element representing the network properties and the list
of lower and upper bounds. For RefinePoly, these bounds are then used to create an instance of
the LP solver. In the next step, the analyzer iterates over every class in the output and checks
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if its score is bigger than that of every other class in the output. This is accomplished by
calling ELINAs domain-specific is_greater method, which takes the manager man, the abstract
element element, the indexes of the two classes, and for DeepPoly and RefinePoly additionally
use_area_heuristic. The result of is_greater is true if the class with the first index has a higher
value for the whole analyzed input region. If a class is found that is greater than every other,
then the iteration stops and the index of the class and the bounds are returned. When testing, the
analyze method additionally returns output_info, the list of testing-relevant tensor names and
shapes.

4.8 Refinement

The refinement is only done for RefineZono and RefinePoly domain, as previously stated. If
the network is analyzed with these domains, then the transformer method’s refine argument is
true. The process is distributed over the deep nodes. In deep nodes, that map from MatMul,
Gemm, Conv2D, or Conv in the IR, the lower and upper bounds are appended to nlb and nub
respectively. Those bounds are then improved in nodes that map from Relu in the IR. This
means the DeeppolyReluNodes (First, Intermediate, and Last) and DeeppolyConv2dNodes do
both add bounds and improve them. Like the options suggest there are two different methods
employed to improve these bounds. The first is the triangle approximation of ReLU with LP or
MILP and the second is the k-ReLU analysis. The triangle approximation of ReLU is defined
in ai_milp.py. The solver used for LP and MILP is Gurobi [Gurobi Optimization 2019]. For
convolutional and residual networks analyzed with RefinePoly, refinement is only done once
the analyzer has finished iterating over the deep nodes. k-ReLU is implemented in krelu.py.
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5
Testing Framework

This chapter describes the testing framework of ERAN. The first section defines the use cases
of this testing framework. The second section describes the changes needed for this framework.
The third section describes the parts of ERAN that can be tested with this framework. The
fourth section provides example calls. Finally, the last section describes all test output in detail.

Correctness is imperative for a neural network verifier. The testing framework presented here
ensures that the analysis for concrete points is correctly implemented, by comparing the result
of the model with the bounds from ERAN. This is implemented in the file check_models.py in
the folder testing. Running check_models.py tests multiple networks with multiple domains,
which is enabled by the ERAN initialization and analyze_box being in try clauses. All tests are
printed to a single output file.

5.1 Layout of the Testing Framework

This section describes the testing framework and how it is built. The testing framework can test
the ERAN initialization and the method analyze_box. In the following, a parser test will refer
to the test of the ERAN initialization, a normal test will refer to a test of analyze_box and a test
refers to both. Since the testing framework should continue testing even if a test fails with an
exception, both the ERAN initialization and the call of analyze_box are in try clauses.

Running check_models.py without arguments is described by Algorithm 1.
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Algorithm 1 Testing Framework
1: procedure CHECK_MODELS.PY

2: output file← open("tested.txt")
3: for folder ∈ testing/test_nets do
4: dataset← folder name
5: for network ∈ folder do
6: model← load(network)
7: eran← ERAN(model)
8: input← load(dataset)
9: for domain ∈ [DeepZono, DeepPoly, RefineZono, RefinPoly] do

10: lower bounds, upper bounds← eran.analyze_box(input, domain)
11: eran_results← average(lower bounds, upper bounds)
12: results← model(input)
13: if end eran_result - end result < acceptable difference then
14: output file← "success"
15: else
16: for eran_result, result ∈ bounds, results do
17: if eran_result - result > acceptable difference then
18: output file← exact layer the differences started
19: goto 9

5.2 Modifications to ERAN for testing

The model is loaded in read_net_file.py, as is explained in Section 4.2. The testing framework
uses this model to run the same input through ERAN and the model. If the results differ, then
the intermediate results are compared layer by layer to help determine the location where the
divergence occurs. To get these intermediate results, additions to ERAN were necessary. First,
the optimizer returns the additional output_info. The output_info is a list, which for deep nodes
in execute_list has the name and shape of the tensor, corresponding to the last operation covered
by the deep node (see Table 4.2). For deep nodes that do not correspond to an operation, e.g.
DeepzonoDuplicate, there is no entry in output_info. Second, the analyzer takes an additional
argument testing in his initialization method. Third, most nodes give back the bounds while
testing, instead of just returning the abstract element, as shown in Listing 5.1.

class Deepnode:
...

def transformer ( ... , testing ):
...

if testing :
return element, lower_bound, upper_bound

return element

Listing 5.1: Deepnode transformer return

38



5.3 ERAN code covered by the testing framework

To calculate the bounds, the methods add_bounds and calc_bounds were implemented in
deepzono_nodes.py and deeppoly_nodes.py respectively. These are the same bounds that are
used for refined analysis, therefore, the last element of refinement bounds nlb and nub are
returned.

5.3 ERAN code covered by the testing framework

This section describes the parts of the ERAN code that can be tested with the testing framework.

Chapter 4 showed the components involved with the network analysis in detail. The first com-
ponent is the reader. The framework cannot test this part. For .onnx, .pb and .meta files, the
ONNX and TensorFlow frameworks load the model. In this case, the methods used are tested by
the framework developers and testing them is outside the scope of our framework. Testing for
.tf and .pyt files could be added but was omitted because ONNX support was explicitly added
to replace the need for these formats. The translators can be tested separately with the option
parser, discussed later. When testing the translator the resulting operations list is shown as a
result.

The other part that can be tested is the analyze_box method of ERAN end to end. This is done
by comparing the average of the output bounds of analyze_box with the output of the model.
For ONNX the input for the model has to be transposed to fit the NCHW format. To run the
ONNX models ONNX Runtime [Microsoft 2020] is used. The output_info added to the result
of analyze_box, mentioned in Section 5.2 is used to add the output to the model. Listing 5.2 and
5.3 show how this is managed for TensorFlow and ONNX models, respectively. If the bounds
of ERAN and the result of the model do not match, the additional output from the models
is compared with the respective bounds of ERAN to find the exact layer, where the results
diverged. For examples of test outputs, see Section 5.5.

# TensorFlow only needs the names
output_names = [e[0] for e in output_info ]

# Get the output for every named tensor in TensorFlow model
pred = sess . run ([ sess .graph.get_tensor_by_name(name[7:]) for name in out_names],

{sess .graph. get_operations ()[0]. name + ’:0’: input })

Listing 5.2: Get output for relevant layers in TensorFlow
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# Make input NCHW for ONNX
input = input . transpose (0, 3, 1, 2)

for name, shape in output_info :
# Create a new output node
out_node = helper . ValueInfoProto (type = helper .TypeProto ())
out_node.name = name
out_node.type . tensor_type .elem_type =

model.graph. output [0]. type . tensor_type .elem_type

# Make shape NCHW if necessary
if len (shape)==4:

shape = [shape [0], shape [3], shape [1], shape [2]]

# Add dimensions to ONNX shape
for dim_value in shape:

dim = out_node.type . tensor_type .shape.dim.add()
dim.dim_value = dim_value

# Make model return additional output
model.graph. output .append(out_node)

# Get output of ONNX model for input
runnable = rt . prepare (model, ’CPU’)
pred = runnable . run( input )

Listing 5.3: Get output for relevant layers in ONNX

5.4 Using the testing framework

This section will first show all options the check_models.py script provides and then go over use
cases.

The testing options are shown in Table 5.1. In this subsection, a test references running the
analyze_box method and model once. Tests are run for every network and every domain given
by the user. For flags that tune the analysis, e.g. use_area_heuristic or use_2relu, the testing
framework is referencing the same config.py as the ERAN in normal use.

5.4.1 Testing options

This subsection gives an overview of the testing options with Table 5.1 and describes the option
in more detail in the respective paragraphs.

1deepzono, deeppoly, refinezono, and refinepoly
1If this option is taken, then dataset MUST be given.

40



5.4 Using the testing framework

Table 5.1: Testing options

Name Default Description

dataset None The dataset for the networks

domain all1 The domains tested

network None The networks to be tested2

out tested.txt The name of the output file

parser False The flag denoting to only the parser will be tested

continue False The flag denoting to only to run tests without a previous result

failed False The flag denoting to only to run tests without previous success

dataset The dataset can be defined as an option and multiple networks can be tested with
this dataset. This has the drawback, that all networks tested have to be for the same dataset. The
testing framework uses folders to solve the problem of testing networks with different datasets.
Looking in the testing/testing_nets folder, every folder name inside is used as the dataset for
the networks inside the folder itself. This option is provided, to enable the network option.

domain One or more domains can be given as an option when running check_models.py. The
default is to test all of them, which means DeepZono, DeepPoly, RefineZono, and RefinePoly.
The purpose of this option is to cut down testing time during the development of domain-specific
code.

network With the network option, one can specify one or more relative or absolute paths
to networks. If no network is provided, then, as previously stated, the networks in the folders
inside testing/testing_nets are tested. This option is provided to test specific models without
moving them.

out Out defines the name of the output file. The format of the output file will be described
in Section 5.5. The default is tested.txt. The check_models.py script creates a new result file if
it does not already exist. If the file already exists the file is appended and not overridden. The
output of every test is written in this file.

parser The parser flag signifies, that only the translators are tested. It can be used to check
if a model can be analyzed using ERAN.
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continue This option can be used to continue aborted test runs. The script is also stopped
when a segmentation fault occurs.

failed With the failed flag, only tests that have not yet succeeded, are run.

5.4.2 Testing example calls

This subsection presents use cases for the tesing framework and the commands to solve them.

In the first use case, the user has networks of different types and classifying different datasets in
the folders testing/test_nets/mnist/ and testing/test_nets/cifar10/. With this setup, the user can
just run the command, as described in Listing 5.4. To test only with DeepZono and RefineZono,
e.g. there are changes in deepzono_nodes.py, the user can execute the command in Listing 5.5.
To add testing support for a dataset A, the user can put an A_test.csv file in the data folder and
then test networks with that input by putting them in the testing/test_nets/A/ folder.

$ python3 check_models.py

Listing 5.4: Run all tests

$ python3 check_models.py −−domain deepzono refinezono

Listing 5.5: Run tests for DeepZono and RefineZono

In the second use case, the user has many models exported from PyTorch and wants to check if
ERAN can parse them. The dataset predicted by the models is CIFAR-10, so he can put them
in the testing/test_nets/cifar10 folder. Listing 5.6 is the call to run the tests.

$ python3 check_models.py −−parser

Listing 5.6: Run parser only tests

In the third use case, the user wants to check two large models, which he does not want to move.
The option network provides just that. Listing 5.7 shows this.

$ python3 check_models.py −−network /path/cifarNet1 .onnx /path / cifarNet2 .onnx
−−dataset cifar10

Listing 5.7: Run test for a single network

The fourth use case sees the user developing a feature in ERAN. He has three models in the
testing/test_nets/cifar10 folder, which failed the tests previously because the feature was not
implemented correctly. Listing 5.8 is the command to only rerun the tests that failed.

$ python3 check_models.py −−failed

Listing 5.8: Rerun tests that failed before

In the fifth use case, the user crashed his laptop during a test run because he forgot to plug it in.
Listing 5.9 shows the command to continue, where it left off.
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$ python3 check_models.py −−continue

Listing 5.9: Continue aborted test run

5.5 Format of the test output

This section explains the possible results of a test. All results are printed to the output file out. A
test can be run with the option parser or without. For tests run with this option the positive result
states, the dataset, the network, the string "ERAN parsed successfully" and the operation_types
of the translator. An example can be found in Listing 5.10.

mnist , convMedGTANH__Point.pyt, ERAN parsed successfully
, [’ Placeholder ’, ’Conv2D’, ’BiasAdd’, ’Tanh’, ’Conv2D’, ’BiasAdd’, ’Tanh’,
’MatMul’, ’BiasAdd’, ’Relu’, ’MatMul’, ’BiasAdd’],

Listing 5.10: Success message for parser

The failure message for the translator, no matter the option, is printed in the except part of the
try clause and consists of the dataset, the network, and the stack trace with "ERAN parse error
trace: " prepended.

The success message for the end-to-end test is given in Listing 5.11. It contains the dataset, the
network, the domain, and the string "success".

mnist , convMedGTANH__Point.pyt, deepzono, success

Listing 5.11: Success message for end-to-end test

In case a test fails because of an exception in ERAN, the "success" string is exchanged with
"ERAN analyze error trace: " and the stack trace. Listing 5.12 is such a failure message.
This error message is genuine as ERAN cannot handle Conv2D → BiasAdd → Sigmoid for
DeepPoly analysis.
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mnist , convMedGTANH__Point.pyt, deeppoly, trace: Traceback (most recent
call last ):

File "check_models.py", line 195, in <module>
label , nn, nlb , nub, output_info = eran .analyze_box(specLB, specUB, domain,
1, 1, True, testing =True)

File "../ tf_verify / eran .py", line 73, in analyze_box
execute_list , output_info = self . optimizer .get_deeppoly(nn, specLB, specUB,
lexpr_weights , lexpr_cst , lexpr_dim, uexpr_weights, uexpr_cst , uexpr_dim,
expr_size )

File "../ tf_verify / optimizer .py", line 539, in get_deeppoly
assert 0, "the Deeppoly analyzer doesn’ t support the operation : ’" +
self . operations [ i ] + "’ of this network: " + str ( self . operations )

AssertionError : the Deeppoly analyzer doesn’ t support the operation : ’Tanh’ of
this network: [’ Placeholder ’, ’Conv2D’, ’BiasAdd’, ’Tanh’, ’Conv2D’, ’BiasAdd’,
’Tanh’, ’MatMul’, ’BiasAdd’, ’Relu’, ’MatMul’, ’BiasAdd’]

Listing 5.12: Failure message for convMedGTANH__Point.pyt, the operation Tanh is not supported

The last error message is the one, where the result of ERAN and the model do not match. Listing
5.13 is produced, by taking the bounds of ERAN before ReLU is applied. The message states
dataset, network name and domain as before and on the following lines, the result ERAN gave
back, the result of the model, at which layer the differences started, what is the name inside the
model and the difference.
cifar10 , cifar_conv_maxpool. tf , deeppoly,
eran , [ 1.06886569 −1.70941519 −0.2204093 5.92306311 0.34591173 0.94349005

1.88718244 0.19593985 −0.5731354 −1.04429471],
model, [1.06886603 0. 0. 5.92306201 0.34591181 0.94348935
1.88718205 0.19593944 0. 0. ]

cifar10 , cifar_conv_maxpool. tf , deeppoly, started divergence at layer , 0,
outputname, import /Relu :0,
difference , [−3.37952500e−01 −7.57158626e−01 1.23336668e−08 ... −1.60802317e+00
−1.52837109e+00 −3.22496391e−01]

Listing 5.13: Failure message stating the first layer at which the results differ
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Conclusion and Future Work

In this thesis, the state-of-the-art neural network verifier ERAN has been expanded with follow-
ing features:

• A new network format ONNX was supported, with custom shape inference and constant
propagation.

• The abstract domain RefinePoly was implemented.

• A file format was designed for encoding Zonotope inputs which involved creating a file
reader and a special input node.

• From DeepG, the geometric perturbations involving translation, rotation, and scaling,
were integrated, with both on the fly input region generation and file reading support.

• k-ReLU was added as an option for refining analysis.

• A testing framework, where the output of ERAN and the analyzed model are directly
compared and divergences located, was developed to ensure the correctness of the verifier.

In the future this work can be expanded by:

• Integrating GPU implementation of DeepPoly called GPUPoly. This will allow running
the DeepPoly analysis on the GPU.

• Support for additional network layers can be added, e.g. LSTM, Conv3D, Maxpool3D.

• Input batching can be added, as the analysis is done one image at a time at the moment.

• Support for additional datasets can be added, e.g. FaceScrub [Ng and Winkler 2015].

• The analysis for L1 and L2 norm based perturbations can be implemented.
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• Support for the verification of user defined network properties can be added.
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