

\leq SRI_AB

Learning to Solve SMT Formulas Mislav Balunović, Pavol Bielik, Martin Vechev

fastsmt.ethz.ch

How are Formulas Solved?

Our Approach

To be fast, SMT solvers rely on a set of handcrafted strategies which define how to transform given formula

Learning

Synthesis

Synthesize an interpretable program with branches that selects a strategy that performs best on a dataset of formulas

✓ avoids overhead of running the policy

enables integration with state-of-the-art SMT solvers

Sequential Strategies Obtained by running the learned policy on a dataset of formulas

simplify with {arith_lhs:true, som:true}; norm_bounds; lia2pb; pb2bv; bit_blast; sat simplify with {local_ctx: true}; sat; bit_blast; sat

Learn a policy to select next tactic

Training algorithm based on DAgger^[1]

Algorithm 1: Iterative algorithm used to train policy π

Data: Formulas , Number of iterations N, Number of formulas to sample K, Exploration rates β , Exploration policy $\pi_{explore}$ (e.g., random policy) **Result:** Trained policy π , Explored strategies

1
$$\mathcal{D} \leftarrow \emptyset; \quad \leftarrow \emptyset; \quad \pi \leftarrow \text{policy initialization}$$

2 for i = 1 to N do

- $\hat{\pi} \leftarrow \beta_i \pi + (1 \beta_i) \pi_{explore} \qquad \triangleright \text{ policy } \hat{\pi} \text{ explores with probability } (1 \beta_i)$ 3
- $\mathcal{Q} \leftarrow \mathcal{Q} \cup \text{Top } K \text{ most likely strategies for each formula in according to } \hat{\pi}$ $\mathbf{4}$
- $\mathcal{D} \leftarrow \mathcal{D} \cup$ Extract training dataset from strategies $\mathbf{5}$
- $\pi \leftarrow \text{Retrain model } \pi \text{ on } \mathcal{D}$ 6

[1] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. AISTATS'11

Strategy with Branches

Single strategy with synthesized branch for each state with multiple outgoing edges

defined for all formulas Φ_{2} Φ_{3} $\Phi_{_1}$

p(q) denotes ratio of

formulas solved by strategy q

H(F_{false}) is entropy of formulas

for which branch predicate

evaluates to false

Cost

Decision Tree Learning

 $H(\mathcal{F}) = -\sum_{q \in \mathcal{Q}} p(q) \log(p(q)) + (1 - p(q)) \log(1 - p(q))$

Synthesize predicates for each node in the tree in a top-down fashion

Multi-label entropy of	
a dataset of formulas	

 $\mathtt{a}_1; \mathtt{a}_2; \mathtt{a}_3$

 $\mathtt{a}_1; \mathtt{a}_4; \mathtt{a}_5$

Cost associated with branch b

30

 $cost(b, \mathcal{F}_{\texttt{true}}, \mathcal{F}_{\texttt{false}}) = \frac{|\mathcal{F}_{\texttt{true}}|}{|\mathcal{F}|} H(\mathcal{F}_{\texttt{true}}) + \frac{|\mathcal{F}_{\texttt{false}}|}{|\mathcal{F}|} H(\mathcal{F}_{\texttt{false}})$

100

TIMEOUT

Strategy Runtimes

 Φ_{3}

100

20

	Example			e	
	$\Phi_{_1}$	$\Phi_{_2}$	$\Phi_{_3}$		
	200	250	30	if true then \mathtt{a}_2 else _	0.276
	$\texttt{num}_\texttt{expr}$			$ t if \ {\tt num_expr} > {\tt 100 \ then \ a_2 \ else \ a_4}$	0.2
Formula Measures			sures	Candidate Branch	Cost

Syntax of Strategy Language used by Z3 solver

(Strategy)	q	::=	t q; q if p then q else q q else q
			repeat q, c try q for c using t with params
$({\tt Predicates})$	р	::=	$p \land p \mid p \lor p \mid expr \bowtie expr$
$({\tt Expressions})$	expr	::=	$\texttt{c} \mid \texttt{probe} \mid \texttt{expr} \ \oplus \ \texttt{expr}$
(Constants)	С	\in	$\texttt{Consts} = \mathbb{Q}$
(Probes)	probe	::=	$ extsf{Probe} o \mathbb{Q}, extsf{Probe} = \{ extsf{num_consts}, extsf{is_pb}, \dots \}$
(AOperators)	\oplus	::=	+ - * /
(BOperators)	\bowtie	::=	$> < \ge \le = \ne$
(Parameter)	param	::=	$(\texttt{Param},\mathbb{Q}),\texttt{Param}=\{\texttt{hoist_mul},\texttt{flat},\texttt{som},\dots\}$
(Parameters)	params	::=	$\epsilon \mid \texttt{param}; \; \texttt{params}$

Evaluation: Learning

Evaluation: Synthesis

Thirty-second Conference on Neural Information Processing Systems 2nd - 8th December 2018, Montreal