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ABSTRACT

Federated learning claims to enable collaborative model training among multiple
clients with data privacy by transmitting gradient updates instead of the actual
client data. However, recent studies have shown the client privacy is still at risk
due to the, so called, gradient inversion attacks which can precisely reconstruct
clients’ text and image data from the shared gradient updates. While these attacks
demonstrate severe privacy risks for certain domains and architectures, the vulner-
ability of other commonly-used data types, such as graph-structured data, remain
under-explored. To bridge this gap, we present GRAIN, the first exact gradient
inversion attack on graph data in the honest-but-curious setting that recovers both
the structure of the graph and the associated node features. Concretely, we focus
on Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT)
– two of the most widely used frameworks for learning on graphs. Our method
first utilizes the low-rank structure of GNN gradients to efficiently reconstruct and
filter the client subgraphs which are then joined to complete the input graph. We
evaluate our approach on molecular, citation, and social network datasets using
our novel metric. We show that GRAIN reconstructs up to 80% of all graphs
exactly, significantly outperforming the baseline, which achieves up to 20% cor-
rectly positioned nodes.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2009) have shown a great promise in learning
on graph-structured data like social networks, traffic flows, molecules, as well as healthcare and
income data. Many of these applications, however, require large quantities of private data, which
can be hard to collect due to privacy regulations and the reluctance of users to share their data due to
fear of losing competitive advantage. This has naturally led to widespread use of GCNs and GATs
alongside Federated Learning (FL) which promises to protect the sensitive data of users (Xie et al.,
2021; Zhang et al., 2021; Zhu et al., 2022; Lee et al., 2022; Lou et al., 2021; Peng et al., 2022).

However, the privacy of client data in FL in different domains including images (Zhang et al., 2023),
text (Petrov et al., 2024), and tabular data (Vero et al., 2023) was recently severely violated by the
introduction of gradient inversion attacks in the honest-but-curious setting. In these attacks, the FL
server infers the client data based on passively observed client gradients and the models where they
were computed. However, no prior work investigated the vulnerability of GNNs to such attacks.

This work: Gradient inversion attack on graphs In this work, we introduce the first gradi-
ent inversion attack on graphs called Graph Reconstruction Algorithm for Inversion of Gradients
(GRAIN), specifically designed to attack GNNs by recovering both the graph structure and the node
features. At the core of GRAIN is an efficient filtering mechanism to correctly identify likely sub-
graphs, which are then combined to reconstruct the entire graph. In particular, we leverage span
checks to exploit the rank-deficiency of GNN layer updates and recover both the discrete set of per-
layer node features and the subgraph adjacency matrices. We then reconstruct the client input using
a depth-first search (DFS) algorithm to piece together the full graph from the recovered subgraphs.

We evaluate our attack on real-world chemical, citation and social network datasets, achieving re-
construction accuracies of up to 75% (exact) and 85% (partial) on chemical graph classification,
61% in citation graph classification, and 66% in molecular node classification tasks with known
node labels. Finally, we demonstrate that data-dependent traversal strategies allow GRAIN to scale
to significantly larger graphs, recovering 85% of graphs with around 25 nodes.
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Main Contributions Our main contributions are:

• The first gradient inversion attack on Graph Neural Networks, recovering both the graph
structure and the node features. We provide an efficient implementation on GitHub.1

• A generalization of the theory presented by Petrov et al. (2024) facilitating an effective
mechanism to recover individual feature vectors and thus enabling the use on GNN layers
to recover the graph connectivity via efficient filtering.

• A novel set of metrics for measuring the quality of the recovered client graph structure and
node features, enabling the evaluation of graph gradient inversion attacks at scale.

• A thorough evaluation of GRAIN showing FL with GNNs does not preserve the client data
privacy in realistic applications, as GRAIN often recovers clients’ graph data exactly.

We believe this work is an important step to further quantify the risks of using private data in FL.

2 RELATED WORK

Gradient inversion attacks (Zhu et al., 2019), are attacks to Federated Learning that aim to infer the
client’s private data from the FL updates clients share with the federated server. As such, they assume
knowledge of the updates themselves, as well as the model weights on which the updates were
computed. Depending on the attack model, gradient inversion attacks are either malicious (Boenisch
et al., 2021; Fowl et al., 2022b;a; Chu et al., 2023; Wen et al., 2022) if the attacker can additionally
manipulate the model weights sent to the clients, or honest-but-curious (Zhu et al., 2019; Phong
et al., 2018; Zhao et al., 2020; Geiping et al., 2020; Geng et al., 2021; Zhang et al., 2023; Li et al.,
2022; Deng et al., 2021; Balunovic et al., 2022; Dimitrov et al., 2024; Petrov et al., 2024; Vero et al.,
2023) if the attack is executed passively by just observing model weights and updates.

In this work, we focus on the harder setting of honest-but-curious gradient inversion attacks. Most
existing honest-but-curious attacks formulate gradient inversion as an optimization problem (Zhao
et al., 2020; Geiping et al., 2020; Yin et al., 2021; Geng et al., 2021; Zhang et al., 2023; Li et al.,
2022; Deng et al., 2021; Balunovic et al., 2022) where the attacker tries to obtain the data which
corresponds to a client update that matches the observed one best. While this approach is effective
in many domains like images (Geiping et al., 2020; Yin et al., 2021; Geng et al., 2021; Zhang et al.,
2023; Li et al., 2022) where the client data is continuous, it has been shown that the associated opti-
mization problem is much harder to solve for domains where client inputs are discrete. Some prior
works have attempted to alleviate this issue by relying on various continuous relaxation (Balunovic
et al., 2022; Vero et al., 2023) to the discrete optimization problem with some success.

In contrast to such approaches, recent research has demonstrated that exact gradient inversion is
possible for both continuous (Dimitrov et al., 2024) and discrete inputs (Petrov et al., 2024) in certain
neural architectures. Notably, DAGER (Petrov et al., 2024) showed that when dealing with a large
but countable number of options for the client input data, the low-rank structure of gradient updates
in fully connected layers can be leveraged to efficiently test all possibilities and identify the true input
data. GRAIN extends this theory to GNN layers, exploiting the discrete nature of the unknown to the
attacker adjacency matrix A to simultaneously recover the client input features and graph structure,
under the assumption of discrete input features. This addresses a critical challenge in graph-specific
gradient inversion, where the interdependence between the recovery of the client feature matrix
X and the adjacency matrix A renders traditional optimization-based attacks ineffective. Unlike
DAGER, however, the structure of GNNs only allows for the recovery of the local graph structure
using this approach. To overcome this, we further introduce a DFS-based algorithm that combines
local graph structures into a single graph, enabling the recovery of the full client input data.

3 BACKGROUND AND NOTATION

Threat Model GRAIN is a honest-but-curious gradient inversion attack executed by a malicious
FL server that aims to recover the clients’ private data. As such, the server is assumed to know
the weight updates sent to clients and the corresponding responses received from them. Following
most existing gradient inversion attacks (Deng et al., 2021; Balunovic et al., 2022; Vero et al., 2023;

1https://github.com/insait-institute/GRAIN
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Geiping et al., 2020), we also assume knowledge of the client data structure, including the semantic
meaning, value ranges, and normalization of individual input features. This is well-justified as the
server needs to enforce consistency in input representations across clients to ensure correct training.

As GRAIN represents the first gradient inversion attack on GNNs, it targets the most traditional fed-
erated protocol, FedSGD (McMahan et al., 2017), and the most commonly used GNN architectures
— GCN and GAT. Further, as GRAIN is based on our extension to Thm. 3.1, introduced by Petrov
et al. (2024), it makes two additional assumptions: (i) the number of nodes in the client graphs is
smaller than the embedding dimension of the client GNN layers; and (ii) all input node features in
the client graphs are discrete. We denote by m the total number of features, by Fi the set of possible
values for the i-th feature, and by F = F1 × F2 × · · · × Fm the set of all possible feature vectors.
As we show in Sec. 6, these assumptions cover many realistic use cases of GNNs.

Graph Terminology Next, we introduce our graph notations. By V we denote the set of possible
graph nodes, where each node v ∈ V is associated with a given feature vector. For an undirected
graph G = (V,E) with node set V ⊂ V of size n = |V | and edge set E, we denote the degree
of a node v ∈ V with degG(v). Further, for a pair of vertices vs, ve ∈ V , the distance dist(vs, ve)
denotes the number of edges in the shortest path connecting vs to ve. We introduce the notion of
a k-hop neighborhood of a node v, defined by the subgraph N k

G (v) = (V k
v , Ek

v ) ⊂ G consisting
of all nodes V k

v = {v′ ∈ V | dist(v, v′) ≤ k} in the graph at a distance ≤ k from v and the
edges between them that can be traversed from v in ≤ k steps Ek

v = {e = (v1, v2) ∈ E | v1 ∈
V (N k−1

G (v)), v2 ∈ V k
v } with N 0

G(v) = {v}. Finally, we will call a triplet (V k
v , Ek

v , v) associated
with the k-hop neighborhood around v in G the building block Gkv with center v.

Graph Neural Networks Graph Neural Networks (GNNs) extend traditional neural networks to
handle graph-structured data by leveraging the edges between nodes through message passing. Each
GNN layer captures complex relationships between nodes by combining information from their
neighbors and the graph’s structural properties. This allows the model to learn richer node embed-
dings and gain insights into the graph’s topology. In particular, the lth GNN layer takes as an input a
matrix X l ∈ Rn×d of d-dimensional node features for each node v ∈ V and performs a combination
of messages passing and non-linearity to produce the node features of the next layer X l+1:

X l+1 = σ(Zl) = σ(AlY l) = σ
(
AlX lW l

)
, (1)

where Al ∈ Rn×n is a weighted adjacency matrix, W l ∈ Rd×d′
is the weight matrix, Y l ∈ Rn×d′

is the output to the linear layer, and σ is an activation function. For GCNs, the adjacency weights are
calculated using the respective node degrees, while for GATs they are determined by the attention
mechanism. We denote the input features matrix with X0, and abuse the notation X l

v to denote the
row of X l corresponding to the node v ∈ V . We consider L-layer GNNs, where we denote with fl
the function that maps the input graph to the output of the lth layer for l = 0, 1, 2, . . . , L− 1.

Gradient Filtering in Linear Layers Recently, DAGER (Petrov et al., 2024) showed that one
can leverage the gradients of the network loss L w.r.t. the weights W l of the lth linear layer ∂L

∂W l to
search for the correct set of inputs X l to the layer among a discrete set of possibilities via filtering
enabled by the low-rankness of the weight updates. We restate the theoretical findings below:
Theorem 3.1. If n < d and if the matrix ∂L

∂Y l is of full rank, then rowspan(X l) = colspan( ∂L
∂W l ).

To verify whether an input vector z can be a part of the client input, DAGER performs a spancheck
by measuring the distance between z and the subspace spanned by the column vectors of ∂L

∂W l :

d(z, ∂L
∂W l ) := ∥z − proj(z, colspan( ∂L

∂W l ))∥2.

We say z can be a part of the l-th layer input if d(z, ∂L
∂W l ) < τ for a chosen threshold τ . In our

work, we will extend Thm. 3.1 to Eq. 1, in particular applying it to the linear layer Y l = X lW l.

4 OVERVIEW OF GRAIN

Next, we provide a high-level overview of GRAIN, visualized in Fig. 1. GRAIN a gradient inversion
attack designed to reconstruct graph-structured client training data in FL assuming an honest-but-
curious adversary and is based on the key observation that due to the architecture of GNNs, the
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Figure 1: Overview of GRAIN. GRAIN first recovers the input nodes T ∗
0 by filtering through the

cross-product T0 of all possible feature values, e.g., all atom types F1 and all number of bonds F2.
It then iteratively combines and filters them into a set of larger building blocks T ∗

B up to a degree L.
Finally, it reconstructs the input graph by combining building blocks from T ∗

B in a DFS manner.

input embedding of a node v at layer l can be influenced only by the original input embeddings of
the nodes in the l-hop neighborhood of v. Therefore, given any l-hop neighborhood, we can obtain
the corresponding embedding of its center v and use our spancheck, inspired by Thm. 3.1 and shown
in Thm. 5.1, to check whether the neighborhood is a possible subgraph of the input graph G or not.

Filtering We leverage this subgraph checking procedure to create the filtering stage of GRAIN. In
particular, we first generate the node proposal set T0 consisting of all nodes the can be obtained using
the known to the attacker sets of possible feature values Fi. We then apply the span checks layer-by-
layer starting from T0. At each layer l, we "glue" the (l−1)-hop building blocks recovered from the
previous filtering iteration into the set of possible l-hop neighbourhoods, denoted Tl in Fig. 1, which
are then filtered using Thm. 5.1 to produce the set of consistent l-hop building blocks T ∗

l . Finally,
at layer L a final consistency check is performed to obtain the final set of L-hop building blocks T ∗

B .

Graph Building In the second stage, we perform graph building where we combine the L-hop
building blocks in T ∗

B using a DFS-based approach to obtain the final graph reconstruction. To do
this, at each node of the DFS tree, we "glue" a building block at a graph node that does not yet
have enough neighbors to match their degree. Here, we use that the degree of a node is a widely
used node feature for training GNNs (Hamilton et al., 2017; Xu et al., 2018; Cui et al., 2022), and is
thus known by the attacker at this stage. When we cannot extend the graph further, we compute its
gradient and compare it to the client gradient. If they do not match, we backtrack and try a different
path. Otherwise, we terminate the DFS successfully and return the reconstructed graph.

5 GRAIN: EXACT GRAPH RECONSTRUCTION FROM GRAIDENTS

Algorithm 1 The GRAIN algorithm

1: function GRAIN(T0, ∂L
∂W , τ , f , C)

2: T ∗
L ←GENERATEBBS(T0, ∂L

∂W , τ , f )
3: T ∗

B ←STRUCTUREFILTER(T ∗
L , ∂L

∂W )
4: return RECONSTRUCTGRAPH(T ∗

B , ∂L
∂W , C)

We now present the technical details of
GRAIN. First, in Sec. 5.1, we explain the key
operation of graph gluing. Then, in Sec. 5.2,
we present Thm. 5.1 that adapts Thm. 3.1
to GNN layers and Thm. 5.3 that enables
GRAIN to locally recover graph structures.
These theoretical developments allow for the
efficient removal of proposal elements from Tl, which fail the span check and hence cannot be a sub-
graph of the input, as we detail in Sec. 5.3. Finally, in Sec. 5.4 we demonstrate our graph building,
which recovers the entire graph from the filtered set of possible subgraphs T ∗

B using DFS.

5.1 GRAPH GLUING

In this section we describe the process of gluing a l-hop building block B = (V B , EB , cB) to a
graph G = (V,E) at a vertex c ∈ V . The resulting set of graphs G contains all possible ways of
attaching the non-overlapping parts of B to G at c, as shown in Fig. 2. To this end, we combine the 2
graphs by correctly matching equivalent nodes between them based on their features. In particular,
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(a) GCN vs GAT recon-
structability (on Citeseer)

(b) Impact of low-rankness of the adjacency matrix on reconstructability for
GCNs for synthetic data (left), molecules (middle), and citation networks (right)

Figure 3: Ablation studies on how the data and architecture affect reconstructability

we return the empty set if the center of the building block v′ and the chosen node v from the graph
have different features. The same holds if the l-hop neighborhood of the chosen node does not match
a subgraph of the building block. In all other cases we return the set of all possible graphs resulting
from the gluing G = glue(G,B, v). We describe how to efficiently perform gluing in App. A.3.

5.2 THEORETICAL FOUNDATIONS OF THE SPANCHECK FILTERING

Figure 2: Glueing visualization

Span check for GNN layers We now state our main result
extending Thm. 3.1 to GNN layers. The proof is in App. A.2.
Theorem 5.1. If n < d, X l

i ∈ colspan( ∂L
∂W l ) if and only if

∂L
∂Y l

i

/∈ rowspan( ∂̂L
∂Y l

i

), where ∂̂L
∂Y l

i

denotes the matrix ∂L
∂Y l

with its i-th row removed.

This important generalization of the theory presented in DAGER provides an exact condition for
recovering individual input vectors X l

i under any output gradient ∂L
∂Y l . In particular, when ∂L

∂Y l

is full-rank, the theorem recovers the statement of Thm. 3.1. Otherwise, intuitively, the theorem
states that we lose recoverability for inputs X l

i for which the corresponding row in ∂L
∂Y l is linearly

dependent of the rest of the rows in ∂L
∂Y l . The empricial experiments, illustrated in Fig. 3a showcase

that ∂L
∂Y l is almost certainly full-rank for GATs, enabling the span check to accurately filter the entire

input, making Thm. 3.1 still applicable most of the time. However, in general ∂L
∂Y l can exhibit low-

rankness, which limits the recovery of the entire input. In particular, Fig. 3b shows that for GCNs
for small graphs the full-rankness assumption is violated. To this end, we present the following
corollary (proven in App. A.2) which outlines the implications of Thm. 5.1 specifically for GCNs:
Corollary 5.2. For ∂L

∂Zl of full-rank, n < d, if the (possibly normalized) adjacency matrix at layer
l, A ∈ Rn×n, X l

i ∈ colspan( ∂L
∂W l ) if and only if AT

i /∈ colspan(Âi). Further, if A is full-rank,
then X l

i ∈ colspan( ∂L
∂W l ) for all i = 1, 2, . . . , n.

i.e. when A is full-rank, all feature vectors at layer l are recoverable via the spancheck. If this isn’t
the case, according to the main theorem we still recover most, but not all. In Fig. 3b and App. C.3
we demonstrate that even when A is significantly rank-deficient, the majority of X l can still be
recovered under the GCN setting. Our experiments on real-world datasets show that even in these
cases GRAIN is able to partially recover the graph. Next we explain how we propagate our proposed
building blocks through the GNN layers in order to be able to apply Thm. 5.1 to filter them.

Building block propagation In order to be able to apply Thm. 5.1 to filter a generated l-hop
building block at the l-th layer we need to reconstruct its corresponding input embedding vector X l

j
to the l-th layer. We now state our key result allowing us to recover this input vector.
Theorem 5.3. For GNNs satisfying Asm. A.1, propagating a correctly reconstructed building block
Glv centred at v through the first l GNN layers recovers the original embedding of v at layer l:

fl−1(Glv)[j] = X l
i ,

where i is the index of v in the adjacency matrix of the original input graph G and j is the index of
v in the adjacency matrix of Glv .

Intuitively, this shows that a correctly recovered l-hop neighborhood is sufficient to compute the
embeddings of v at layer l, enabling the span check filter at this layer. The proof is available in
App. A.2, alongside a proof that GCNs and GATs satisfy Asm. A.1.
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5.3 SUBGRAPH FILTERING

Next, we begin our attack with the creation of the L-hop building blocks and reduce the search space
via the span check mechanism. Even though GRAIN is applicable to any type of discrete features,
we describe our methodology for one-hot encoded ones for notational convenience.

Recovering the single node feature vectors in T ∗
0 We now describe how to recover the single

node client feature vectors, that is the 0-hop neighborhoods in T ∗
0 . We note that the direct enumera-

tion approach by DAGER is often infeasible for graph data. To this end, instead of performing span
checks on the entire input vectors, we do partial span checks on partial vectors, iteratively adding di-
mensions in order to control the complexity. Specifically, we first take the dimensions corresponding
to a subset of features and filter those. To further constrain the search space, we then keep adding di-
mensions corresponding other features, followed by another filtering. We note the soundness of this
partial filtering is covered by Thm. 5.1, as performing the spancheck on a subspace is less restrictive
compared to the full span check. Pseudocode and further explanations are provided App. A.4.

Algorithm 2 Filtering using the spancheck

1: function FILTER(Tl, ∂L
∂W l , τ , fl−1)

2: T ∗
l ← {}

3: for G in Tl do
4: v ← center(G)
5: if d(fl−1(G)v, ∂L

∂W l ) < τ then
6: T ∗

l ← T ∗
l ∪ {G}

7: return T ∗
L

Creating 1-hop building blocks T ∗
1 We first define

the extension ext(v) of a node v to be the set of all
1-hop building blocks that can be constructed by at-
taching exactly deg(v) nodes from T ∗

0 to v. We note
that we do not attach nodes w ∈ T ∗

0 to v if the feature
degree of w is 0, that is deg(w) = 0. The set of all
possible 1-hop building blocks T1 =

⋃
v∈T ∗

0
ext(v) is

then defined as the set of all possible 1-hop neighbor-
hoods that can be constructed by extending node from
T ∗
0 . Thm. 5.3 then allows us to exactly recover the first

layer embedding for the center of each neighborhood. We are hence able to filter T1 by applying
Thm. 5.1 on ∂L

∂W 1 to achieve the reduced set of 1-hop building blocks T ∗
1 , as shown in Alg. 2.

Algorithm 3 Creating the degree-L building blocks

1: function GENERATEBBS({Fi}i∈{[1,f ]},
∂L
∂W , τ,f )

2: T ∗
0 ← FILTERNODES({Fi}, ∂L

∂W0
, τ )

3: T1 ← {}
4: for v in T ∗

0 do
5: T1 ← T1 ∪ ext(v, T ∗

0 )

6: T ∗
1 ←FILTER(T1, ∂L

∂W1
, τ, f0)

7: for l← 1, . . . , L− 1 do
8: Tl+1 ← {}
9: for G in T ∗

l do
10: S ← {G}
11: for v in dang(G) do
12: S′ ← {}
13: for G′,GB in S × T ∗

1 do
14: S′ ← S′ ∪ GLUE(G, GB , v, l )
15: S ← S′

16: Tl+1 ← Tl+1 ∪ S

17: T ∗
l+1 ← FILTER(Tl+1,

∂L
∂Wl+1

, τ, fl−1)

18: return T ∗
L

Creating l-hop building blocks T ∗
l

For a building block B ∈ T ∗
l , we de-

fine the dangling nodes dang(B) as the
set of all nodes v ∈ B such that deg(v)
(the ground-truth degree of the node) is
greater than the number of its neighbors.
We extend the l-hop building blocks B ∈
T ∗
l by calculating all possible gluings of

1-hop building blocks B′ ∈ T ∗
1 to all

dangling nodes of B. This is shown in
lines 10–16 of Alg. 3. The resulting set
is then called Tl+1, which is then fil-
tered by applying Thm. 5.1 on ∂L

∂W l+1 to
achieve the reduced set of l+1-hop build-
ing blocks T ∗

l+1. We repeat the process
explained above until we reach the de-
sired L-hop neighborhoods, with the fi-
nal spancheck performed on the first lin-
ear layer of the commonly used readout
classification head.

Additional structure-based filtering
To further restrict the proposal set of building blocks, we perform a consistency check to rule out
blocks that cannot be part of the ground truth graph. Specifically, for every building block B ∈ T ∗

L
and for every dangling node in it v ∈ dang(B) we assert that there exists a building block in T ∗

L
that we can glue it at v to B. If this is not the case, we know that either B is the input graph (which
we check by computing the gradients produced by B), or it cannot be part of the ground truth graph
and remove it from T ∗

L . We denote the resulting set T ∗
B .
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5.4 GRAPH BUILDING Algorithm 4 DFS reconstruction

1: function DODFS(T ∗
B , ∂L

∂W , Gcurr, C)
2: if |dang(Gcurr)| == 0 then
3: return ∆Gcurr ,Gcurr

4:
5: GTOP, dTOP ← ∅,∞
6: Bord ← Order(T ∗

B)
7: v ← Sample({v ∈ dang(Gcurr)})
8: Gnew ← Branch(Bord, Gcurr, v)
9: for G in Gnew do

10: d′,G′ ←DODFS(T ∗
B , ∂L

∂W ,G, C)
11: if d′ == 0 then
12: return 0,G′
13: else if dTOP > d′ then
14: dTOP,GTOP ← d′,G′
15: return dTOP,GTOP

Finally, we describe how we leverage depth-first
search to combine the filtered set of building blocks
T ∗
B into our final graph reconstruction.

Specifically, each node of our DFS exploration tree
represents a partially reconstructed client graph Gcurr,
and at each branch we choose an arbitrary dangling
node v ∈ Gcurr (Line 7 in Alg. 4) and generate all pos-
sible graphs G = glue(Gcurr,B, v) that can be created
by gluing a building block B ∈ T ∗

B at v (Line 8 in
Alg. 4). This is done by iterating over all the building
blocks in T ∗

B , checking for each one if it is possible
to glue it to Gcurr and if so, saving the extended graph
as a new branch. The pseudocode for the branching is
provided in App. A.6. During branching, we also take
care of recovering possible cycles within the recon-
structions by overlapping nodes in Gcurr that might coincide. This is also elaborated on in App. A.6.
If Gcurr has no more dangling nodes, we calculate the distance between its and the client gradients:

∆G = min
c∈C
∥∂L(G,c)

∂W − ∂L
∂W ∥F , (2)

where C is the set of all possible labels and ∥ · ∥F is the standard Frobenius norm. If ∆Gcurr = 0
the algorithm terminates early with correct graph (Line 12 in Alg. 4). Otherwise, we return the best
possible reconstruction in gradient distance (Lines 9-14 in Alg. 4).

Building block ordering A key factor in the performance of the algorithm is the order in which
we visit nodes of the exploration tree. We use heuristic ordering based on a score S(B) we define
for every building block B ∈ T ∗

B . We first define the score Sv(B) to be equal to the lowest span
check distance d(G, ∂L

∂WL ) of a building block B that can be glued to G at v. The score for the
entire block is then calculated as the sum of the vertex scores S(B) =

∑
v Sv(B). Intuitively, this

score represents how compatible any building block from T ∗
B is with the other building blocks that

passed the spanchecks. Again, intuitively, the building blocks which are part of the input will be
more compatible with the other building blocks from the input than potential false positives.

Uniqueness heuristic In some settings, such as social or citation networks we notice that the
feature vectors of different nodes are almost surely unique. In these settings, we leverage a heuristic
which during reconstruction always overlaps any two nodes with the same features. Further, in these
settings we never try to glue the same building block twice, as L-hop neighborhoods are analogically
unique. The heuristic drastically reduces the search space and the time for convergence of GRAIN.

6 EVALUATION

In this section we evaluate GRAIN’s performance against prior gradient leakage methods.

We begin by detailing our experimental setup and the baseline attacks considered, along with intro-
ducing a novel set of metrics, specifically designed to jointly assess the differences in node features
and graph topology between the true client graphs and their reconstructions. The experimental
results demonstrate GRAIN’s substantial improvements over existing attacks, achieving superior re-
construction accuracy and versatility. Namely, we demonstrate that GRAIN remains effective across
a wide range of architectural changes, GNN model types, data modalities, and task scenarios.

6.1 EVALUATION METRIC

We found it necessary to design our own set of metrics, as prior graph-related similarity measure-
ments were not suitable for evaluating gradient inversion attacks. A discussion on the desired quali-
ties of the metrics, and the reasoning behind their design can be found in App. B.

To this end, we introduce the Graph Similarity Metrics (GSM) - a set of metrics designed to evaluate
the similarity of a pair of graphs G and Ĝ under the name GSM-N, the details of which we showcase
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in App. B. A key highlight of GSM is that it assesses structures of varying globality, while ensuring
the metric is invariant to graph isomorphism through rigorous node matching.

We utilise 3 separate instances of the metric - namely for N = 0, 1, 2, where larger-hop neighbor-
hoods are used to capture more structural information. It is important to note that all measurements
are scaled by a factor of min(|V|,|V̂|)

max(|V|,|V̂|) to penalize reconstructions of incorrect size. We further report
the percentage of exactly reconstructed graphs, denoted by FULL in the result tables.

To measure the perceived reconstruction quality and compare it to our GSM set of metrics, as well
as to confirm that our metrics are fair with respect to the baseline attacks, we further conducted
a human evaluation study. In Tab. 1, we show that our metrics are highly correlated with human
perception. Further details about how this study was conducted are shown in App. C.

6.2 EXPERIMENTAL SETUP
Table 1: Comparison of GSM and human evaluation.

GSM-0 GSM-1 GSM-2 Human

GRAIN 72.6 67.8 66.9 70.6
DLG 24.2 10.5 12.0 6.5

Next, we describe our experimental setup,
including the architecture of the attacked
models, the client datasets used, and the
hardware required by the attacker.

Architecture details Unless otherwise specified, all of our attacks are applied on 2-layer GNNs
(L = 2) with a hidden embedding dimension d′ = 300 and a ReLU activation. For GAT experiments
2-headed attention was used (adapting GRAIN to GATs with more heads is analogous). All networks
also feature a 2-layer feedforward network for performing the readout — a common depth for GNNs
Kipf & Welling (2016). Given the depth restrictions, we recover building blocks up to layer 2, with
the first readout layer being used for the relevant filtering of the largest blocks. In Tab. 10, we show
that our attack is robust with respect to changes in these architectural parameters.

Evaluation datasets We evaluate on three different types of graph data – chemical data, citation
and social networks. For the chemical experiments, we evaluate on molecule property prediction
data, where molecules are represented as graphs and each node is a given atom. We follow the
common convention to omit hydrogen atoms in the graphs. Each node is embedded by concatenating
the one-hot encodings of 8 features (Xu et al., 2018; Wu et al., 2020), namely the atom type, formal
charge, number of bonds, chirality, number of bonded hydrogen atoms, atomic mass, aromaticity
and hybridization (Rong et al., 2020). We evaluate GRAIN on 3 well-known chemical datasets –
Tox21, Clintox, and BBBP, introduced by the MoleculeNet benchmark (Wu et al., 2018).

For the citation networks experiments, we apply GRAIN on the CiteSeer(Giles et al., 1998) dataset,
which features a single graph with 3312 nodes representing scientific publications classified into
one of six classes. The edges between them represent citations, and the features of any node is a
0/1-valued word vector of length 3703 indicating the absence/presence of a keyword in the abstract.

Finally, for the social network experiments we use the Pokec(Rossi & Ahmed, 2015) dataset, con-
taining 1.6 million nodes (users), where connections represent friendship between users. We chose
discrete node features where every feature with frequency less that 1% was categorized as "Other",
as these entries usually contain irrelevant outliers. This resulted in 36 total discrete features.

To simulate a federated learning environment, in the latter two settings we sample subgraphs of a
given size from the datasets for each of the FL clients and use cluster classification objective, where
each subgraph is classified as the most common class among the comprising nodes. We chose the
sampling distribution: 20 graphs with 1-10 nodes, 40 graphs with 10-20 nodes, 30 graphs with 20-30
nodes, and 10 graphs with 30-40 nodes, closely mirroring the distribution of the Tox21 dataset.

Computational requirements We provide an efficient GPU imlementation, where each experi-
ment has been run on a NVIDIA L4 Tensor Core GPU with less than 40GB of CPU memory.

6.3 BASELINE ATTACKS

We adapt the DLG attack (Zhu et al., 2019), a standard continuous attack, and TabLeak, an attack
purposefully designed for recovering discrete tabular data. As described in (Vero et al., 2023), all
input features are first passed through an initial sigmoid layer to ensure they are in the interval (0,
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Table 2: Results (in %) of experiments on the 3 dataset types – Tox21 (chemical), CiteSeer (citation),
Pokec (social). Here "+A" refers to the baseline attack with the input adjacency matrix given.

GCN GAT

GSM-0 GSM-1 GSM-2 FULL Time [h] GSM-0 GSM-1 GSM-2 FULL Time [h]

Tox21

GRAIN 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7 14.3 92.9+3.8

−5.8 90.7+5.0
−7.1 89.9+5.8

−7.2 75.0± 1.8 10.8

DLG 31.8+4.5
−4.3 20.3+5.5

−4.8 22.8+6.6
−5.6 1.0± 0.2 3.3 96.0± 0.32 9.3+4.4

−4.9 6.5+3.9
−4.1 2.0± 0.3 4.2

DLG +A 54.7+3.9
−4.2 60.1+4.6

−5.2 76.7+3.6
−4.8 1.0± 0.2 3.1 96.5± 0.34 69.7+4.1

−4.2 81.3+3.4
−3.6 2.0± 0.3 4.5

TabLeak 25.1+5.1
−4.3 12.4+5.5

−4.3 10.8+5.6
−3.9 1.0± 0.2 13.1 73.7+2.6

−2.0 7.2+5.2
−4.9 10.0± 4.8 1.0± 0.2 6.0

TabLeak +A 55.6+3.9
−3.9 57.7+4.1

−4.6 73.8+2.8
−3.5 1.0± 0.2 12.3 75.1+2.5

−1.9 74.9+2.1
−1.9 84.2+1.5

−1.3 1.0± 0.2 6.0

CiteSeer

GRAIN 62.5+7.7
−8.2 31.0+8.0

−7.8 31.6+8.1
−8.1 20.0± 0.8 2.5 79.3+4.7

−6.3 69.1+6.1
−6.4 69.6+6.2

−6.0 61.0± 1.6 2.1

DLG 65.7+1.6
−1.7 0.0+0.0

−0.0 0.1+0.1
−0.1 0.0± 0.0 25.6 65.7+1.6

−1.6 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 26.3

DLG +A 65.7+1.6
−1.6 0.0+0.0

−0.0 0.0+0.0
−0.0 0.0± 0.0 26.8 65.7+1.7

−1.6 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 28.2

TabLeak 65.2+2.5
−2.4 0.0+0.0

−0.0 0.3+0.4
−0.3 0.0± 0.0 172.7 65.0+2.4

−2.3 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 177.4

TabLeak +A 65.3+2.4
−2.2 0.0+0.0

−0.0 0.0+0.0
−0.0 0.0± 0.0 172.9 65.1+2.4

−2.3 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 171.5

Pokec

GRAIN 58.3+5.9
−5.9 30.7+7.9

−7.8 35.8+8.3
−7.9 15.0± 0.8 0.3 97.2+1.6

−1.9 93.5+3.4
−4.2 96.3+1.9

−2.3 79.0± 1.8 0.5

DLG 38.1+1.2
−1.2 0.0+0.0

−0.0 7.9+1.8
−1.8 0.0± 0.0 0.6 35.8+1.2

−1.1 0.0+0.0
−0.0 0.1+0.1

−0.1 0.0± 0.0 1.2

DLG +A 37.4+1.2
−1.2 0.2+0.3

−0.2 26.3+2.1
−2.2 0.0± 0.0 0.5 37.7+1.1

−1.1 0.1+0.1
−0.1 16.9+1.9

−1.9 0.0± 0.0 1.0

TabLeak 37.1+1.4
−1.3 0.1+0.1

−0.1 2.9+1.5
−1.3 0.0± 0.0 6.6 37.0+1.1

−1.1 0.0+0.0
−0.0 1.1+0.9

−0.7 0.0± 0.0 12.3

TabLeak +A 37.9+1.3
−1.3 0.5+0.5

−0.4 20.1+2.8
−2.9 0.0± 0.0 5.7 37.7+1.4

−1.4 0.3+0.3
−0.2 23.4+1.8

−1.8 0.0± 0.0 11.4

Figure 4: Examples molecule reconstructions. Multivalent interactions are not recovered, as they
are not considered by the GNN.

1). Similarly, we ensure the adjacency matrix A is symmetric by optimizing over the upper triangle,
and apply a softmax operation over the dummy labels to convert them to probabilities. Finally,
we generate a prediction graph by connecting all nodes vi, vj corresponding to σ(A)ij ≥ 0.5.
Additionally, we test both baselines when they are given the correct adjacency matrix A. In all
cases we provide the attack with the correct number of nodes to ensure that X and A have the
correct shape. We demonstrate that, even when the baselines have a significant amount of prior
knowledge, GRAIN significantly outperforms them (see Fig. 4 and Tab. 2).

6.4 EXPERIMENTAL RESULTS

Next, we evaluate the baselines and GRAIN and show that GRAIN outperforms the existing base-
lines across all defined metrics. Further, GRAIN is applicable across a variety of datasets and
settings, including being depth- and width-agnostic, and far more scalable and robust. In all mea-
surements we quote the mean value of the metric, as well as the 95% confidence interval around it,
measured by generating 10,000 random sample sets via bootstrapping.

Main experiments We first apply the algorithms DLG, TabLeak and GRAIN to the 3 types of
dataset on both the GCN and GAT architectures. We observe in Tab. 2 that GRAIN achieves a much
higher partial reconstruction rate (up to 96%) compared to any baseline. This remains true even when
the baseline is informed about the input adjacency matrix A. Without A, baseline performance
notably drops with neighborhood size, showing the baselines’ inability to recover the structure.
Beyond partial reconstruction, GRAIN is further able to recover up to 80% of the dataset exactly,
while the baselines achieve this only in the case of very small graphs. Further, GRAIN closely
matches TabLeak’s runtime and is much faster than all baselines with the node uniqueness heuristic.
For visual inspection, we also include a comparison of a fully reconstructed molecule in Fig. 4, with
further examples in App. C.

As shown, GRAIN can also be effectively applied to both architectures, consistently achieving a
higher score on the GAT architecture. This increase happens because as we showed in Fig. 3a, ∂L

∂Y l

is almost certainly full-rank, where Cor. 5.2 enables the direct recovery of all inputs.

For the Tox21 baseline experiments we used a LBFGS optimizer for more stable and higher quality
results. However, for CiteSeer and Pokec, where the client input space is much larger, we instead ran
SGD due to time constraints. In App. C.3, we show results with LBFGS on 10 times fewer samples.
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Table 3: Comparison of GRAIN and baselines on chemical datasets for GCNs on graphs of size n.
n ≤ 15 16 ≤ n ≤ 25 26 ≤ n

GSM-0 GSM-2 FULL GSM-0 GSM-2 FULL GSM-0 GSM-2 FULL

GRAIN 93.0+3.4
−5.4 91.6+3.8

−6.3 81.9± 1.7 81.7+3.9
−4.8 74.8+5.8

−6.3 43.6± 1.1 50.1+6.8
−7.1 39.2+8.5

−7.7 5.1± 0.6

DLG 27.4+4.2
−3.8 13.3+5.7

−4.6 1.0± 0.2 25.5+3.9
−3.5 16.7+5.2

−4.4 0.9± 0.2 25.4+4.8
−4.3 14.8+6.4

−5.3 0.0± 0.0

DLG +A 52.1+3.1
−3.3 71.3+3.1

−3.9 1.0± 0.2 53.7+3.2
−3.5 75.3+3.0

−3.7 0.9± 0.2 53.0+4.3
−4.8 72.6+4.1

−5.8 0.0± 0.0

TabLeak 30.3+5.0
−4.4 15.4+5.8

−4.8 1.9± 0.3 15.7+3.0
−2.2 2.1+2.2

−1.1 0.0± 0.0 13.0+3.3
−2.3 2.8+4.1

−1.9 0.0± 0.0

TabLeak +A 53.9+4.0
−4.2 72.9+3.4

−3.9 1.9± 0.3 57.1+3.1
−3.5 71.4+2.9

−3.6 0.0± 0.0 56.1+2.9
−3.3 74.4+2.3

−3.1 0.0± 0.0

Table 4: Reconstruction results in % for GRAIN
on Citeseer and GATs for different ablations.

GSM-0 GSM-1 GSM-2 FULL

Default 79.3+4.7
−6.3 69.1+6.1

−6.4 69.6+6.2
−6.0 61.0± 1.6

No degree 59.7+6.8
−7.2 42.7+6.3

−6.6 43.2+6.4
−6.6 32.0± 1.1

No heuristic 64.6+3.5
−4.2 52.1+4.7

−5.3 52.4+4.6
−5.2 44.0± 1.3

Table 5: Reconstruction results in % for
GRAIN on Tox21 for GCNs in various settings

GSM-0 GSM-1 GSM-2 FULL

Default 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7

σ = GELU 82.0+5.3
−6.7 79.1+6.0

−7.4 78.4+6.2
−8.0 61.0± 1.6

Pre-trained 73.5+6.4
−7.4 70.0+7.3

−7.7 68.6+7.6
−8.3 49.0± 1.4

Node Class. 88.0+3.8
−5.4 85.5+4.6

−6.5 84.9+5.0
−6.6 66.0± 1.6

Effect of graph size on reconstruction In Tab. 3 and Tab. 12 we show how GRAIN performs
on graphs of different sizes under the same setting as our main experiments (for GCNs and GATs
respectively). In the chemical setting (Tab. 3) molecules are divided into groups of n ≤ 15, 16 ≤
n ≤ 25 or n ≥ 26 nodes, aggregated across the 3 chemical datasets. We notice that GRAIN
significantly outperforms the baselines for smaller graphs, but the performance decreases on the
largest groups in both the chemical and the social networks setting due to timeouts (15 minutes)
during graph building. That said, the social network setting (Tab. 12), allows us to apply the node
uniqueness heuristic, allowing us to scale to much larger graphs of size up to n = 60 nodes. Further,
our work still manages to reconstruct a fraction of the large graphs exactly, which is impossible for
the baseline models, even in the more difficult chemical setting (discussed in App. D).

Ablation studies We analyze the impact of our design choices and heuristics on GRAIN in Tab. 4.
Removing the node in-degree from the feature set and enumerating all possibilities during filtering
still enabled exact recovery of 30% of graphs but caused substantial degradation. A similar, though
less severe, drop occurs without the node uniqueness heuristic (Sec. 5.4), highlighting the key role
of data-specific heuristics in strengthening the attack. We also show that GRAIN’s stability is unaf-
fected by architecture parameters and thresholds. As demonstrated in App. C.3, network width and
depth have minimal impact, provided the embedding dimension exceeds the number of graph nodes
(d > n). Additionally, the τ threshold remains robust, with values between 10−4 and 10−2 yielding
nearly identical filtering performance.

Additional experiments We provide additional experiments showcasing GRAIN’s performance
in different miscellaneous settings in Tab. 5. First, we replace the ReLU activation function in
the GCN by a GELU and report that GRAIN achieves similar results, showing our flexibility with
respect to different activations. Furthermore, while prior work has shown that gradient inversion
becomes significantly more difficult on pre-trained models (Geiping et al., 2020), GRAIN still man-
ages to reconstruct around 50% of molecules exactly. Finally, we achieve consistently strong results
in the node classification task, assuming ground-truth labels are known, which can be easily recov-
ered using methods like Zhao et al. (2020).

7 CONCLUSION

We introduced GRAIN, the first gradient inversion attack for Graph Neural Networks capable of
accurately recovering graphs from shared gradients. By leveraging the rank-deficiency of the GNN
layers, we developed an efficient framework for extracting and filtering subgraphs of the input graph,
which are iteratively combined to reconstruct the original graph.

Our results showed GRAIN achieves an exact reconstruction rate of up to 80% for graph classifi-
cation. We introduced new metrics to evaluate partial graph reconstructions and demonstrated that
GRAIN significantly outperforms prior work. Moreover, GRAIN maintains high reconstruction
quality across different architectures, parameters, and settings, and can scale to much larger graphs.

In summary, our paper is the first to demonstrate that GNN training in a federated learning setting
poses data privacy risks. We believe that this is a promising initial step towards identifying these
vulnerabilities and developing effective defense mechanisms.
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A ADDITIONAL TECHNICAL DETAILS

A.1 TABLE OF NOTATIONS

For convenience, we add a table of notations containing brief definitons for all symbols used in our
work.

Table 6: Table of notations used in the technical description of GRAIN.

Symbol Definition Symbol Definition

G = (V,E) Graph with nodes V and edges E n # of nodes in the graph
Al Possibly weighted adjacency ma-

trix at layer l
dist(vs, ve) # edges in shortest path connecting

nodes vs, ve ∈ V

N k
G (v) k-hop neighborhood in graph G

with center node v
L Loss

degG(v) Degree of node v in graph G deg(v) Degree of node v as given by its
feature

Xi Input to the ith GNN layer Xi
v i-th layer input feature of node v

W i Weights of the i-th layer d′ Hidden dimension size
L Number of GNN layers m Number of features
fi Function mapping the input graph

to the output of the i-th layer
τ Span check distance threshold

F F1 × · · · × Fm - set of all possible
feature combinations

Fi Set of values for the i-th feature

Tl Proposal set of l-hop building
blocks

T ∗
l Filtered set of l-hop building

blocks
T ∗
B Final set of filtered building blocks σ Activation function

∆G Distance between the gradients of
G and observed gradients

dbest Gradient distance of the best re-
constructed graph

GSM-N(G, Ĝ) Similarity between N-hop neigh-
borhoods of G and Ĝ

Gbest The best reconstructed graph.

A.2 DEFERRED PROOFS

A.2.1 SPAN CHECK PROOF

Here we show the proof of Thm. 5.1, which we restate here for convenience:

Theorem 5.1. If n < d, X l
i ∈ colspan( ∂L

∂W l ) if and only if ∂L
∂Y l

i

/∈ rowspan( ∂̂L
∂Y l

i

), where ∂̂L
∂Y l

i

denotes the matrix ∂L
∂Y l with its i-th row removed.

Proof. For notational clarity, we omit the layer index l in our proof. We separate the proof in 3
steps:

• Step 1: XT
i ∈ colspan( ∂L

∂W ) if and only if there is a vector αi, such that ∂L
∂Y αi = ei, where

ei is the i-th standard basis vector.

• Step 2: There is a vector αi, such that ∂L
∂Y αi = ei if and only if null( ∂̂L

∂Yi
) ̸⊆ null( ∂L

∂Yi
).

• Step 3: null( ∂̂L
∂Yi

) ̸⊆ null( ∂L
∂Yi

) is equivalent to ∂L
∂Yi

/∈ rowspan( ∂̂L
∂Yi

).

Step 1 (XT
i ∈ colspan( ∂L

∂W ) ⇐⇒ ∃αi.
∂L
∂Y αi = ei):

(⇒) First, we begin by expressing ∂L
∂W using the following common result from Petrov et al.

(2024):

∂L
∂W = XT ∂L

∂Y ,
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implying that XT
i ∈ colspan(XT ∂L

∂Y ) = rowspan( ∂L
∂Y

T
X). This can be rewritten as

∃αi.α
T
i

∂L
∂Y

T
X = XT

i . Assuming X ∈ Rn×d is full-rank, then there exists a right-inverse
X−R, as rank(X) = n < d.

αT
i

∂L
∂Y

T
XX−R = XT

i X
−R ⇒ αT

i
∂L
∂Y

T
= eTi ⇐⇒ ∂L

∂Y αi = ei

It is notable that X not being full-rank still allows for all nodes with feature vectors in X
to pass the span check, however it is possible that some hallucinated inputs might also pass
the check.

(⇐)
∂L
∂Y αi = ei ⇐⇒

αT
i

∂L
∂Y

T
= eTi ⇐⇒

αT
i

∂L
∂Y

T
X = XT

i

Thus XT
i ∈ rowspan( ∂L

∂Y

T
X) = colspan(XT ∂L

∂Y ) = colspan( ∂L
∂W ). Therefore XT

i ∈
colspan( ∂L

∂W ).

Step 2 (∃αi.
∂L
∂Y αi = ei ⇐⇒ null( ∂̂L

∂Yi
) ̸⊆ null( ∂L

∂Yi
)): First, for both directions of the proof, we

can separate ∂L
∂Y αi = ei into 2 different requirements:

∂̂L
∂Yi

αi = 0 (3)

∂L
∂Yi

αi = 1 (4)

(⇒) Assuming the existence of αi with ∂L
∂Yi

αi = ei, we know that Eq. 3 and Eq. 4 hold. It is

evident with αi ∈ null( ∂̂L
∂Yi

) but αi /∈ null( ∂L
∂Yi

) that null( ∂̂L
∂Yi

) ̸⊆ null( ∂L
∂Yi

).

(⇐) First of all, we note that ∂L
∂Yi
∈ R1×d has rank 1, as ∂L

∂Yi
contains a non-zero entry under

normal training conditions. Therefore, ∂L
∂Yi

has nullity( ∂L
∂Yi

) = n − 1 due to the rank-

nullity theorem. null( ∂̂L
∂Yi

) ̸⊆ null( ∂L
∂Yi

) implies that there exists an α′
i ∈ null( ∂̂L

∂Yi
), such

that α′
i /∈ null( ∂L

∂Yi
) (since nullity( ∂L

∂Yi
) = n − 1 < n this set is non-empty). For that αi,

the following hold:
∂̂L
∂Yi

α′
i = 0

∂L
∂Yi

α′
i = c

Therefore, if we take αi =
1
cα

′
i, αi would satisfy both (2) and (3), giving us a valid solution.

Step 3: (null( ∂̂L
∂Yi

) ̸⊆ null( ∂L
∂Yi

) ⇐⇒ ∂L
∂Yi

/∈ rowspan( ∂̂L
∂Yi

)) First of all, the statement is

equivalent to negating both sides, or null( ∂̂L
∂Yi

) ⊆ null( ∂L
∂Yi

) ⇐⇒ ∂L
∂Yi
∈ rowspan( ∂̂L

∂Yi
), which

can be shown by the following steps:

null( ∂̂L
∂Yi

) ⊆ null( ∂L
∂Yi

) ⇐⇒ null( ∂L
∂Yi

)C ⊆ null( ∂̂L
∂Yi

)C

⇐⇒ rowspan( ∂L
∂Yi

) ⊆ rowspan( ∂̂L
∂Yi

)

⇐⇒ ∂L
∂Yi
∈ rowspan( ∂̂L

∂Yi
)
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Here we used that the complenetary subspace of the null space of matrix is the rowspan of the matrix
null(M)C = rowspan(M). The last step follows from that the fact that ∂L

∂Yi
is a single common

vector, and therefore all vectors in colspan( ∂L
∂Yi

) are of the form λ ∂L
∂Yi

. This concludes our proof.

We extend this by presenting the proof for Cor. 5.2:

Corollary 5.2. For ∂L
∂Zl of full-rank, n < d, if the (possibly normalized) adjacency matrix at layer

l, A ∈ Rn×n, X l
i ∈ colspan( ∂L

∂W l ) if and only if AT
i /∈ colspan(Âi). Further, if A is full-rank,

then X l
i ∈ colspan( ∂L

∂W l ) for all i = 1, 2, . . . , n.

Proof. For notational clarity, we omit the layer index l in our proof.

From Z = AY , by applying the following common result from Petrov et al. (2024) (replacing W
with Y , and Y with Z), we obtain:

∂L
∂Y = AT ∂L

∂Z

Therefore, ∂L
∂Yi

= AT
i

∂L
∂Z . We will now prove that if ∂L

∂Z is full-rank, then AT
i /∈ colspan(Âi) ⇐⇒

∂L
∂Yi

/∈ rowspan( ∂̂L
∂Yi

). This is equivalent to proving the converse, or AT
i ∈ colspan(Âi) ⇐⇒

∂L
∂Yi
∈ rowspan( ∂̂L

∂Yi
)

(⇒) AT
i ∈ colspan(Âi) implies that there exist coefficients α1, α2, · · · , αn, such that:

AT
i =

∑
j={1,2,...,N}\{i}

αjA
T
j ,

Multiplying both sides by ∂L
∂Z gives:

AT
i

∂L
∂Z =

∑
j={1,2,...,N}\{i}

αjA
T
j

∂L
∂Z ⇐⇒

∂L
∂Yi

=
∑

j={1,2,...,N}\{i}

αj
∂L
∂Yj

⇐⇒ ∂L
∂Yi
∈ rowspan( ∂̂L

∂Yi
)

(⇐) We can similarly rewrite ∂L
∂Yi
∈ rowspan( ∂̂L

∂Yi
) as:

∂L
∂Yi

=
∑

j={1,2,...,N}\{i}

αj
∂L
∂Yj

⇐⇒ AT
i

∂L
∂Z =

∑
j={1,2,...,N}\{i}

αjA
T
j

∂L
∂Z

As ∂L
∂Z is full-rank, then there exists a right-inverse ∂L

∂Z

−R
. Multiplying on both sides gives:

AT
i

∂L
∂Z

∂L
∂Z

−R
=

∑
j={1,2,...,N}\{i}

αjA
T
j

∂L
∂Z

∂L
∂Z

−R ⇐⇒

AT
i =

∑
j={1,2,...,N}\{i}

αjA
T
j ⇐⇒ AT

i ∈ colspan(Âi)

From here, we can now apply Thm. 5.1, which gives us that Xi ∈ colspan( ∂L
∂W ) if and only if

AT
i /∈ colspan(Âi). If A is full-rank, then AT

i /∈ colspan(Âi) for all i = 1, 2, · · · , n, implying
that Xi ∈ colspan( ∂L

∂W ) for all i. This concludes the proof.

A.2.2 EMBEDDING RECOVERY PROOF

In this section, first we formally state Asm. A.1 on which Thm. 5.3 is based. Next, using it we
provide a proof for Thm. 5.3. Finally, we prove that Asm. A.1 is satisfied for common GNN archi-
tectures, such as GCNs and GATs.

For simplicity, in the rest of the section we will denote the node of G corresponding to the the ith

row of the embedding matrices X l
i with vi.
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Assumption A.1. The output corresponding to the node vi of the l-th layer of the GNN, X l+1
i , is

independent on X l
j for ∀vj /∈ N 1

G(vi).

The assumption intuitively states that for most popular GNNs the embeddings of a node only de-
pends on the embeddings of its neighbourhood on the previous layer. Using this, we now present
the proof of Thm. 5.3, restating it for convinience:
Theorem 5.3. For GNNs satisfying Asm. A.1, propagating a correctly reconstructed building block
Glv centred at v through the first l GNN layers recovers the original embedding of v at layer l:

fl−1(Glv)[j] = X l
i ,

where i is the index of v in the adjacency matrix of the original input graph G and j is the index of
v in the adjacency matrix of Glv .

Proof. First we will show that the embedding X l
i is independent of the embeddings of any nodes that

do not belong in the l-hop neighborhood of v. For l = 1 this follows immediately from Asm. A.1.
For l = 2, we know that X2

i is only dependent on the embeddings X1
k of the neighboring nodes

vk ∈ N 1
G(v) by applying Asm. A.1. However, the embeddings X1

k themselves only depends on
the embeddings of the nodes in the 1-hop neighborhood of vk. Therefore, the only nodes that can
influence X2

i are v, its neighbors, and the neighbors of its neighbors, which exactly comprise the
2-hop neighborhood of v. Similarly, we can show that X l

i is independent of the embeddings of any
nodes that are not part of the l-hop neighborhood of v by induction.

We now take the full graph G and remove all edges starting or ending at nodes not in Glv , and set
their feature values to 0, obtaining Ĝ. As shown above, this implies the output of fl−1 for G at v
is the same as the one for Ĝ. Note that applying the network on Ĝ is the same as applying it to Glv
except for few the additional embeddings produced for the disconnected nodes. By reindexing we
arrive at our formula.

Finally, we prove our assumption Asm. A.1 holds for all GNN architectures considered in this paper:
Theorem A.2. Asm. A.1 holds for GCNs

Proof. For GCN models, the formula for computing the ith embedding at layer l + 1, X l+1
i , can be

expressed as:

X l+1
i = σ

 ∑
vj∈N 1

G(vi)

Al
i,jW

lX l
j


where Al

i,j is the normalized strength of the connection between vi and vj at layer l given by:

Al
i,j =

1√
deg(vi)deg(vj)

.

Assuming the degrees of the nodes vj ∈ N 1
G(vi) are known, X l+1

i is independent on X l
j for vj /∈

N 1
G(vi). We note that for a correctly recovered l-hop neighbourhood around v, the degrees of all

nodes in the (l− 1)-hop neighbourhood around v can be recovered exactly, while for the remaining
nodes one can provide a sound lower bound for their degree. Assuming a sound guess on the upper
bound on the largest degree in the graph, this allows to recover the degrees of the remaining nodes
via enumeration starting from these computed lower bounds. Further, if the input features X0

i of
vi contain information about the node degree of vi, this information can be easily incorporated to
reduce the computational overhead of the enumeration.

Theorem A.3. Asm. A.1 holds for GATs

Proof. For GAT models, the formula for computing the ith embedding at layer l + 1, X l+1
i , can

similarly be expressed as:

X l+1
i = σ

 ∑
vj∈N 1

G(vi)

Al
i,jW

lX l
j
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where Al
i,j is the attention coefficient between vi and vj at layer l given by:

Al
i,j =

exp
(
LeakyReLU

(
(al)T [WlX l

i ∥WlX l
j ]
))∑

vk∈N 1
G(vi)

exp
(
LeakyReLU

(
(al)T [WlX l

i ∥WlX l
k]
))

and al is a vector of attention parameters.

As X l+1
i only depends on W l,Al

i,j and X l
j to be calculated for vj ∈ N 1

G(vi), and Al
i,j itself also

only depends on X l
j and W l, we show that X l+1

i is independent on X l
j for vj /∈ N 1

G(vi).

A.3 GLUING ALGORITHM

In order to establish the gluing operation, we need to first define how we determine which nodes in
G and GB can potentially match, so that the building block is glued correctly. This can be achieved
recursively, by ensuring that:

• For every pair of matched nodes, their features must be exactly equal.

• The center of GB - cB matches the center of attaching c.

• For a node v ∈ V of G and its match vB ∈ V B , every one of its neighbors v′ ((v, v′) ∈ E)
has to match a neighbor v′B of vB ((vB , v′B) ∈ EB).

This recursive definition can be satisfied by exploring the possible matchings from the center c
outwards. In particular, we explore the i-hop neighborhoods one by one for i = 1, 2, · · · , l. We try
all possible matchings vB for the given node v, such that their features match, and the matches of its
neighbors (in particular those which have already been traversed) are also connected to vB (Line 7).

After all possible matchings are generated, it is easy to substitute any nodes in the original graph
with those in the building block, in order to obtain the set of all possible gluings (Lines 13–16)

Algorithm 5 Gluing a graph with a building block

1: function GLUE(G, GB , c, l )
2: M̂ ← {{(c, cB)}}
3: for i = 1, 2, · · · , l do ▷ Generate all correct matchings
4: for v ∈ {v|dist(c, v) = i} do
5: M̂new ← {}
6: forM∈ M̂ do
7: M̂new ← M̂new × {(v, vB)|Xv = XvB ∧ ∩(v,v′)∈E,(v′,v′

B)∈M(vB , v
′
B) ∈ EB}

8: M̂ ← M̂new

9: G← {}
10: forM∈ M̂ do ▷ Transform matchings into valid graphs
11: V̂ ← V \ N l

G(c) ∪ VB

12: Ê ← EB

13: for (v, v′) ∈ E do
14: v = vB if ∃vB .(v, vB) ∈M else v
15: v′ = v′B if ∃v′B .(v′, v′B) ∈M else v′

16: Ê ← Ê ∪ {(v, v′)}
17: G← G ∪ {(V̂ , Ê)}
18: return G
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A.4 FEATURE-BY-FEATURE FILTERING ALGORITHM

Algorithm 6 Filtering nodes feature-by-feature

1: function FILTERNODES({Fi}i∈{1,··· ,m} , ∂L
∂W0

, τ )
2: {T ∗

0,i}i∈{1,··· ,m}, dsum ← {∅}i∈{1,··· ,m}, |F1|
3: for k ∈ {1, · · · ,m} do
4: T ∗

0,k ← T ∗
0,k−1 ×Fk

5: dsum ← dsum + |Fk|
6: if dsum > rank( ∂L

∂W0
) then ▷ This is a requirement for the filtering to work

7: T ∗
0,k ← FILTER(T ∗

0,k,
∂L
∂W0

[: dsum], τ, λv.X0
v )

8: return T ∗
0,m

Here we describe how we build and filter 0-hop neighborhoods, i.e. the single node client feature
vectors. While DAGER directly enumerates and filters all possible text input feature vectors, for
many graph data applications this procedure is impractical. To this end, we instead recover the node
features one-by-one, as described next.

For the first feature, we generate all partial input vectors associated with the values in F1 and then
filter them to create the set of consistent partial input vectors T ∗

0,1. To do so, we apply our span-
check on the truncated input layer gradients ∂L

∂W 0 [: |F1|] corresponding to the input entries of the
first feature. This is possible since, by Thm. 5.1, the truncated i-th row of X , X [i, : |F1|], is
in colspan( ∂L

∂W 0 [: |F1|]). For each subsequent feature, we similarly filter the set of vectors cor-
responding to combinations between a partially recovered vector in T ∗

0,i−1 and a value in Fi by
applying Thm. 5.1 to obtain the set of consistent partial input vectors up to feature i T ∗

0,i. Finally,
we obtain T ∗

0 = T ∗
0,m. A pseudocode for this approach is provided in Alg. 6.

A.5 STRUCTURE-BASED FILTERING ALGORITHM

Algorithm 7 Structure filtering algorithm

1: function STRUCTUREFILTER(T ∗
L , ∂L

∂W )
2: for G ∈ T ∗

L do
3: if ∆G == 0 then
4: return G
5: CanGlue← True
6: for v ∈ V do
7: if !∃GB ∈ T ∗

L .glue(G,GB , v) then
8: CanGlue← False
9: break

10: if CanGlue then
11: T ∗

B ← T ∗
B ∪ {G}

12: return T ∗
B

A.6 DEPTH-FIRST SEARCH IMPLEMENTATION

We present the pseudocode for branching the DFS tree:

Cycles exploration After every step of gluing possible building blocks from T ∗
B to Gcurr at node

v (line 5 in Alg. 8), we enumerate all sets S of pairs (v1 ∈ Gcurr, v2 ̸∈ Gcurr) of vertices of any
graph G′ ∈ G such that the features of v1 and v2 match (line 9 in Alg. 8). For every such set S,
we additionally consider for exploration the graph Ĝ′ = overlap(G′, S) created by overlapping each
pair of vertices in S (line 10 in Alg. 8). Intuitively, this allows us to reconstruct any cycle of the
input graph. All valid overlaps, including those with S = ∅, where the graph remains unchanged,
are then added as branches of the search space (line 8 in Alg. 4).
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Algorithm 8 Generate graphs for branch

1: function BRANCH(T ∗
B , Gcurr, v)

2: Gnew ← {}
3:
4: for B ∈ T ∗

B do
5: G← glue(Gcurr,B, v)
6: if G ̸= ∅ then
7: Gnew ← Gnew ∪G
8: for G′ ∈ G do
9: for S ⊆ {V (G′) \ V (Gcurr)} × V (Gcurr) do

10: Gnew ← Gnew ∪ {overlap(G′, S)}
11:
12: return Gnew

Node overlaping In this paragraph, we describe how the overlaping function (used in line 10
in Alg. 8) works. Given a graph G′ and a set of pairs of nodes S, if some pair has two nodes
with different node feature vectors, the function returns an empty graph. Otherwise, for each pair
(v1, v2) ∈ S we modify the current graph by deleting v2 and connect add an edge between v1 and
any node that was previously a neighbor of v2 but not v1. After doing these overlaps for every pair
of nodes in S, the new graph is returned.

B THE GSM METRIC

We designed the GSM set of metrics so that they satisfy the following three qualities:

• The metric should be efficiently computable in polynomial time
• It should capture both structural and feature-wise information
• Isomorphic graphs should be guaranteed to achieve a 100% score

To this end, we define GSM-NF (G, Ĝ) under a set of functions F = {Fk}Nk=1, where for all k
Fk : G → R|V|×d is a function that aggregates the feature vectors for each k-hop neighborhood.
This allows us to measure the similarites in features across increasingly larger subgraphs, which
capture the structure around each node. In our case we utilise a randomly initialised≥ k-layer GCN
to achieve such a mapping.

We note that a precise evaluation of the metric requires for us to match the 2 graphs as accurately as
possible. Since exact matching of graphs has no known polynomial-time algorithm (Babai, 2016),
we match the graph nodes by applying the Hungarian matching algorithm (Frank, 2005) for mini-
mizing a cost function C that captures the feature difference across (0-5)-hop neighborhoods:

Cij =

2∑
k=0

d∑
m=1

(Fk(G)− Fk(Ĝ))2m

We can hence define:

GSM-NF (G, Ĝ) =

{
F1-Score(FN (G), FN (Ĝ)) if FN (G) - discrete
R2(FN (G), FN (Ĝ)) if FN (G) - continuous

First of all, the NP-complete nature of the subgraph isomorphism problem makes it difficult to
do any subgraph or full-graph matching, which we tackle by utilising the hidden states of a GCN
to create an approximate matching between nodes. The method described above ensures that for
isomorphic graphs, the correct k-hop neighborhoods will be matched and the GSM-k metric will
achieve a perfect score.

The second requirement is rarely satisfied by metrics defined in the literature (i.e. the edit distance),
as comparison studies on coloured graphs are limited. Our solution to these problems was inspired
by the ROUGE set of metrics (Lin, 2004), used for evaluation of textual similarity. Instead of
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comparing sequences such as unigrams or bigrams like ROUGE, we instead compute continuous
properties of graphs on the scale of different k-hop neighbourhoods. This rationale allows us to
compare both node-based and structural properties using a simple methodology.

C ADDITIONAL EXPERIMENTS

Here we present additional experiments that are not part of the main text.

C.1 HUMAN EVALUATION FOR THE GSM SET OF METRICS

We performed a human evaluation, where 3 experts in Graph Theory and Chemistry were shown 120
sample reconstructions of molecules, as given by DLG and GRAIN. The samples were shuffled, and
the participants were tasked to assign a score from 0 to 10, with the following instructions:

"Thank you for agreeing to participate in this study on the quality of graph reconstructions! We have
gathered a set of graphs, coupled with the best-effort reconstruction. Please give each pair a score
of 0-10, where 0 is a complete lack of similarity, and 10 is a perfect match. When assigning a score,
take into account the structure of the two graphs, as well as the atom type for matching atoms, and
also be wary that 2 graphs might be isomorphic, but have different pictures. Please disregard the
connections between atoms, as the methods we used do not recover any edge properties. Give your,
as best as possible, score on how similar the graphs are with respect to these properties."

Reconstructed samples from both GRAIN and DLG were shuffled and anonymized before being
presented to the participants. We report the average scores for each algorithm, multiplied by a factor
of 10 to match the order of magnitude of the GRAPH metrics, and present the results in Tab. 1. We
observe very good correlation between our metrics and the reported human scores, even though our
metrics are slightly more lenient to completely wrong reconstructions, compared to the evaluators.
This leniency provides a slight advantage to the baseline attacks when measured using our metrics,
as the baselines fail catastrophically more often.

Based on these studies, we also show in Tab. 7 that our partial reconstructions are deemed more
significant than what the metric suggests, likely meaning that there are examples which present
significant information leakage. In contrast, high-scoring examples from the DLG attacks have been
rated as essentially uninformative.

Table 7: Score discrepancy examples between human evaluators and the GRAPH set of metrics.
G-1 stands for the GRAPH-1 metric.

GT GRAIN G-1 Study GT DLG G-1 Study

62.0 93.3 52.7 10.0

41.3 63.3 61.0 23.3

33.5 56.7 41.0 0.0

Additional examples of molecule reconstructions comparing GRAIN, DLG, and TabLeak are shown
in Fig. 5. In this set of examples, the first 3 columns show the exact reconstruction of the input. We
also highlight that in cases where GRAIN does not managed to recover the entire graph, the attack
can reconstruct subgraphs of the input (4th column), and a more realistic approximation otherwise
(5th column).
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Figure 5: Examples of molecule reconstructions compared between GRAIN, DLG, and TabLeak.

C.2 ADDITIONAL CHEMICAL DATASETS

Table 8: Results (in %) of main experiments on 3 biochemical datasets – Tox21, Clintox, BBBP.
Here "+A" refers to the baseline attack with the input adjacency matrix given.

GSM-0 GSM-1 GSM-2 FULL Runtime[h]

Tox21

GRAIN 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7 14.3

DLG 31.8+4.5
−4.3 20.3+5.5

−4.8 22.8+6.6
−5.6 1.0± 0.2 3.3

DLG +A 54.7+3.9
−4.2 60.1+4.6

−5.2 76.7+3.6
−4.8 1.0± 0.2 3.1

TabLeak 25.1+5.1
−4.3 12.4+5.5

−4.3 10.8+5.6
−3.9 1.0± 0.2 13.1

TabLeak +A 55.6+3.9
−3.9 57.7+4.1

−4.6 73.8+2.8
−3.5 1.0± 0.2 12.3

Clintox

GRAIN 73.7+5.7
−6.5 68.4+6.7

−7.8 66.8+7.0
−7.6 36.0± 1.2 24.1

DLG 24.0+4.1
−3.8 10.3+4.8

−3.6 12.2+5.5
−4.2 1.0± 0.2 3.5

DLG +A 52.5+3.2
−3.6 52.6+4.1

−4.7 72.3+3.2
−3.9 1.0± 0.2 3.2

TabLeak 17.6+3.7
−2.8 6.0+4.0

−2.4 5.4+4.2
−2.5 1.0± 0.2 15.2

TabLeak +A 54.0+3.4
−3.3 52.0+3.8

−4.2 62.8+3.3
−4.2 1.0± 0.2 14.5

BBBP

GRAIN 71.7+5.9
−6.8 66.8+6.9

−7.7 64.9+7.2
−8.0 38.0± 1.2 23.7

DLG 22.6+3.6
−3.3 8.8+4.9

−3.2 10.0+5.3
−3.7 0.0± 0.0 3.9

DLG +A 51.6+3.1
−3.6 50.1+3.8

−4.5 70.6+3.1
−4.2 0.0± 0.0 3.1

TabLeak 17.6+3.8
−2.8 6.3+3.8

−2.5 4.7+3.7
−2.3 0.0± 0.0 12.6

TabLeak +A 59.1+3.1
−3.6 59.4+3.6

−4.3 71.9+2.9
−4.0 0.0± 0.0 12.5

In this section, we present our results on additional chemical datasets, namely Clintox and
BBBP (Wu et al., 2018). We highlight in Tab. 8 that GRAIN generalizes across all settings, retaining
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its increased performance over the baseline attacks. We reaffirm that we achieve these results despite
running for time comparable to the one of Tableak.

C.3 ADDITIONAL ABLATION STUDIES

We perform additional ablation studies on various assumptions and parameters, demonstrating their
effects on GRAIN. In particular, we observe how architectural changes might affect our perfor-
mance, or how properties of the data might influence reconstructability.

Table 9: Results (in %) of main experiments with the LBFGS optimizer. Here "+A" refers to the
baseline attack with the input adjacency matrix given.

GCN GAT

GSM-0 GSM-1 GSM-2 FULL Min/Rec GSM-0 GSM-1 GSM-2 FULL Min/Rec

CiteSeer

GRAIN 62.5+7.7
−8.2 31.0+8.0

−7.8 31.6+8.1
−8.1 20.0± 0.8 1.5 79.3+4.7

−6.3 69.1+6.1
−6.4 69.6+6.2

−6.0 61.0± 1.6 0.8

DLG 67.7+3.9
−3.7 0.0+0.0

−0.0 0.3+0.5
−0.3 0.0± 0.0 24.8 67.7+3.9

−3.7 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 31.0

DLG +A 67.7+4.1
−3.7 0.0+0.0

−0.0 0.0+0.0
−0.0 0.0± 0.0 29.9 67.7+4.0

−3.7 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 27.7

TabLeak 67.7+3.9
−3.7 0.0+0.0

−0.0 0.0+0.0
−0.0 0.0± 0.0 158.8 67.7+3.9

−3.8 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 153.0

TabLeak +A 67.7+4.0
−3.7 0.0+0.0

−0.0 0.0+0.0
−0.0 0.0± 0.0 202.0 67.7+4.0

−3.7 0.0+0.0
−0.0 0.0+0.0

−0.0 0.0± 0.0 148.7

Pokec

GRAIN 58.3+5.9
−5.9 50.7+7.9

−7.8 55.8+8.3
−7.9 15.0± 0.8 0.1 97.2+1.6

−1.9 93.5+3.4
−4.2 96.3+1.9

−2.3 79.0± 1.8 0.2

DLG 44.6+6.8
−6.2 11.3+16.0

−11.3 13.7+20.1
−13.7 0.0± 0.0 37.8 44.7+2.3

−2.3 2.2+3.1
−2.2 0.0+0.0

−0.0 0.0± 0.0 26.3

DLG +A 48.7+12.7
−8.6 39.1+18.7

−16.9 51.8+15.9
−17.8 1.0± 0.2 38.5 57.4+3.7

−3.9 69.5+3.6
−4.0 88.6+2.0

−2.1 0.0± 0.0 21.6

TabLeak 49.6+8.7
−6.6 8.2+12.0

−8.2 5.6+9.3
−5.6 0.0± 0.0 177.5 50.8+12.4

−8.9 13.9+13.5
−12.3 7.9+11.9

−7.9 0.0± 0.0 204.5

TabLeak +A 49.9+4.1
−4.3 38.1+5.8

−5.9 58.9+6.1
−6.6 0.0± 0.0 216.0 52.6+3.3

−3.3 68.1+4.1
−3.9 82.7+4.0

−4.9 0.0± 0.0 254.5

Effect of optimizer on baseline results In our main experiments we presented results for the
CiteSeer and Pokec datasets with the baselines running an SGD optimizer. In Tab. 9, we present
results with the more stable LBFGS optimizer averaged across 10 reconstructions due to time limits.
We see that the baselines show better performance, however, GRAIN still outperforms them and is
less resource-consuming, requiring up to 100× less runtime.

Effect of model parameters on reconstruction quality First, in Tab. 10 and Tab. 11 we demon-
strate the performance of GRAIN under modifying the model parameters. We observe that neither
changing in the number of layers nor the hidden dimension size of the GCN substantially affects
the performance of GRAIN, while reaffirming the significant improvement over the baselines, even
when they are given the graph connections as prior knowledge. We note that we only utilise the first
2 GCN layers even when L > 2, showing the robustness of our method.

Additionally, we note that GRAIN is not significantly impacted by the embedding dimension d′, as
long as n < d′, consequently achieving similar scores, particularly for small graphs. We show the
exact results in Tab. 11.

Effect of span check threshold on filtering capabilities We now investigate the effect of the
choice for the τ threshold, used for filtering inputs using the span check method. We measure the ra-
tio between the number of nodes and 1-hop building blocks that pass the filter, and the actual number
of these blocks. We explore different values of τ in the range [10−6, 1], and evaluate this metric on
10 randomly chosen samples from the Tox21 dataset. We show in Fig. 6 that any τ ∈ [10−4, 10−2]
results in essentially the same filtering results, and that thresholds in this interval perfectly recover
the correct 1-hop building blocks.

Adjacency matrix low-rankness effect on reconstructability Further, in Fig. 3b we looked into
how the rank-deficiency of the adjacency matrix A affects how much of the input GRAIN might be
able to recover. For different sizes of A, we measure what the Monte-Carlo probability of A being
full-rank, and the fraction of nodes we can recover, as computed per Thm. 5.1. This was done for
synthetic graphs, where we sampled 100,000 symmetric binary matrices with varying probability of
every 2 nodes being connected, as well as for all molecular graphs in the chemical datasets Clintox,
Tox21 and BBBP. We show that Thm. 5.1 is crucial for understanding why GRAIN is effective,
despite the probability of A being full-rank being low. In particular, we highlight in Fig. 3b that
GRAIN can recover an increasing fraction of nodes as A grows.
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Table 10: Results (in %) of GRAIN and the baselines in cases of different model parameters. Here
L is the number of GCN layers and d′ is the model’s width. L = 2, d′ = 300 is the original setting.

GSM-0 GSM-1 GSM-2 FULL

L = 2,
d′ = 300
(default)

GRAIN 86.9+4.2
−5.7 83.9+5.2

−6.9 82.6+5.7
−7.4 68.0± 1.7

DLG 31.8+4.5
−4.3 20.3+5.5

−4.8 22.8+6.6
−5.6 1.0± 0.2

DLG +A 54.7+3.9
−4.2 60.1+4.6

−5.2 76.7+3.6
−4.8 1.0± 0.2

TabLeak 25.1+5.1
−4.3 12.4+5.5

−4.3 10.8+5.6
−3.9 1.0± 0.2

TabLeak +A 55.6+3.9
−3.9 57.7+4.1

−4.6 73.8+2.8
−3.5 1.0± 0.2

L = 3,
d′ = 300

GRAIN 82.5+5.7
−7.7 80.7+6.3

−7.7 80.4+6.2
−7.8 63.0± 1.6

DLG 20.3+4.3
−3.4 7.8+5.1

−3.3 8.2+5.3
−3.4 1.0± 0.2

DLG +A 43.0+3.7
−3.6 48.0+4.3

−4.5 66.0+3.7
−4.6 1.0± 0.2

TabLeak 16.5+3.8
−2.9 8.8+4.4

−3.1 8.0+4.3
−3.0 1.0± 0.2

TabLeak +A 47.5+4.0
−4.2 48.1+4.8

−5.0 62.9+4.3
−4.4 1.0± 0.2

L = 4,
d′ = 300

GRAIN 83.9+5.5
−7.4 82.8+5.9

−7.7 82.8+6.0
−7.9 64.0± 1.6

DLG 14.1+3.8
−2.8 4.0+4.7

−2.2 4.8+4.9
−2.6 1.0± 0.2

DLG +A 39.1+3.7
−3.8 37.0+5.3

−5.4 55.6+5.0
−5.7 1.0± 0.2

TabLeak 12.0+3.4
−1.9 2.1+4.3

−1.4 3.4+4.0
−1.7 1.0± 0.2

TabLeak +A 30.0+4.7
−4.0 27.3+5.9

−5.1 51.1+4.9
−5.3 1.0± 0.2

L = 2,
d′ = 200

GRAIN 84.6+4.6
−6.4 81.4+5.8

−6.9 80.5+5.9
−7.2 62.0± 1.6

DLG 30.8+4.5
−4.1 18.9+5.8

−4.9 22.2+6.7
−5.4 1.0± 0.2

DLG +A 50.3+4.2
−4.2 53.4+5.3

−5.9 68.7+4.9
−6.1 3.0± 0.4

TabLeak 22.1+4.8
−3.7 10.3+5.3

−3.6 8.9+5.5
−3.6 1.0± 0.2

TabLeak +A 55.0+4.8
−5.0 62.1+4.9

−5.9 76.7+3.6
−4.7 1.0± 0.2

L = 2,
d′ = 400

GRAIN 85.2+4.6
−6.1 81.5+5.4

−7.1 80.1+6.1
−7.5 63.0± 1.6

DLG 35.1+4.9
−4.7 26.1+6.4

−5.6 25.0+6.9
−6.0 1.0± 0.2

DLG +A 57.6+3.9
−4.3 61.7+4.7

−5.5 72.5+4.3
−5.5 2.0± 0.3

TabLeak 28.5+4.5
−4.0 17.1+5.4

−4.4 12.9+5.4
−4.0 1.0± 0.2

TabLeak +A 61.7+3.6
−3.7 62.6+3.6

−4.4 76.3+2.9
−3.3 1.0± 0.2

Table 11: Results (in %) of GRAIN with different embedding dimensions across a range of graph
sizes

n ≤ 15 16 ≤ n ≤ 25 26 ≤ n

GSM-0 GSM-2 FULL GSM-0 GSM-2 FULL GSM-0 GSM-2 FULL

d = 300 93.0+3.4
−5.4 91.6+3.8

−6.3 81.9± 1.7 81.7+3.9
−4.8 74.8+5.8

−6.3 43.6± 1.1 50.1+6.8
−7.1 39.2+8.5

−7.7 5.1± 0.6

d = 128 92.1+3.2
−5.0 92.3+3.9

−5.7 79.3± 1.6 81.4+4.0
−4.8 75.1+5.7

−6.6 43.6± 1.1 49.3+7.2
−6.5 38.8+8.7

−7.6 5.1± 0.6

d = 64 92.2+3.0
−5.5 92.0+4.0

−5.9 79.3± 1.6 81.3+4.1
−4.7 75.5+5.8

−6.5 43.6± 1.1 48.6+7.4
−6.5 37.9+9.0

−7.7 5.1± 0.6

d = 32 92.2+3.0
−5.5 91.7+3.6

−6.5 79.3± 1.6 81.7+4.0
−4.4 73.8± 6.1 43.6± 1.1 15.3+2.8

−4.4 13.3+2.5
−3.9 0.0± 0.0

D LIMITATIONS

GRAIN is the first algorithm to advance the field of gradient inversion for graph data, and we see
significant potential for further development. However, our attack method currently assumes that
the FL protocol includes node degree as a node feature. While this assumption holds in many
GNN settings, relaxing it leads to reduced performance. Improving performance under relaxed
assumptions is an important direction for future research.

Another key area for improvement is reducing the computational complexity of GRAIN, enabling
it to scale to larger graphs and graphs with nodes of higher degree. We believe this to be a promis-
ing future direction, as there are many potential optimizations that could enhance the algorithm’s
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Table 12: Results (in %) of GRAIN tested on the Pokec social network dataset (Rossi & Ahmed,
2015). 20 subgraphs were sampled for each of the size ranges 25-30, 30-40, 40-50 and 50-60

n GSM-0 GSM-1 GSM-2 FULL Runtime[h]

25-30 98.3+0.2
−0.4 95.1+0.5

−1.1 96.8+0.4
−0.9 17/20 0.17

30-40 83.1+2.3
−3.4 61.6+3.1

−3.0 79.4+2.7
−3.6 5/20 0.46

40-50 69.3+3.2
−3.8 38.0+4.7

−4.3 59.2+3.7
−4.0 2/20 0.64

50-60 32.7+4.8
−3.9 23.3+4.2

−3.5 41.2+4.6
−4.1 3/20 0.43

Total 70.9+6.2
−6.5 55.6± 7.2 69.2+6.4

−6.6 27/80 1.70

efficiency. Particularly promising is using data priors that have the potential to severely reduce the
number of span checks that need to be performed by efficiently filtering impossible subgraphs.

Figure 6: Ablation study on the span
check filtering threshold τ .

Additionally, GRAIN relies on the assumption that the
GNN architecture satisfies Asm. A.1. While this assump-
tion holds for widely used GNNs like GCN and GAT,
adapting our algorithm to support other GNN types is left
for future work.

Moreover, as discussed in Sec. 5, GRAIN requires that
n < d′ to maintain the low-rank nature of gradient up-
dates. While this is a limitation, we believe it applies to
many real-world scenarios, meaning that practical FL set-
tings remain vulnerable to privacy risks.

Another assumption GRAIN depends on is that the
weighted adjacency matrix A is high-rank, with full re-
construction possible only if A is full-rank. While this
holds for GAT architectures, it is not always true for
GCNs as presented in Fig. 3b. Relaxing the full-rankness
assumption would be a crucial step toward better understanding privacy risks in FL for GNNs.

Finally, we leave the investigation of potential defenses against GRAIN as well as more complex
federated learning protocols such as Federated Averaging for future work.
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