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ABSTRACT

Malicious server (MS) attacks have enabled the scaling of data stealing in federated
learning to large batch sizes and secure aggregation, settings previously considered
private. However, many concerns regarding the client-side detectability of MS
attacks were raised, questioning their practicality. In this work, for the first time,
we thoroughly study client-side detectability. We first demonstrate that all prior
MS attacks are detectable by principled checks, and formulate a necessary set of
requirements that a practical MS attack must satisfy. Next, we propose SEER, a
novel attack framework that satisfies these requirements. The key insight of SEER
is the use of a secret decoder, jointly trained with the shared model. We show that
SEER can steal user data from gradients of realistic networks, even for large batch
sizes of up to 512 and under secure aggregation. Our work is a promising step
towards assessing the true vulnerability of federated learning in real-world settings.

1 INTRODUCTION

Federated learning (FL, McMahan et al. [2017]) was proposed as a way to train machine learning
models while preserving client data privacy. Recently, FL has seen a dramatic increase in real-world
deployment [McMahan & Ramage; Paulik et al., 2021; FedAl]. In FL, a server trains a shared model
by applying aggregated gradient updates, received from numerous clients.

Gradient leakage attacks A long line of work [Zhu et al., 2019; Geiping et al., 2020; Zhu &
Blaschko, 2021; Geng et al., 2021; Yin et al., 2021] has shown that even passive servers can reconstruct
client data from gradients, breaking the key privacy promise of FL. However, these attacks are only
applicable to naive FL deployments [Huang et al., 2021]—in real-life settings with no unrealistic
assumptions, they are limited to small batch sizes with no secure aggregation [Bonawitz et al., 2016].
In response, recent work has argued that the honest-but-curious threat model underestimates the risks
of FL, as real-world servers can be malicious or compromised. This has led to malicious server (MS)
attacks, which have demonstrated promising results by lifting honest attacks to large batch sizes.

Most prior MS attacks rely on one of two key underlying principles. One attack class [Boenisch et al.,
2021; Fowl et al., 2022b; Zhao et al., 2023; Zhang et al., 2023] uses malicious model modifications to
encourage sparsity in dense layer gradients, enabling the application of analytical honest attacks—we
refer to these as boosted analytical attacks. Other attacks utilize example disaggregation [Pasquini
etal., 2022; Wen et al., 2022], reducing the effective batch size in the gradient space by restricting
gradient flow, which permits the use of optimization-based honest attacks.

Client-side detectability Nearly all prior work in the field [Geiping et al., 2020; Boenisch et al.,
2021; Fowl et al., 2022b; Pasquini et al., 2022; Wen et al., 2022; Fowl et al., 2022a; Chu et al., 2023;
Zhao et al., 2023] raised the issue of client-side detectability of MS attacks, i.e., an FL client may be
able to detect malicious server activity, and decide to opt out of the current or future rounds. Despite
such concerns, no attempts were made to study, quantify, or reduce the detectability of MS attacks.

This work: detecting and disguising malicious server attacks We thoroughly study the question
of client-side detectability of MS attacks. We demonstrate that while boosted analytical and example
disaggregation attacks pose a real threat as zero-day exploits, now that their key principles are known,
all current (and future) attacks from these two classes are client-side detectable in a principled manner,
bringing into question their practicality. Notably, we demonstrate the detectability of (the more
promising) example disaggregation attacks by introducing D-SNR, a novel vulnerability metric.
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We observe that such limitations of prior MS attacks arise from their fundamental reliance on the
honest attacks they lift. Namely, boosted analytical attacks always require handcrafted modifications
which are weight space detectable, and example disaggregation attacks rely on the success of
disaggregation, which is equally evident to any party observing the gradients, i.e., it is gradient space
detectable. This illustrates the need for fundamentally different attack approaches.

As a step in that direction, we propose a novel attack framework SEER, which recovers data from
batch sizes up to 512, yet is by design harder to detect than prior attacks. Our key insights are
that (i) gradient space detection can be evaded using a secret decoder, disaggregating the data in a
space unknown to clients, and (ii) jointly optimizing the decoder and the shared model with SGD on
auxiliary data avoids handcrafted modifications and allows for effective reconstruction. Importantly,
SEER does not lift any prior honest attack and does not require restrictive assumptions such as
architecture tweaking, side-channel information, or knowledge of batch normalization data or labels.

Key contributions Our main contributions are:

* We demonstrate that both boosted analytical and example disaggregation MS attacks are
detectable using principled checks—for the latter, we introduce D-SNR, a novel gradient
space metric of data vulnerability that can protect clients from unintended leakage. We
formulate a necessary set of requirements for realistic MS attacks and make the case that
detection should become a key concern when designing future attacks (Sec. 3).

* We propose SEER, a novel attack framework which satisfies all requirements based on
malicious training of the shared model with a secret server-side decoder. SEER is harder to
detect by design as it does not rely on honest attacks, avoiding previous pitfalls (Sec. 4). We
provide an implementation of SEER at https://github.com/insait-institute/SEER.

* We present an extensive experimental evaluation of SEER on several datasets and realistic
network architectures, demonstrating that it is able to recover private client data from batches
as large as 512, even under the presence of secure aggregation (Sec. 5).

2 RELATED WORK
In this section, we discuss prior work on gradient leakage attacks in federated learning.

Honest server attacks Optimization-based attacks [Zhu et al., 2019; Zhao et al., 2020; Geiping
et al., 2020; Geng et al., 2021; Wu et al., 2021; Yin et al., 2021] optimize a dummy batch to match the
user gradient. Analytical attacks [Phong et al., 2018; Kariyappa et al., 2022] recover inputs of linear
layers in closed form, but are limited to batch size B = 1 and do not support convolutional networks.
Recursive attacks [Zhu & Blaschko, 2021] extend analytical attacks to convolutional networks but are
limited to B < 5. Several works thoroughly study all three attack classes [ Yue et al., 2022; Balunovic
et al., 2022b; Jin et al., 2021; Huang et al., 2021]. Crucially, Huang et al. [2021] show that in realistic
settings, where clients do not provide batchnorm statistics and labels, all honest attacks are limited to
B < 32 for low-res data, and fail even for B = 1 on high-res data. This implies that large B and
secure aggregation Bonawitz et al. [2016] are effective protections against honest attacks.

Malicious server (MS) attacks We focus on broadly applicable boosted analytical [Boenisch
et al., 2021; Fowl et al., 2022b; Zhao et al., 2023; Zhang et al., 2023] and example disaggregation
attacks [Wen et al., 2022; Pasquini et al., 2022], discussed in Sec. 3. Here, we reflect on other MS
attacks that study more specific or orthogonal settings. Several studies [Pasquini et al., 2022; Zhao
et al., 2023] require the ability to send a different update to each user, which was shown easy to
mitigate with reverse aggregation [Pasquini et al., 2022]. Lam et al. [2021] focuses on the rare setting
with participation side-channel data. While we target image reconstruction, some works consider
other modalities, such as text [Balunovic et al., 2022a; Gupta et al., 2022; Fowl et al., 2022a; Chu
et al., 2023] or tabular data [Wu et al., 2022; Vero et al., 2022]. Further, while we focus on the threat
of data reconstruction, Pasquini et al. [2022] studies weaker privacy notions such as membership [Ye
et al., 2022] or property inference [Melis et al., 2019]. Finally, sybil-based attacks are a notably
stronger threat model orthogonal to our work [Fung et al., 2020; Boenisch et al., 2023]. We further
detail our exact threat model in App. B.
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3 DETECTABILITY OF EXISTING MALICIOUS SERVER ATTACKS

Most malicious server (MS) attacks rely on one of two strategies based on which we group them into
two classes—boosted analytical and example disaggregation. We now discuss client-side detectability
of these classes and show that both are detectable with principled checks. We identify the root cause
of detectability and formulate necessary requirements that future attacks must satisfy to be practical.

Boosted analytical attacks The works of Boenisch et al. [2021], Fowl et al. [2022b], Zhao et al.
[2023], and Zhang et al. [2023] use model modifications to induce different variants of sparsity in
dense layer gradients, enabling the application of honest analytical attacks to batch sizes beyond
one. Applying such attacks to the realistic case of convolutional networks requires highly unusual
architectural modifications, i.e., placing a large dense layer in front, which makes the attack obvious.
The only alternative way to apply these attacks is to set all convolutions to identity, such that the inputs
are transmitted unchanged to the dense layer. As this is a pathological case that never occurs naturally
and requires handcrafted changes to almost all parameters (e.g., 98% of weights in ResNet18), this
approach is easily detectable by inspecting model weights (e.g., by searching for convolutional filters
with a single nonzero entry, see App. A). More importantly, high levels of transmission are, in fact,
impossible in realistic networks due to pooling and strides [Fowl et al., 2022b], and further attempts
to conceal the changes (e.g., by adding weight noise) would additionally worsen the results.

Example disaggregation attacks While the detectability of boosted analytical attacks was rec-
ognized in prior work [Geiping et al., 2020; Boenisch et al., 2021; Wen et al., 2022], example
disaggregation attacks [Wen et al., 2022; Pasquini et al., 2022] are considered more promising. These
attacks use model modifications to restrict the gradient flow for all but one example, causing the ag-
gregated gradient of a batch to be equal to the gradient of a single example. This undoes the protection
of aggregation and allows the attacker to apply honest optimization-based attacks to reconstruct that
example. While most instantiations of example disaggregation attacks rely on unusual handcrafted
parameter changes, which are detectable in the weight space (as for boosted analytical attacks), it
may be possible to design variants that better disguise the gradient flow restriction. For this reason,
we focus on a more fundamental limitation of all (current and future) example disaggregation attacks
and demonstrate it makes them easily detectable in the gradient space. Moreover, such detection is
possible without running costly optimization-based attacks by using a simple principled metric.

We now propose one such metric, the disaggregation signal-to-noise ratio (D-SNR). Assuming the
use of the standard cross-entropy loss £(z,y), a shared model with parameters 6, and a batch of data
D = {(z1,11),---,(zB,ynB)}, we define D-SNR as follows:

max. OL(x4,y:)
D-SNR(0.D) = el B oW |
) (0, D) = mex OL(z1,01) M
Y i oW — MaxX;e{1,...,B} oW

where 6;,, denotes the set of weights of all linear layers (dense and convolutional; 98% of ResNet18).
Intuitively, D-SNR searches for layers where the batch gradient (the average of example gradients) is
dominated by the gradient of a single example, suggesting disaggregation. We conservatively use
max to avoid false negatives and account for attempts at partial disaggregation, i.e., if there is any
layer that disaggregates a single example, D-SNR will be large, and the client may decide that their
batch is vulnerable and skip the current training round. While we focus on the case of disaggregating
a single example, our approach can be easily generalized to any number of examples.

We use D-SNR to experimentally study the detectability of example disaggregation attacks in realistic
settings (see App. A for experimental details). As D-SNR is always oo for attacks proposed by Wen
et al. [2022], we modify them in an attempt to smoothly control the strength of the gradient flow
restriction. Our key observation, presented in Fig. 1 (red X), is that in all cases where the attack is
successful, D-SNR is unusually large, making the attack easily detectable. Reducing the strength
of the gradient flow restriction further causes a sharp drop in D-SNR, entering the range of most
non-malicious networks (blue X), i.e., the attack is undetectable. However, in all such cases, the attack
fails, as the aggregation protects the examples. In rare cases (e.g., when overfitting), even natural
networks can produce high D-SNR and be flagged. This behavior is desirable, as such networks
indeed disaggregate a single example, and (unintentionally) expose sensitive user data. Thus, metrics
such as D-SNR should be interpreted as detecting vulnerability, and not necessarily maliciousness.
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Figure 1: D-SNR (Sec. 3) of real (model, data batch) pairs. High values indicate vulnerability to data
leakage, which can manifest even in non-malicious models (X). Example disaggregation attacks (X)
are easily detectable as they can successfully reconstruct data (@) only when DSNR is unusually high
(note the log scale), and fail otherwise (@). Our method, SEER (X, Sec. 4), successfully reconstructs
an example even when D-SNR is low (@ @), and is thus hard to detect in the original gradient space.

Requirements for future attacks Our results show that all prior MS attacks are client-side de-
tectable using generic checks. We argue that this is caused by fundamental problems in the design
principles of the two attack classes and can not be remedied by further refinements. Any attempt
to lift an honest analytical attack will inherit the limitation of being inapplicable to convolutions
and will require architectural changes or handcrafted modifications detectable in the weight space.
Lifting optimization-based attacks always requires example disaggregation, which is gradient space
detectable. More broadly, as all information needed to execute these attacks is in the user gradients,
the server has no informational advantage and no principled way to conceal the malicious intent.

This suggests that new attack principles are required to better exploit the potential of the MS threat
model. To help guide the search, we now state the necessary requirements for future MS attacks
guided by our results above and observations from prior work [Wen et al., 2022; Huang et al., 2021].
We argue that realistic MS data stealing attacks for image classification should: (i) target realistic deep
convolutional networks with large batch sizes and/or secure aggregation; (ii) only utilize the attack
vector of weight modifications, with no protocol changes (e.g., non-standard architectures, asymmetric
client treatment) and no sybil capabilities; (iii) not assume unrealistic side information, such as batch
normalization statistics or label information [Huang et al., 2021]; and (iv) explicitly consider the
aspects of weight and gradient space detection (e.g., avoid obvious handcrafted modifications).

4 SEER: DATA STEALING VIA SECRET EMBEDDING AND RECONSTRUCTION

In this section, we propose SEER, a novel attack framework that steals data from large batches while
satisfying the requirements in Sec. 3. SEER avoids both pitfalls of prior MS attacks that caused
them to be detectable. Namely, SEER does not lift any honest attack and evades gradient space
detection by disaggregating the data in a hidden space defined by a server-side secret decoder. As a
result, SEER-trained networks (green x) have D-SNR values indistinguishable from those of natural
networks (Fig. 1). Further, SEER does not use handcrafted modifications, and instead trains the
shared model and the secret decoder jointly with SGD, evading weight space detection.

Overview Once trained, SEER is mounted as follows (Fig. 2). As in standard FL, the client
propagates their batch (X, y) of B examples (x;, y;) through the shared model f with parameters
0 sent by the server, and returns the gradient g (for simplicity we assume FedSGD) of the public loss

¢wurt. 8. When B > 1, g aggregates gradients g; of individual examples, i.e., g = (1/B) Zf;l gi.
When secure aggregation is used (discussed shortly), the sum also includes gradients of other clients.

The server’s goal is to break this aggregation. To this end, the server feeds g to a secret decoder
consisting of a disaggregator d, followed by a reconstructor r. Crucially, d is trained to project g
onto a hidden space in which the gradient projections of all images not satisfying some property P
are removed. While the exact choice of P is not essential, the goal is that for most batches only one
batch example satisfies P. In Fig. 2, P =*“images with brightness at most 7 with 7 chosen so only
x5 satisfies it, allowing d to extract the projected gradient d(gs), and r to steal the client image xs.

To train SEER, the server chooses P and interprets 8¢, 84, and 6,. as an encoder-decoder framework,
trained end-to-end using auxiliary data to simulate a real client. The goal of training is for d to
nullify the contributions of images not satisfying P (L, in Fig. 2), and for r to reconstruct the image
satisfying P from the output of d (L.). The shared model f is also trained to encode client data in
the gradient space in a way that supports the goals of disaggregation and reconstruction.
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Figure 2: Overview of SEER. A client propagates a batch X (of which one image satisfies the
property P only known to the server) through the shared network f with malicious weights 8¢, and
returns the aggregated gradient g, hoping that the aggregation protects individual images. The server
steals the image satisfying P by applying a secret disaggregator d to remove the impact of other
images in a hidden space, followed by a secret reconstructor 7. SEER is trained by jointly optimizing
0, 04, and 0, to minimize a weighted sum of Ly and Ly..

4.1 KEY COMPONENTS OF SEER

We next describe the individual components of SEER in more detail.

Selecting the property P Let I,y C [B] := {1,..., B} denote the set of examples in the client
batch that do not satisfy the secret property P, and I,.,. C [B] the set of those that do. Following
Fowl et al. [2022b], we use properties of the type m(x) < 7, where m represents some image
measurement, e.g., brightness, and 7 is chosen to maximize P(|/ec| = 1). Similarly to Fowl et al.
[2022b], in our experiments we use m based on brightness and color, but we emphasize that the
attacker can use many different types of m (as we experimentally demonstrate in App. F.0), i.e., this
choice is non-restrictive and is simply a way to single out images from big batches.

Fowl et al. [2022b] propose the global setting, where the server sets a single value of 7 for all
client batches. In particular, they choose 7 such that the probability of satisfying P is 1/B on the
distribution of m over the whole space of input examples. Wen et al. [2022] later showed that this
choice is optimal in the global setting, resulting in P(|I;ec| = 1) — 1/e from above as B — oo. We
improve upon this by allowing 7 to be dependent on the client batch data (X, y), i.e., we propose a
local setting. We make the novel observation that when batch normalization (BN) is present (like in
most convolutional networks), we can choose P with respect to the local (in-batch) distribution of m,
e.g., as the minimal brightness in every batch. We find that SEER can be trained on such local P with
auxiliary data, empirically achieving P(|I;c| = 1) > 0.9 for B as large as 512, which is a significant
improvement over the probability of 1/e achieved in the global setting. Our method is enabled by the
fact that each BN layer normalizes the distribution of its input, intertwining the computational graphs
of images in the batch which are otherwise independent. Unlike prior work, our local properties P,
allow the attacker to, most of the time, steal the client data after only a single communication round.

We note that secure aggregation [Bonawitz et al., 2016] is more challenging, and not equivalent
to a large batch from one client when BN is present, an aspect overlooked in prior work. To
overcome this, we design a more elaborate P that combines local and global properties, resulting
in P(|Iec| = 1) — 1/e, as in prior work. We provide a detailed explanation in App. C, and in our
experiments in Sec. 5 evaluate both large batch and secure aggregation variants of SEER.

Training 6 for suitable gradient encodings Training the shared model weights 6 along with the
secret decoder is essential for the success of SEER. Intuitively, we can interpret the client-side gradient
computation as a latent space encoding of the client data. The failures of honest attacks, discussed
in Sec. 2, suggest that the gradient encoding often lacks the required information to reconstruct user
data. Our key observation is that the MS threat model uniquely allows to overcome this issue by
controlling the gradient encoding by tuning 6. In particular, we maliciously optimize 8 with SGD
to allow the recovery of a single example by the other modules of SEER, regardless of the information
lost at the encoding step. While Zhang et al. [2023] also considered optimization-based modifications
with auxiliary data, their approach still inherits the fundamental limitations of all boosted analytical
attacks, requiring additional handcrafted modifications which, as noted in Sec. 3, are easily weight
space detectable—an issue that SEER circumvents by design.
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Training 6, for secret disaggregation The secret disaggregator d addresses the key limitation of
example disaggregation attacks (discussed in Sec. 3), i.e., disaggregating examples in the gradient
space. In contrast, d embeds the gradients from g into a lower-dimensional space R™¢ using a secret
linear map 6, concealing the disaggregation in the original gradient space. The benefits of using such
a linear map are twofold. First, the linear map commutes with gradient aggregation due to additivity.
Second, the lower-dimensional space allows us to more easily drive the projected gradients of I, to
0, which happens when they are in or close to the null space of ;. Combining the two properties ((7)
and (4¢) in Eq. 2) ideally allows us to retain only the chosen sample from the aggregated gradient g:

B B
(4) (#1)
d(g) = d(z gi) = Zd(gi) = Z d(g:) + Z d(gi) = Z d(g:)- @
i=1 i=1 1€ L 1€ Trec 1€ Irec
To achieve this in practice, f and d should be set such that d(g;) = 0 for all i € I,,;;, while tolerating

d(gi) # O for the single ¢ € .. To this end, for P chosen as discussed above, we define the
following objective:

Low =Y |d(g:)3, 3)

1€ Inul

which SEER aims to minimize during training. We ensure that this does not also nullify d(g; ) for the
example of interest in Iy, S0 7 is able to recover that example from d(g;), as described next.

Training 0, for image reconstruction

Algorithm 1 The training procedure of SEER .
The final component of SEER we discuss

1: function TRAINSEER(ﬁ t, B, X, ) is the secret reconstructor r: R4 — R™,
2: Ch?ose P, initialize d and r which receives d(g), i.e., the (noisy) iso-
3 while not converged do , lated embedding of the target image gra-
4 X,y < A{zi,yi ~ (X, V)]i € [B]} dient, as seen in Eq. 2. The reconstruc-
5 Loty Iree < P(X,y) tor aims to map d(g) back to the original
6: Xoals Yt < X L] Y[ Lol image ., effectively stealing that exam-
7. Xrees Yree — X [Trec)s Yl rec) ple from the original batch, compromis-
8: Gnul; Gree <—BP(f, g’ Xt Xree, Ynul, Yree) ing client privacy. To this end, we define
9: Lo < || d(gnu) |13 >Eq. 3 the following ¢, reconstruction objective,
10: Liec < || 7(d(gree)) — Xiee |13 >Eq. 4 which is at odds with £py:
11: L+ Loe+a- Loy >Eq. 5
12: 0, < 0y — Vi - %,Vm € {f> d,?”} Liee = || r(d(grec» — Lrec H% 4
13: end while . .
14: return f,d,r The final loss'functlon of SEER weighs the
15: function BP(f, £, Xout, Xree, Ynuls Urec) two losses using a hyperparameter o > 0:
16: [[lnul; lrec]] — é(f([[XnuH Xrec]])a [[ynuﬁ erC]]) L =L+ L. 5)
17: return glg;‘, ggf

All three key components of SEER are
jointly trained to minimize L.

4.2 END-TO-END ATTACK DESCRIPTION & DISCUSSION

Algorithm 1 describes the training of SEER. We train on client-sized batches (see App. F.3 for a
related study) sampled from our auxiliary data (Line 4). Based on P, we select the index sets I, and
I (Line 5), representing the examples we aim to disaggregate. Then, we simulate the client updates
Grec and gy computed on the full batch X (Line 8), and use them to compute our optimization
objective (Line 11). We minimize the objective by jointly training f, d, and r using SGD (Line 12).

Mounting SEER once the malicious weights 6 have been - -
trained using Algorithm 1 is simple, as we illustrate in Al- Algorithm 2 Mounting SEER
gorithm 2. The server, during an FL round, sends the client  1: function MOUNTSEER(f, d, 7)

the malicious model f (Line 2), and receives the gradient  2: g < GETCLIENTUPDATE(f)
update g. Then, it applies its secret disaggregator d and ~ 3: Zsolen — 7(d(g))
reconstructor 7 (Line 3) to obtain xgyen, the reconstructed — 4: return Tgojen

private example from the client batch.
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Table 1: Large batch reconstruction for different batch sizes B. The metrics are introduced at the top
of Sec. 5. Results with 2 more settings (CIFAR100, Bright and CIFAR10, Red) are given in App. F.1.

CIFAR10, Bright CIFAR100, Red
B Rec (%) PSNR-Topt PSNR-AIlT Rec (%) PSNR-Top1 PSNR-AllT
64 89.4 321+20 272453 97.1 31.7+1.1  29.0+34
128 94.2 31.9+1.7 282443 97.4 31.8+1.1 29.3+32
256 93.5 32.84+2.0 28.5+5.0 97.7 31.3+£1.0 28.6+3.2
512 87.8 26618 23.2£3.5 98.6 33.1+1.1 30.5+3.1

SEER satisfies all requirements We now reflect on the requirements listed in Sec. 3 and discuss
how SEER satisfies them. First, SEER does not utilize any attack vector apart from maliciously
modifying the weights of f, does not assume unrealistic knowledge of BN statistics or batch labels,
and makes no assumptions regarding label distributions, in contrast with some prior work [Yin et al.,
2021; Wen et al., 2022]. We remark that the necessity of such side information is the artifact of
optimization-based attacks, and another reason why approaches that do not attempt to lift honest
attacks (such as SEER) may be more promising. SEER was greatly influenced by the assumption that
clients will inspect the models, aiming to detect malicious updates. Namely, SEER avoids weight
space detectable handcrafted modifications and introduces secret disaggregation as means to also
avoid gradient space detection. As we show in Sec. 5, SEER successfully steals client data on realistic
convolutional networks with large batch sizes and secure aggregation, demonstrating its practicality.

5 EXPERIMENTAL EVALUATION

In this section, we present our experimental results, demonstrating that SEER is effective at recon-
structing client images from realistic networks, in both large batch and secure aggregation settings.
These results are especially valuable given the important advantages of SEER over prior work in
terms of satisfying the requirements for practical attacks (Sec. 3), as we have discussed in Sec. 4.

Experimental setup We use ResNet18 [He et al., 2016] in all experiments. We use the CIFARI10
dataset, as well as CIFAR100 [Krizhevsky et al., 2009] and ImageNet [Deng et al., 2009], to demon-
strate the ability of SEER to scale with the number of labels and input size, respectively. We generally
use the training set as auxiliary data, and mount the attack on randomly sampled batches of size B
from the test set for CIFAR10/100 and validation set for ImageNet. We further experiment with auxil-
iary datasets of different sizes in App. F.8, and clients with different heterogeneity levels in App. F.9
where we show that SEER is highly effective even when only small amount of auxiliary data is
available and when clients data is highly heterogeneous. We run all experiments on a single NVIDIA
A100 GPU with 40GB (CIFAR10/100) and 80GB (ImageNet) of VRAM. Each CIFAR experiment
took < 7 GPU days to train and < 1h to mount on 1000 batches. The ImageNet model trained for 14
GPU days, with 0.5h to mount the attack on 100 batches. In our CIFAR experiments, we set 7 to a
linear layer and subsume d in it. For ImageNet, we use a linearized U-Net decoder [Ronneberger
et al., 2015] (see App. G). We defer additional implementation details to App. H and App. L.

In all experiments, we use the properties of maximal brightness (Bright) and redness (Red), training
separate malicious weights for each (dataset, property, batch size) triple. We report 3 reconstruction
quality metrics: (i) the fraction of good reconstructions (Rec), i.e., batches where reconstructions
have PSNR > 19 [Horé & Ziou, 2010] to the ground truth; (ii) the average PSNR across all attacked
batches (PSNR-All); and (iii) the average PSNR for the top % ~ 37% of the batch reconstructions
(PSNR-Top) that allows to compare SEER in large batch (1 client) and secure aggregation (many
clients) settings. We provide experiments with more properties and metrics in App. F.6 and App. J.

Large batch reconstruction on CIFAR10/100 A subset of our main results is shown in Table 1;
the full results are deferred to App. F.1 and follow similar trends. We make several key observations.
First, in most experiments, the use of local properties (see Sec. 4.1) allows us to steal an image
from most batches (up to 98.6%), greatly improving over 1/e% achieved by prior work. Second,
we obtain good reconstructions for both Red and Bright property (average PSNR up to 30), which
confirms that SEER can handle a diverse set of properties, and that property choice is not crucial for
its success. Finally, SEER successfully steals images even from very large batch sizes such as 512,
showing no clear degradation in performance. On top of these quantitative results, we show example
reconstructions in Fig. 3 (left, C' = 1), visually confirming their quality.
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Figure 3: Example reconstructions of SEER with 128 total examples and different number of clients
C on CIFAR10 (Left) and 64 examples on ImageNet (Right), both using the Bright property.

Large batch reconstruction on ImageNet To show scalability to high-res images, we train SEER
on ImageNet with B = 64 and the Bright property (due to high computational costs, we leave more
thorough studies of ImageNet to future work). To speed up convergence, we pretrain parts of the
transposed convolution stack alongside 8 on downsized images, and use it as initialization. We obtain
PSNR-AIl of 21.9 + 3.5 and PSNR-Top of 25.1 &+ 2.5, corresponding to 82.1% successfully attacked
batches. Our results are significant, as these PSNR values on Imagenet represent very high quality
reconstructions and are higher than the state-of-the-art attack in Wen et al. [2022]. This is further
visually confirmed by the example reconstructions we show in Fig. 3 (right). From the recovered
images we conclude that SEER can be efficiently instantiated on high-resolution images, resulting in
very detailed reconstructions that allow the identification of complex objects and individual people,
constituting a serious violation of privacy. We note the significance of these results, as stealing even
a single ImageNet image is impossible with honest attacks without restrictive assumptions [Huang
et al., 2021]. We see these results as an encouraging signal for general applicability of SEER.

Secure aggregation In Table 2, we Typle 2: CIFARIO reconstruction with secure aggrega-
present the results of CIFARIO experi- (on, varying the number of clients (C) and total images

ments with secure aggregation with ' = 4 (#1mg). See App. F.2 for results with another property.
and C' = 8 clients and batch sizes cho-

sen to match the total number of images C = 4, Bright C = 8, Bright
(#Imgs) as in Table 1. Most importantly, as
before, SEER consistently obtains image

#Imgs Rec (%) PSNR-Top 1 Rec (%) PSNR-Top 1

reconstructions with average PSNR > 25, 64 414 27.3+3.1 413 26.6+3.7
i.e., recovers most images almost perfectly. 128 442 26.8+3.0 406 27.3+3.3
Comparing to Table 1, the success proba- 256 51.9 27.31+2.5 419  254+3.1
bility degrades with C, confirming our in- 512 52.9 25.7+24 51.7 2594238

tuition (see Sec. 4) that secure aggregation
provides additional protection in the presence of BN, compared to simply using large batches. Despite
this, the success probability Rec is significantly higher than 1/e% of prior work. We suspect this
is due to the model learning a restricted version of single-client reconstruction for each client, and
further compare the two variants in App. F.5. We note that Rec rises with the number of images,
which we believe is due to the better estimation of the property threshold for larger batches. Finally,
in Fig. 3 (left), we can visually compare results for different number of clients, noting no obvious
degradation, which reaffirms that SEER can breach privacy even when secure aggregation is used.

Robustness to distribution shifts A ques- Table 3: SEER is robust to distribution shifts be-
tion that naturally arises is if the need for aux- tween the auxiliary dataset (CIFAR10) and the client
iliary data restricts the apphcablhty of SEER. dataset Dc- We use B = 128 and the Red property.

In this experiment we show otherwise, demon-

strating robustness to distribution shifts be- e Rec (%) PSNR-Top f PSNR-AIll T
tween the attacker’s auxiliary dataset (D,) and  CIFAR10 93.5 31.1+1.2 278441
the client dataset (D), i.e., an attacker can suc-  CIFAR10.1v6 96.0 31.6+1.0 28.4+ 3.8
cessfully mount SEER without the knowledge  c1par10.2 90.2 31.6+1.3 275450
of D, relying only on public data. We set  my ipaeeNet 802  27.6+£1.0 237447
C =1,B =128 and D, = CIFARIO and ;109019 98.0 294+1.0 26.9+2.84

explore several options for D, illustrating dif-
ferent levels of shift. Namely, CIFAR10.1v6 [Recht et al., 2018] and CIFAR10.2 [Lu et al., 2020]
represent naturally occurring shifts of the data source, TinyImageNet [Le & Yang, 2015] (mapped
to 10 classes) models different data sources for D, and D,, and ISIC2019 [Tschandl et al., 2018;
Codella et al., 2018; Combalia et al., 2019] models a more severe domain shift between D, and D...
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Table 4: Comparison between SEER and prior state-of-the-art MS attacks.

Method Und-Rec (%) PSNR-Und-Rect PSNR-Und{ Rec (%) PSNR-AIl
Fishing § = 400 4 20.2+0.5 17.1+23 77 21.7+3.2
Fishing 8 = 100 8 20.6+1.6 16.4+2.9 63 20.2+4.1
Fishing 8 = 50 4 19.4+0.3 15.5 +2.2 52 19.4+ 4.5
Fishing § = 12.5 1 22.4+£0.0 13.7+2.0 8 145+ 34
Zhang23 0 N/A N/A 5 15.8+1.8
LOKI 0 N/A N/A 100 143.4+10.3
SEER 90 24.6 2.2 23.8+3.3 90 23.8+3.3

The results are shown in Table 3. We observe no degradation for CIFAR10.1v6 and CIFAR10.2,
confirming that SEER can handle naturally-occurring data shifts. For TinyImageNet and ISIC2019,
despite the large discrepancy to CIFAR10 in image and label distributions, we observe high quality
reconstruction on 80% and 98% of images, confirming that SEER is not limited by the choice of D,.
We further investigate the robustness to batch size mismatch in App. F.3 and corruptions in App. F.4.

Comparison to prior MS attacks We compare SEER to 3 state-of-the-art MS attacks: (i) Fish-
ing [Wen et al., 2022], an example disaggregation attack; (ii) Zhang23 [Zhang et al., 2023], a boosted
analytical attack; and (iii)) LOKI [Zhao et al., 2023], a boosted analytical attack that relies on a
stronger threat model that permits architectural changes and sending different models to clients. We
attack 100 batches on CIFAR10, with C' = 1, B = 128. We use the Red property for SEER. As
in Sec. 3, we explore different variants of Fishing by varying the parameter 5 which should control
the strength-detectability tradeoff. We report the usual metrics Rec and PSNR-All, the percentage
of undetected successful attacks (Und-Rec) based on D-SNR (Sec. 3) and T-SNR (App. A), as well
as the average PSNR of all undetected reconstructions (PSNR-Und), and the successful undetected
reconstructions (PSNR-Und-Rec). We provide more details about the experimental setup in App. L.5.

The results are shown in Table 4. Setting detectability aside, SEER outperforms all methods but LOKI,
while also being very fast to mount (<2 sec per batch). We emphasize that LOKI’s performance is
largely due to its architectural changes to the ResNet which are trivially detectable by clients and
crucial to the application of the method. We also observe that Zhang?23 fails to recover most images
at all due to the stride>1 and pooling in realistic networks that cause severe downscaling of the image
fed to the attacked linear layer as discussed in Sec. 3. Crucially, only a tiny fraction of successful
Fishing attacks are undetected, while other prior methods completely fail to avoid detection. In
contrast, for SEER all successful attacks remain undetected. Finally, we confirm our observation
from Fig. 1 that prior MS attacks need to jeopardize reconstruction quality to avoid detection, as for
Fishing PSNR-Und is well below PSNR-AII for all values of 5. Our experiments reaffirm that the
reliance on honest attacks of prior MS attacks makes them easily detectable, and thus unrealistic.

6 OUTLOOK

While SEER is a powerful attack that can harm user privacy, we believe our work opens the door to a
more principled investigation of defenses, as it illustrates that techniques such as secure aggregation
are not as effective as previously thought. To mitigate attacks like ours, prior work has discussed
cryptographic techniques like SMPC or FHE, which are still largely impractical [Kairouz et al., 2019],
as well as differential privacy methods, which we demonstrate in App. E to not be effective enough.

Thus, we believe that principled client-side detection is the most promising way forward. While
SEER avoids pitfalls of prior attacks which make them easily detectable, and we see no clear ways to
detect it currently, more mature detection techniques may be able to do so. We encourage such work
and advocate for efficient and robust checks based on attack categorization (such as in this work), as
opposed to ad-hoc detection which attacks can easily adapt to. On the attack side, interesting future
directions include other data modalities and model architectures and improving SEER’s training cost.

7 CONCLUSION

In this work, we explored the issue of client-side detectability of malicious server (MS) attacks in
federated learning. We demonstrated that all prior attacks are detectable in a principled way, and
proposed SEER, a novel attack strategy that by design avoids such detection while effectively stealing
data despite aggregation. Our work highlights the importance of studying attack detectability and
represents a promising first step towards MS attacks that compromise privacy in realistic settings.
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ETHICS STATEMENT

As we noted in Sec. 6, the attack introduced by this work, SEER, advances the capabilities of attackers
aiming to compromise client privacy in FL. Further, as Wen et al. [2022] point out, attacks like ours
based on property thresholding can lead to disparate impact, affecting outlier groups more severely as
their inputs are more likely to be reconstructed. However, we believe that our principled investigation
of detection and the emphasis on realistic scenarios, as well as making the details of our attack
public and open source (which we intend to do after publication), both have a significant positive
impact, as they open the door to further systematic studies of defenses, and help practitioners better
estimate the privacy risks of their FL. deployments and avoid the common error of underestimating
the vulnerability.
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A DETECTABILITY EXPERIMENTS
Here we provide more details regarding our detectability experiments.

Measuring D-SNR  To produce Fig. 1, we consider 4 SEER-trained malicious models (CIFAR10,
Bright/Dark, batch size 128/256), as well as 8 checkpoints made at various points during natural
training, using the same initialization as used for SEER. Then, for each value of B € {16, 32,64},
we choose 5 random batches of size B from the training set and 5 random batches of size B from the
test set of CIFAR10. For each batch, we compute the D-SNR on each of the 12 networks using Eq. |
and plot the resulting value as a point in Fig. 1 (blue for natural and green for SEER networks). For
example disaggregation attacks, we use a publicly available implementation of the attacks of Wen
et al. [2022] and modify the multiplier parameter to control the strength of the attack. We use the
default setting where batches are chosen such that all images belong to the same class (car in this
case). The three reconstructions of the example disaggregation attack are obtained by running the
modernized variant of the attack of Geiping et al. [2020] on the disaggregated batch. The modernized
variant is implemented in the Breaching framework, which Wen et al. [2022] is a part of. Finally, for
the reconstruction of SEER, we aimed to show an image from the same class (a car), with D-SNR
slightly below the D-SNR of the leftmost example disaggregation point (0.72). To do this, we use the
Dark property and the dark car image from Fig. 3, and sample the other 63 examples in the batch
randomly from the test set until the D-SNR falls in the [0.62, 0.72] range. We stop as soon as we find
such a batch and report the reconstruction produced by SEER.

Measuring transmission As noted in Sec. 3, to be applicable to convolutional networks, boosted
analytical attacks require handcrafted changes to convolutional layers that simply transmit the inputs
unchanged. While, as noted above, even in the ideal case, this cannot lead to good reconstructions,
we illustrate the point that such change is detectable by defining a metric similar to D-SNR, which
can be interpreted as a transmission signal-to-noise ratio, measured on the first convolutional layer.
Namely, for each filter in the first convolutional layer, we divide the absolute values of the largest
entry by the sum of the absolute values of all other entries. Intuitively, we treat the entry with the
largest absolute value as the signal, and measure how well this is transmitted by the filter. The ratio
is high when the filter transmits the input unchanged, and is oo for the handcrafted changes used
by the boosted analytical attacks. We compute this metric on the 12 networks used in Fig. 1 (see
previous paragraph) and show the results in Fig. 4. Intuitively, the red line at 1.0 indicates the case
where there are equal amounts of the pixel being transmitted and all other pixels. We can observe
that all networks have values below 0.3, confirming that transmission is indeed unusual and not a
case that ever happens naturally, implying that if boosted analytical attacks that use this technique
would be able to obtain good results, they would still be easily detectable in the weight space.

% SEER (Our Method)
% Non-Malicious Networks

XX
XK X XX

0.0 0.5 1.0 1.5
Transmission Signal-to-noise Ratio (Boosted Analytical = infinity)

Figure 4: The transmission signal-to-noise ratio of several SEER-trained and naturally trained
networks. The same metric has a value of oo for all boosted analytical attacks.

B PRECISE THREAT MODEL

SEER is an MS gradient leakage attack, and thus assumes the ability of the attacker to choose
the weights of the model such that client data is easier to recover. Similarly to most other MS
attacks [Boenisch et al., 2021; Wen et al., 2022; Zhang et al., 2023], we focus on attacking the
FedSGD [McMahan et al., 2017] protocol at a single communication round, and similarly to Wen
et al. [2022], we recover a single user image from a large batch of client images. Importantly,
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unlike previous MS attacks, SEER does not lift any prior honest attack [Boenisch et al., 2021;
Fowl et al., 2022b; Zhao et al., 2023; Zhang et al., 2023], does not require restrictive assumptions
such as architecture tweaking [Zhao et al., 2023], side-channel information, or knowledge of batch
normalization data or labels [Wen et al., 2022], and does not require the ability to send different
updates to different users [Pasquini et al., 2022; Zhao et al., 2023]. Similarly to Fowl et al. [2022b],
SEER requires auxiliary data to be available to the server. We believe this does not limit SEER’s
practical applicability, as we demonstrate that we can train SEER’s malicious weights on a small
amount of data (App. F.8) and that our attack shows remarkable transferability across datasets and
data distributions (Sec. 5 and App. F.4 and App. F.11).

C RECONSTRUCTING FROM SECURELY-AGGREGATED GRADIENT UPDATES

As described in Sec. 4.1, we have designed a more elaborate property P for the case of attacking
securely aggregated gradient updates. Our property is based on a combination of local (in-batch) and
global distribution information about the client data allowing us to handle this more complex case. In
this section, we describe in detail how this is done.

As described in Sec. 4.1, we need to define the property P with respect to a range of brightnesses,
such that P(|[;ec| = 1) is maximized. Thus, generating P is reduced to finding the correct threshold
7 on the client image brightnesses, with which we later train SEER.

To calculate the threshold 7 in the multi-client setting, we use the insight that individual client
batches are still generated in the presence of BN before their aggregation. To this end, we normalize
the brightnesses within individual client batches of size B for 20000 sampled client batches and
use the sampled normalized brightness to generate the cumulative density function(CDF) of their
empirical distribution. We then choose the threshold 7 on this distribution to maximize the probability
that exactly one out of the C' aggregated clients has exactly one image with normalized brightness
above the threshold. For simplicity, we demonstrate this in the case of maximal brightness, as the
minimal-brightness case is equivalent. We estimate the probability of having exactly one image with
normalized brightness above the threshold as:

(1= @1(7)) * Do(7) % D1 (1) (6)

where @, is the CDF of the top brightness in a sampled batch, and @ is the CDF of the second-highest
brightness in a sampled batch. The equation can be intuitively rephrased as follows—for exactly one
client, the highest normalized brightness within its batch is above 7, and the second-highest brightness
is below 7, while for the rest, all brightnesses are below 7. To optimize Eq. 6 for the threshold 7, we
use the golden section search method - a numerical optimization technique that repeatedly divides a
search interval by the golden ratio to efficiently locate the (possibly-local) extremum of a function of
a single variable.

D EXISTENCE OF THE PROPERTY P

A key assumption of our attack is the existence of an image property P satisfied by exactly one image
x € R? in the client batch. We note that if we do not impose any restrictions on P, properties of
the type “equal to «” satisfy the requirement as they can single out any « from any batch. However,
such properties do not generalize well across batches, limiting SEER’s practical applicability. A
more interesting question then becomes, is there always a property P that can separate exactly one
image from a client batch that additionally is also (i) simple enough to train SEER’s malicious
weights on well, and (ii) transferable across batches without retraining. To this end, in this section
we theoretically investigate the existence of properties P of the type m(x) < 7, where m is a linear
function and 7 € R is a threshold, as in our experiments (see App. F.6) these types of properties show
good learnability and generalizability.

Under these assumptions, we can reformulate the question if P exists for a given batch and chosen
image x in it, as the question if a hyperplane m(x) — 7 = 0 exists that separates the chosen image,
represented as a point in d-dimensional space, from the rest of the images in the batch. This question
is answered positively by a well-known result from theoretical ML (see e.g., Lauer [2017]) which
states that the VC dimension of affine classifiers (in this case sgn(m(zx) — 7)) in R% is d + 1. Thus, a
linear property P that is true only for the chosen images « in the batch always exists when the batch
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Table 5: Effect of gradient clipping when different maximum gradient norms C are applied on
CIFAR10 model trained with the Red property on B = 128. We report the percentage of well-
reconstructed images (Rec), the average PSNR and its standard deviation across all reconstruc-
tions (PSNR-All), and on the top 37% images (PSNR-Top).

C  Rec(%) PSNR-ToptT PSNR-AIlT

1.0 36.2 21517 17.8£34
2.0 87.3 2565+14 223+£32
3.0 92.6 27.7+1.1 247433
4.0 95.2 28.7£1.0 259+£3.2
) 93.5 31.1+1.2 27.8+4.1

Table 6: Effect of applying DP-SGD with maximum gradient norm of C = 3 and different noise
levels o on CIFAR10 model trained with the Red property on B = 128. We report the percentage of
well-reconstructed images (Rec), the average PSNR and its standard deviation across all reconstruc-
tions (PSNR-All), and on the top 37% images (PSNR-Top).

o Rec (%) PSNR-Topt PSNR-All+

0.0 92.6 27.7+1.1 24.74+3.3
1x1074 92.6 27.7+1.1 24.74+3.3
1x1073 924 272410 244+3.1
3x 1073 90.3 24.6+06 226424
5x 1073 84.0 219404 204+1.9
7x 1073 435  19.7+04 184418
1x 1072 0.0 172404 153424

images are in a general position (which usually holds) and B < d + 1 (which holds even for low-dim
images like CIFAR10, as d + 1 = 3073 which is far above practical batch sizes).

E POSSIBLE DEFENSES AGAINST SEER

Here we discuss other possible defenses against SEER, and why we believe they are not currently
effective at preventing data leakage. Detection based on tracking the value of the loss during training
is, as noted in Boenisch et al. [2021], unlikely to work. This is due to the fact that in FL, per-client
values can generally be noisy, even if the global loss consistently falls. Such detection is also made
harder by the fact that SEER does not require application in more than one round to pose a serious
threat to client privacy, and that such attacks are often applied in the first round [Balunovic et al.,
2022b]. Next, SEER can’t be easily flagged via other kinds of client-side detection, as it only
modifies the weights through continuous optimization, using no obvious handcrafted patterns (as
opposed to prior work analyzed in the paper). Finally, defenses based on differential privacy such as
DP-SGD [Abadi et al., 2016] require too much noise to be practical, as we also demonstrate in our
experiments in App. E.1. As we note in Sec. 6, we think that future principled client-side defenses
can be a promising future direction.

E.1 RESULTS UNDER DIFFERENTIAL PRIVACY

We demonstrate SEER’s performance under defenses based on differential privacy. In particular, we
apply our attack on gradients obtained from the DP-SGD [Abadi et al., 2016] algorithm. In DP-SGD,
the clients defend their data by first clipping the norms of the per-layer gradients of each of their
data points to at most C, and then adding Gaussian noise with standard deviation of C - ¢ to them.
In order to better understand what effect those two components of the defense have on our method,
in Table 5 we experiment with different clipping norms C for ¢ = 0 (i.e., no noise added), while in
Table 6 we experiment with the noise strength o for clipping norm of 3. We use C = 3 as Abadi et al.
[2016] recommends that value for CIFAR10, the dataset we experiment with. Both experiments were
conducted on a SEER model trained with B = 128 and the Red property.
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Table 7: Large batch reconstruction on bright and red properties from batches of different sizes B on
CIFAR10. We report the percentage of well-reconstructed images (Rec), the average PSNR and its
standard deviation on all reconstructions (PSNR-AIl), and across the top 37% images (PSNR-Top).

CIFAR10, Red CIFAR10, Bright
B Rec (%) PSNR-Topt PSNR-AIlT Rec (%) PSNR-Top 1 PSNR-AllT
64 87.3 304+11 265£5.2 89.4 321+£20 272£5.3
128 93.5 3114+£1.2 278+4.1 94.2 31.9+1.7 28.2+4.3
256 94.7 31.3+1.0 28.0+4.0 93.5 32.84+2.0 28.5+5.0
512 94.4 30.0£1.2  26.6£3.8 87.8 26.6+1.8 23.2£3.5

Table 8: Large batch reconstruction on bright and red properties from batches of different sizes B on
CIFAR100. We report the percentage of well-reconstructed images (Rec), the average PSNR and its
standard deviation across all reconstructions (PSNR-All), and on the top 37% images (PSNR-Top).

CIFAR100, Red CIFAR100, Bright
B Rec(%) PSNR-Topt PSNR-AllY  Rec(%) PSNR-Topt PSNR-AllT
64 97.1 317411 29.0+34 95.6 322415 282443
128 97.4 318411 293432 947  30.0+1.3 265+3.7
256 97.7  31.34+10 28.6+3.2 98.1 35.2+1.4 30.8+4.8
512 98.6 33.1+1.1 30.5+3.1 95.0 322416 27.6+£46

In our experiments, the performance of SEER increased when we explicitly took into account the use
of DP-SGD during our attack procedure. In particular, before applying the attack in all experiments
we first estimate the median clipping factor for each layer individually on 1000 batches of size 128
taken from our auxiliary data. These approximate factors are then reapplied to the total gradients sent
from the clients to the malicious server before applying Algorithm 2.

The results in Table 5 and Table 6 confirm the trends observed in prior work [Zhu et al., 2019; Geiping
et al., 2020; Balunovic et al., 2022b] that low clipping norms C and high noise levels ¢ result in more
effective defense mechanisms. Still, we observe that SEER is fairly robust to DP-SGD, as even for
clipping norm of 2, and high noise levels of 5 x 10~3 our method is able to recover private date from
more than 85% of client batches.

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental results, which we did not include in the main body
due to space constraints.

F.1 EXTENDED LARGE BATCH EXPERIMENTS

In Table 7 and Table 8, we present the extended version of our CIFAR10 and CIFAR100 single-client
experiments, first presented in Sec. 5. We observe similar trends as in the original experiments. For
example, we observe that CIFAR10 and CIFAR100 performances are similar and that there is no
major difference in performance between the most bright and most red image properties.

F.2 EXTENDED SECURE AGGREGATION EXPERIMENTS

In Table 9, we present an extended version of our CIFAR10 multi-client experiments first presented
in Sec. 5 containing results for both the bright and dark properties. While we see the dark property
reconstructions are generally slightly better than the bright ones, we observe similar trends between
the two sets of the experiments. This suggests our method for attacking secure aggregation federated
updates is effective regardless the property used.

17



Published as a conference paper at ICLR 2024

Table 9: Reconstructions on securely aggregated batches on the bright and dark properties with
different numbers of clients C' on CIFAR1O0, for different total numbers of images. We report the
percentage of correctly reconstructed images (Rec) and the average PSNR across the top 37% images
(PSNR-Top).

C' = 4, Dark C = 4, Bright C' = 8, Dark C = 8, Bright
#Imgs Rec (%) PSNR-Top Rec (%) PSNR-Top Rec (%) PSNR-Top Rec (%) PSNR-Top
64 50.2 27.5+3.0 414 27.3+3.1 43.0 274+3.3 413  26.6 £3.7
128 51.3 28.8+2.6 442  26.8£3.0 434  27.6+3.5 40.6 27.3+3.3
256 509 29.8+23 51.9 27.3+2.5 51.7 27.0+29 419 254+3.1
512 61.3 30.24+2.4 52.9 25.7+24 56.3 28.71+2.9 51.7 25.9+238

Table 10: Large batch reconstruction on the bright property on CIFAR10 on a network trained with
batch size B = 128 and tested for various client batch sizes Bi.y. We report the percentage of well-
reconstructed images (Rec), the average PSNR and its standard deviation on all reconstructions (PSNR-
All), and across the top 37% images (PSNR-Top).

B« Rec (%) PSNR-Top 1 PSNR-AIl

64 42.0%  21.51+1.83  18.51+2.93
96 874%  30.56 £ 1.31 26.28 +4.92
128 94.2% 31.914+1.73 28.15+4.34
192 86.3%  30.78 £2.37  25.77£5.14
256 67.5%  28.02+2.79 2242+5.14

F.3 ROBUSTNESS TO B

In this section, we demonstrate that attack parameters ¢y generated by SEER for a particular client
batch size B can work to a large extent for batch sizes close to the original one, thus relaxing the
requirement that the exact client batch size B is known during the crafting of the malicious model f.
In particular, in Table 10, we show the effect of applying our single-client attack trained on B = 128
on CIFARI10 using the Bright image property for clients with varying batch sizes Bi.y. We observe
that while, as expected, SEER performs best when Bi.s; = B, both the success rate and the quality of
reconstruction on clients with batch sizes even 2x larger than the trained one remain very good. We
note that Table 10 suggests that underestimating the client batch size Biey during the training of f
is better than overestimating it, as the reconstruction performance when By = 64 is significantly
worse than when By = 256. This is mostly caused by d filtering out all images in the client batches
resulting in the removal of all the client data.

F.4 ROBUSTNESS TO IMAGE CORRUPTIONS

In this section, we show that SEER is robust to distributional shifts caused by common image
corruptions. To this end, we use a SEER model trained on the CIFAR10 trainset with the red property,
batch size B = 128, and without secure aggregation to attack batches sampled from the CIFAR10-C
dataset [Hendrycks & Dietterich, 2018], where 19 different image corruptions are applied at different
levels of severity (1-5) to the original testset of CIFAR10. We show the results in Table 11.

We see that for all image corruptions but Fog and Contrast, even at severity 5, we recover images
from more than 85% of client batches with good quality (average PSNR > 23 in most cases). For Fog
and, to even greater extend, Contrast, however, we observed that reconstructions, while preserving
the image semantic, became too bright resulting in a very low PSNR numbers. To this end, we created
a modified version of our attack that approximates and applies a multiplicative factor 8 by which
one needs to multiply the recovered normalized images such that 90% of the recovered images after
denormalization are inside the range [0, 1]. We use 90% to account for the fact that not all images
will be correctly recovered, and we don’t want these to affect our 3 estimations. The results are
shown under Fog Fixed and Contrast Fixed, where we get even better results than on the original data.
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Table 11: Large reconstruction in the presence of different common corruptions applied on CIFAR10
network trained on B = 128 using the red property. As a baseline, our attack achieves Rec: 93.5%,
PSNR-Top: 31.1 4 1.2, and PSNR-AIIL: 27.8 4+ 4.1 . We report the percentage of well-reconstructed
images (Rec), the average PSNR and its standard deviation across all reconstructions (PSNR-All), and
on the top 37% images (PSNR-Top) for three different degrees of severity of the corruption (Severity).

Severity = 1 Severity = 3 Severity = 5
Corruption Rec (%) PSNR-Top T PSNR-AIl 1 Rec (%) PSNR-Top T PSNR-AIl T Rec (%) PSNR-Top T PSNR-AIl 1
Brightness 94.7 31.44+1.1 28.0%+4.1 92.3 31.6+1.1 27.7+£45 94.0 31.0+1.4 27.3+43
Contrast 96.2 246+1.0 229+20 2.8 178+£09 16.6+1.2 0.6 151+1.3 13.6+1.6
Contrast Fixed 97.5 344+13 306+45 99.0 322+15 29.24+3.29 98.0 28.2+1.6 254429
Defocus Blur 942  302+1.1 27.3+3.7 94.9 27.5+1.1 25.1+£29 94.8 252409 232+23
Elastic Transform 95.0 29.0£1.0 263+3.3 94.7 27711  252+29 95.3 281+1.1 255+£3.0
Fog 95.3 26.1+1.1 24.0+2.3 68.6 214+1.1 19.8+1.6 23.0 19.5+0.9 18.1+1.3
Fog Fixed 95.4 33614 2944+4.7 98.0 34.6+1.2 31.0+4.4 97.6 35.0£1.0 31.1+47
Frost 944  302+09 27.0+3.8 94.6 281+1.0 254+33 94.2 26.5+0.7 243+26
Gaussian Blur 942  303+1.1 273437 95.0 265+1.0 243+26 95.0 243+10 225+21
Gaussian Noise 94.2 30.3+£0.8 27.24+3.9 92.8 27.8+0.5 25.2+ 3.4 90.9 26.3+0.4 24.0£3.1
Glass Blur 933 312+13 27.7+4.2 95.0 296+1.1 268+3.5 94.9 29.8+1.1 27.0+34
Impulse Noise 93.0 29.5+0.8 26.6+3.7 90.9 2644+0.7 24.0£3.0 85.8 225405 209+2.1
Jpeg Compression 94.6 309+1.1 27.7+£39 95.3 30.8+1.1 27.7+£38 94.5 306+1.1 27.6+3.8
Motion Blur 95.3 28.6+1.0 26.1+3.1 95.0 26.2+1.1 24.1+2.5 94.6 253+1.2 23.3+23
Pixelate 933 308+1.1 27.6+3.9 94.2 304+11 27.3+£38 94.4 29.1+1.0 265+34
Saturate 93.5 29.1+1.2 26.1+3.6 95.0 3L.7+1.5 28.0+4.2 91.4 24.74£0.8 227423
Shot Noise 94.2 30.7£0.9 27.6 £ 3.9 92.9 29.0+0.7 26.2+3.6 91.5 27.0+0.6 24.6 + 3.3
Snow 933 31.3+1.1 27.9+4.2 92.6 30.8+0.9 27.3+42 91.8 293+1.1 25.9+4.0
Spatter 933 31.3+1.1 279442 92.5 31.1+£1.0 27.5+44 93.0 306+1.1 27.1+4.2
Speckle Noise 93.8 30.8+1.0 27.6 £ 3.9 92.5 29.5+0.8 26.5+ 3.9 91.2 27.0+0.8 24.5+3.3
Zoom Blur 93.6 279+11 253+32 93.6 266+1.0 24.3+£28 95.4 25.5+1.0 235+23

Table 12: Large batch reconstruction on the bright and dark properties from batches of size B = 128
on CIFARI10 using local (Local) and global properties P (Global). We report the percentage of
well-reconstructed images (Rec), the average PSNR and its standard deviation across all reconstruc-
tions (PSNR-AIl), and across the top 37% images (PSNR-Top).

CIFAR10, Bright CIFAR10, Dark
P Rec (%) PSNR-Topf PSNR-AIlT  Rec (%) PSNR-Topf PSNR-AIlT
Global 544 270418 206458 619 27.7+22 21.1+6.1
Local 94.2 31.9+1.7 28.2+4.3 81.3 33.64+1.4 27.4+73

We conjecture this is due to the fact that most of the corrupted images have narrower range of pixel
values making obtaining high PSNR numbers easier. All in all, our experiments show that SEER is
very robust to image corruptions, and that even the most severe changes like the ones in CIFAR10-C,
sometimes resulting in hard to recognize images, can be handled well by our algorithm.

F.5 COMPARISON BETWEEN OUR LARGE BATCH AND SECURE AGGREGATION PROPERTIES

In this section, we compare our two SEER variants—one based purely on the local distribution of
m for the large batch setting, referred to as local P, and the other for secure aggregation setting,
described in App. C, which is based on a mix of the global and local distributions of m and is referred
to as global P. We mount both variants of SEER on gradients coming from a single client with batch
size B = 128 on CIFAR10. We note that both methods are well-defined in this setting, and either
one can successfully reconstruct data from the client batches.

The results are depicted in Table 12. While both methods successfully reconstruct the majority of
client batches, we clearly see the benefits of using the local property P. In particular, the results
in Table 12 suggest that the local distribution approach reconstructs up to 1.75 times more images,
while also producing higher PSNR values not only on the full set of reconstructed batches but also on
the top 37% of them. This motivates the need for our single-client attack variant, and demonstrates
that secure aggregation provides additional protection to individual clients.
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Table 13: Large batch reconstruction on CIFAR10 with B = 128 with different properties P. We
report the percentage of well-reconstructed images (Rec), the average PSNR and its standard deviation
on all reconstructions (PSNR-AIl), and across the top 37% images (PSNR-Top).

Property Rec (%) PSNR-Top 1 PSNR-AIlT
Bright 94.2 319+ 1.7 282443
Dark 81.3 33.6+1.4 274+73
Red 93.5 31.1+1.2 278+4.1
Blue 97.2 31.5+0.9 28.6+3.5
Green 96.7 32.8+1.1 29.6 4.0
H Edge 80.1 29.0+1.1 244455
V Edge 85.8 29.6£1.0 255+£5.0
Green V Edge 95.1 325+1.1 286445
Rand 97.5 328+1.1 294438

F.6 ADDITIONAL TYPES OF PROPERTY METRICS m

Bright Dark Red Green Blue H Edge V Edge GreenV Edge Rand

Figure 5: Example reconstructions of SEER trained on CIFAR10 with C' = 1, B = 128 and different
properties.

In this section, we demonstrate that our method works well for variety of properties P based on
different metrics m. In particular, we look at local properties P based on: (i) the image brightness—
the most bright (Bright) and the most dark (Dark) image in a batch; (ii) the image color—the most
red (Red), blue (Blue), or green (Green) image in a batch; (iii) edges in the image—the image with
the strongest horizontal (H Edge), or vertical (V Edge) edges in a batch; (iv) combination of image
color and edges—the most green image with vertical edges (Green V Edge); and, finally, (iv) based on
random property (Rand). For the color properties we rank the batch images based on the difference
between two times the average color channel response for the chosen color and the sum of the other
two average color channel responses. For the edge properties, we ranked the batch images based
on the average response with the [1, —1] edge filter (either in horizontal or vertical direction) on a
grayscale version of the image. Further, for the combination filter we ranked images based on sum
of the color and edge property scores. Finally, for the random property we ranked the batch images
based on the average response to a random 3 x 3 convolution filter that was normalized. The results
for CIFAR10 for the large batch size setting for B = 128 is shown in Table 13. Further, example
reconstructions are given in Fig. 5.

We observe that for all properties SEER successfully recovers data from a large portion of the client
batches (>80%), with good quality (PSNR>24). Yet, we still observe some variability across the
properties with the Random property being the easiest to attack, as demonstrated by the percentage of
recovered images and the very good PSNR metrics. This is in line with the observations in Fowl] et al.
[2022b]. We also observed that the Dark property produces the best image reconstructions, as shown
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Table 14: Large batch reconstruction on CIFAR10 model trained with the Bright property on B = 128
after several rounds of federated training (#Rounds) with different learning rates (Learning Rate)
using 8 clients. We report the percentage of well-reconstructed images (Rec), the average PSNR and
its standard deviation across all reconstructions (PSNR-AIl), and on the top 37% images (PSNR-Top).

#Rounds Learning Rate Rec (%) PSNR-Topt PSNR-AIl1

0 1x10~4 942 31.94+1.7 28.24+4.3
1 1x10~4 94.6 31.8+1.7 28.24+4.3
2 1x10~4 944 31.1+1.6 27.3+4.2
3 1x1074 89.2 272+1.7 23.6+3.6
4 1x1074 25.8 20.1+1.5 177423
5 1x10~4 6.1 175+15 149423
1 5x 1074 91.4 29.0+1.7 251+4.0

by PSNR-Top, but fails to reconstruct as often. In practice, we observed this happens due to SEER
recovering completely black images. We conjecture this is due to lack of diversity in the images
SEER sees during training as most images in CIFAR10 with the Dark property have completely black
background. Finally, we observe that color properties are easier to attack compared to edge ones but,
interestingly, when combined, like in Green V Edge, the results become much closer to the color
version. We conjecture this is due images with very pronounced colors being more similar to each
other and, thus, easier to distinguish from the rest of the images in the batch.

F.7 RESULTS UNDER TRAINED ENCODER

Figure 6: Example reconstructions of SEER after training the client model for different number of FL
rounds using 8 clients without secure aggregation with learning rate 1 x 10~*. Left to right: Ground
truth, 1 round, 2 rounds, 3 rounds, 4 rounds, 5 rounds.

Throughout this paper, we assumed that our attack is mounted at the beginning of the training
procedure. In this section instead, we show the results of using SEER’s decoder to reconstruct images
from gradients computed on models that were trained for several federated learning rounds from the
malicious state chosen by SEER. We show the results quantitatively in Table 14 and qualitatively in
Fig. 6 for different number of rounds (#Rounds) and learning rates Learning Rate when training with
8 clients without using secure aggregation.

We observe that our decoder works even after several rounds of training of the client model. Further,
we observe that our decoder is more robust to a single large step update (One round with learning rate
5 x 10~*) than many smaller updates applied sequentially (Five rounds with learning ratel x 10~%)
and that each additional communication round results in a small additional drop in quality of the
reconstruction. We believe further improvements over these results are achievable if one finetunes
our decoder model at each FL round to match the changes of the client encoder, but we leave this as
future work.

F.8 EXPERIMENTS WITH AUXILIARY DATASETS OF DIFFERENT SIZES

In this section we investigate how the size of the auxiliary dataset used for training SEER affects
its results. In particular, in Table 15, we show the results when we used only p percent of the data
points in CIFAR10’s train set as auxiliary data. As expected of any algorithm based on training, our
results generally improve with the number of datapoints available to the attacker. Despite this, we
see that our method is very sample efficient, as we successfully reconstruct data from > 80% of
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Table 15: Reconstructions on models trained with the Red property and B = 128 on different
percentage p of data in the CIFAR10 trainset. We report the percentage of well-reconstructed
images (Rec), the average PSNR and its standard deviation across all reconstructions (PSNR-All),
and on the top 37% images (PSNR-Top).

p  Rec(%) PSNR-Topt PSNR-AIl+

5 80.6 245+16 21.5+3.1
10 92.2 279+11 24.7+£34
20 86.9 302+0.9 264+49
33 875 31.7+1.1 272455
50 95.8 31.5+1.1 28.3+3.8

100 93.5 31.1+12 278+4.1

Figure 7: Example reconstructions of SEER trained on different percentage p of CIFAR10 train set.
Left to right: Ground truth, 100%, 50%, 33%, 20%, 10%, and 5%.

client batches even when training on mere 2500 training data samples (p = 5%). We further show
qualitative comparison between the models in Fig. 7, where we confirm the quality of reconstructions
degrades when less data is available, especially for very small p, yet for all p the images remain
recognizable regardless.

F.9 RESULTS UNDER CLIENT HETEROGENEITY

Next, we look at how our method is affected by the level of client data heterogeneity. In particular, we
take our CIFAR10 model trained with B = 128 and the Red property, and we evaluate its performance
on clients with different level of non-IID data. To simulate non-IID data, we sample from a Dirichlet
distribution with parameter «, to determine each client’s label distribution and randomly sample
the client data according to this. In this setting, « close to 0 means that each client only holds data
from few classes. We show the results in Table 16, where we show that while heterogeneity slightly
degrades our performance, SEER is very robust to heterogeneity, as even severe heterogeneity levels
like o = 0.1 produce above 90% attack success rate with average PSNR > 25.

F.10 RESULTS ON THE RESIMAGENET DATASET

In this section, we show quantitative and qualitative results from applying SEER on the ResImageNet
dataset (Restricted ImageNet [Tsipras et al., 2018], a subset of ImageNet with 9 superclasses). Our
setup is similar to the experiments presented for ImageNet in the main paper, i.e., we use batch size
B = 64, the Bright property, and our U-Net decoder architecture (App. G). Further, we also use the
same hyperparameters (App. H), except for two small changes: (i) we execute the pretraining stage
on the images in CIFARI10, instead of the downsized version of the images in ImageNet, avoiding
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Table 16: Reconstructions for clients with different data heterogeneity levels o on a CIFAR10
model trained with the Red property on B = 128. We report the percentage of well-reconstructed
images (Rec), the average PSNR and its standard deviation across all reconstructions (PSNR-All),
and on the top 37% images (PSNR-Top).

o Rec(%) PSNR-Topt PSNR-All?T

0.1 93.9 281£1.0 253£3.3
0.2 94.4 28711 26.0£3.3
0.3 94.3 29.1+£1.0 262+34
0.4 95.1 29.2+11 264+34
0.5 95.0 294+10 26.6+34
0.6 96.2 29.5+£1.0 26.7£3.2
0.7 95.8 294+11 26.6=£3.3
0.8 95.8 29.7+11 27.0+3.3
0.9 95.8 29.6£1.0 269£3.3
1.0 96.1 29.8+1.1 27.0%+3.3

Ground
Truth

[

Figure 8: Example reconstructions of SEER on ResImageNet for B = 64 and the Bright property.

pretraining on the full 1000 classes, (ii) we train for 370 epochs instead, with 400 gradient descent
steps per epoch.

Under these settings, SEER is able to recover 77% of images with average PSNR of 20.6 & 3.7
and PSNR Top of 23.8 &= 1.4. Examples are shown in Fig. 8, where we see that images are clearly
recognizable and accurate in terms of object positions.

F.11 RESULTS UNDER DATA DOMAIN SHIFTS
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Figure 9: Example reconstructions of SEER trained on ImageNet with B = 64 and the Bright
property and applied on ISIC2019.
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Figure 10: The architecture of our U-Net-based reconstructor r used in our ImageNet experiments.

Here g is the randomly subsampled model gradient and the output is the resulting reconstructed
image.

In this section, we first describe some implementation details for our ISIC2019 domain shift experi-
ment originally presented in Table 3 that were omitted from the main text for brevity. In particular, to
apply our CIFAR10 network trained with the Red property on B = 128 to the ISIC2019 dataset, we
resized the ISIC2019 images so that their larger side is 350 pixels, then applied a random 224 x 224
crop, followed by another downsizing of the image to 32 x 32. Since the domain naturally includes a
lot of red images, as the data represents pictures of skin conditions, we saw that our method generated
too brightly red images. To avoid this issue, we applied the fix presented in App. F.4 for the Fog and
Contrast corruptions. Note that as before, the fix requires no additional knowledge about the color
distributions of the images in the ISIC2019 dataset.

Next, we explore a high-resolution version of our domain shift experiment presented in Table 3. In
particular, we use the ImagetNet network trained in App. F.10 and apply it to the ISIC2019 dataset
prepared like above but with final resolution 224 x 224 and only B = 64. We successfully recover
data from 76.3% of client batches with average PSNR 20.0 + 1.8 and PSNR Top of 21.7 & 0.8.
We further show example reconstructions of the images in Fig. 9. Similarly to Table 3, we obtain
slightly worse reconstructions compared to the dataset used for the training, but we see that the skin
conditions in Fig. 9 are clearly identifiable from our reconstructed images.

G U-NET-BASED IMAGE RECONSTRUCTOR

We explain the architecture of our image reconstructor r used in our ImageNet experiments in Sec. 5.
Our architecture is inspired by the decoder portion of a U-Net Ronneberger et al. [2015], which has
been demonstrated to be a memory-efficient architecture for generating images.

We show our architecture in Fig. 10. In the figure, g depicts our model’s gradient subsampled
randomly so that only 3% of its entries are kept (See App. I.1). There are two main differences
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between our r in Fig. 10 and the original 6-layer U-Net architecture. First, we use no activation
functions, thus creating a (sparse) linear reconstructor function r. This allows us, similarly to our
CIFAR10/100 experiments, to combine r and d into a single linear layer, whose bias becomes the
target for our filtered-out inputs X,,;. Second, as our architecture does not include U-Net-style
encoder, the U-connections of our reconstructor are substituted by pairs of linear layers with a
bottleneck in the middle applied on g. In Fig. 10, we depict the bottleneck sizes and transposed
convolution sizes, as well as the intermediate output sizes of the different layers. The bottlenecks
ensure that the memory efficiency of our method is preserved and are inspired by the intuition that
the U-connections only need to provide high-frequency content which can live in a much lower-
dimensional subspace. Finally, we note that for the purpose of pretraining, we used the first 3 channels
of the third transposed convolution layer as our downsized image output and that our transposed
convolution stack produces images of size 264 x 264, which we then center-crop to produce our
ImageNet-sized final output.

H HYPERPARAMETERS

In this section, we provide more details about the exact hyperparameters used in our experiments in
Sec. 5. We implemented SEER in Pytorch 1.13. Throughout our experiments, we used the Adam
optimizer with a learning rate of 0.0001. For CIFAR10/100, we trained between 500 and 1000 epochs,
where an epoch is defined to be 1000 sampled batches from our trainset. To stabilize our training
convergence, we adopted gradient accumulation and, thus, updated our modules’ parameters only
once every 10 gradient steps amounting to 100 gradient descent steps per epoch for those datasets.
For ImageNet, we additionally execute a pretraining stage on a downsized version of the training
images allowing the network to first learn to recover large details in the image before recovering finer
details. For ImageNet, we train with the original /5-based loss L. for the first 200 epochs, followed
by 300 epochs of using ¢; version of it, resulting in better visual quality of the reconstruction. At each
epoch we only use 4000 randomly sampled batches instead of the full dataset to reduce computational
complexity.

For faster convergence and better balance in the optimized objective £ = L. + « - Ly, we adopted
a schedule for the hyperparameter c, following an exponential curve of the epoch «.

The schedule is defined as: a(x) = min(|B|,2°")), where f(k) = (E=r)Botr1 Jinearly inter-
polates between (5 and 31 across the total number of epochs K with (5, 5ls(set to (—2,loga|B|).
For ImageNet, we set (3p, 81) to (—5,5.3) to allow for better reconstruction earlier in the training
process. Finally, we point out that in the multi-client setting, we estimate the cumulative density
functions before training for the first and second-highest brightness in a batch on 20000 randomly
sampled batches from the trainset (see App. C).

I IMPLEMENTATION DETAILS

I.1 SUBSAMPLED GRADIENTS

In order to save memory and computation, we use only part of the entries in our full model gradient
g to construct our intermediate disaggregation space R™<. In particular, we randomly sample 0.1%
of the gradient entries of each of the model’s parameters while ensuring that at least 8400 entries per
parameter are sampled for our CIFAR10/100 experiments, and 2% and at least 9800 entries for our
ResImageNet experiments. This results in 1.6% of the total gradient entries for CIFAR10/100 and
3.0% for ResImageNet. We theorize that we are able to reconstruct nearly perfectly with such a small
percent of the gradient entries because there is large redundancy in the information different gradient
entries provide.

1.2 EFFICIENTLY COMPUTING THE DISAGGREGATION LOSS LyuiL
Computing L, directly for large batch sizes B takes a lot of memory due to the need to store g; for

all 7 in the large set I,,;. Note that the reason for this is that we want to enforce all of the individual
gradient g; to fall in the null space of 8, separately. In practice, to save space, we enforce the same
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Table 17: Large batch reconstruction on the bright and red properties from batches of different sizes
B on CIFAR10. We report several additional quality of reconstruction metrics—the average MSE
and its standard deviation across all reconstructions (MSE All), and on the top 37% images (MSE
Top), as well as, the average LPIPS and its standard deviation across all reconstructions (LPIPS All),
and on the top 37% images (LPIPS Top).

CIFARI0, Red CIFAR10, Bright
B MSE Top | MSE All | LPIPS Top | LPIPS All | MSE Top | MSE All | LPIPS Top | LPIPS All |
64 0.0009 £ 0.0002 0.0068 +0.0165 0.039 £ 0.012 0.128 +0.194 0.0007 £ 0.0002 0.0048 +0.0099 0.046 £ 0.026 0.104 £ 0.099
128 0.0008 £ 0.0002 0.0032 + 0.0072 0.050 +0.014 0.096 + 0.089 0.0007 4 0.0002  0.0031 =+ 0.0060 0.057 £0.025 0.104 £ 0.081
256 0.0008 £ 0.0002 0.0029 + 0.0053 0.052+0.017 0.095 + 0.078 0.0006 + 0.0002 0.0033 & 0.0075 0.054 +0.025 0.109 4+ 0.087
512 0.0010 % 0.0002 0.0035 £ 0.0051 0.089 £ 0.025 0.141 4+ 0.081 0.0024 & 0.0007 0.0070 % 0.0091 0.168 £+ 0.058 0.204 & 0.089

condition by computing the surrogate:

1

‘Cnul = || ﬂ
nu

4€ Inul

where the first part of the equation enforces the mean gradient, and the second part enforces a different
randomly chosen gradient at every SGD to both approach 0. This, in practice, has a similar result to
the original loss L, in that, over time, all gradients in I,,;; go to 0.

1.3 TRAINSET DATA AUGMENTATION

For the purpose of training our encoder-decoder framework, we observed data augmentation of
our auxiliary dataset is crucial, especially for large batch sizes B. We theorize that the reason
for this is the lack of diversity in the reconstruction samples X... In particular, as B grows, an
increasingly smaller set of images are selected to be the brightest or darkest of any batch sampled
from the training set. To this end, when sampling our training batches for CIFAR10/100, we first
apply random ColorJitter with brightness, contrast, saturation, and hue parameters 0.2, 0.1, 0.1,
and 0.05, respectively, followed by random horizontal and vertical flips, and random rotation at
N %90 + € degrees, where N is a random integer and ¢ is chosen uniformly at random on [—5, 5].
For ResImageNet, we additionally do a random cropping of the original image to the desired size of
224 x 224 before the other augmentations.

1.4 TRAINSET BATCH AUGMENTATION

As detailed in App. C, when mounting SEER in the secure aggregation setting we select 7 based on a
mix of the global and local distributions of m. As noted in Sec. 4.1, the probability of attack success
with an optimal threshold 7 based on the global distribution of m is % in the limit of the number of
images being aggregated. We expect for large B, therefore, SEER to also successfully reconstruct
only for ~ % of the securely-aggregated batches, forcing us to avoid training on the rest 1 — % > % of
the securely-aggregated batches, which act as a strong noise during training and prevent convergence.
This, in turn, results in rejecting training on a big portion of our sampled client batches.

To address this sample inefficiency, we use batch augmentation during training to transform the
client batches to ones with a desired brightness distribution. The batch augmentation simply consists
of adjusting the brightnesses of individual images within each batch. We do two types of batch
augmentations based on two different distributions—one where it contains precisely one image in
the batch with brightness above the threshold 7 and another where precisely zero images in the
batch have brightness above the threshold 7. We alternate the two augmentations at each step of the
training procedure. To achieve the distributions, we adjust all image brightness within a batch using a
heuristic method. The method first adjusts the brightness of the most bright image (the least bright
image in the case of the dark image property) such that it lands on the desired side of the threshold 7.
However, as after adjusting the image, the brightnesses within the batch are no longer normalized,
we then need to renormalize the batch, resulting in a new batch brightness distribution. If our new
distribution is as desired, we stop. Otherwise, we iterate the process until convergence.
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Table 18: Large batch reconstruction on the bright and red properties from batches of different sizes
B on CIFAR100. We report several additional reconstruction quality metrics—the average MSE and
its standard deviation across all reconstructions (MSE All), and on the top 37% images (MSE Top), as
well as, the average LPIPS and its standard deviation across all reconstructions (LPIPS All), and on
the top 37% images (LPIPS Top).

CIFAR100, Red CIFAR100, Bright
B MSE Top | MSE All | LPIPS Top | LPIPS All | MSE Top | MSE All | LPIPS Top | LPIPS All |
64 0.0007 £ 0.0002 0.0021 # 0.0046 0.034 £0.010 0.056 + 0.059 0.0006 = 0.0002 0.0028 + 0.0047 0.050 +0.023 0.094 +0.075
128 0.0007 £ 0.0001 0.0019 +0.0039  0.031 £ 0.011 0.051 4 0.061 0.0010 £ 0.0003 0.0035 + 0.0045 0.112 +0.035 0.164 +0.076
256 0.0008 £ 0.0002 0.0022 4 0.0047 0.047 £0.014 0.079 4 0.064 0.0003 £ 0.0001 0.0017 £ 0.0031 0.042 4+ 0.019 0.091 £ 0.068
512 0.0005 £ 0.0001 0.0014 =+ 0.0025 0.034 £ 0.009 0.057 4 0.049 0.0006 £ 0.0002 0.0032 £ 0.0043 0.077 £ 0.032 0.148 4 0.085

Table 19: Reconstruction from securely aggregated updates on the bright and dark properties using
different numbers of clients C' on CIFARIO0, for different total numbers of images. We report
additional reconstruction quality measures—the average MSE (MSE Top) and LPIPS (LPIPS Top)
and their respective standard deviations on the top 37% images.

C = 4, Dark C = 4, Bright C = 8, Dark C = 8, Bright
#Imgs MSE Top | LPIPS Top | MSE Top | LPIPS Top | MSE Top | LPIPS Top | MSE Top | LPIPS Top |
64 0.0020 £ 0.0013  0.110 £ 0.052 0.0027 £0.0022  0.091 =+ 0.060 0.0031 £0.0023 0.111 £ 0.059 0.0026 £ 0.0021  0.123 +£0.073
128 0.0018 £0.0013  0.130 % 0.050 0.0028 £ 0.0018  0.105 £ 0.064 0.0028 £0.0023  0.118 £ 0.070 0.0031 £ 0.0026 0.111 £ 0.075
256 0.0012 £ 0.0008 0.130 £ 0.045 0.0022 + 0.0012 0.113 £ 0.049 0.0023 £ 0.0014 0.130 & 0.060 0.0035 £ 0.0022 0.164 & 0.085
512 0.0012 £ 0.0008  0.142 +0.054 0.0030 £0.0013  0.208 #+ 0.064 0.0015 £ 0.0010  0.159 £ 0.054 0.0029 +0.0017  0.170 4 0.074

1.5 DETAILS ON PRIOR WORK COMPARISON

In this section, we provide further details about the exact setting in which we do the comparison
against prior work in Table 4 and Fig. | in the main text. We focus on the feature fishing variant of
Wen et al. [2022], that targets batches containing a large percentage of repeated labels, as this setting
was shown in prior work [Yin et al., 2021; Geng et al., 2021] to be significantly harder to solve. For
the comparison itself, we evaluate both the Fishing and SEER models on client batches of the same
class. This setting favors Wen et al. [2022] over SEER, as the Fishing’s weights are specifically
adapted to it and the SEER model was only trained on batches with randomly selected mixed labels,
as in the rest of the paper. We select D-SNR threshold of 5 for the experiment in Table 4 based on
Fig. 1. For the comparison against Zhang23 [Zhang et al., 2023] and LOKI [Zhao et al., 2023], we
observe they have practically infinite T-SNR, making them trivially detectable.

J  ADDITIONAL MEASUREMENTS OF THE QUALITY OF OUR RECONSTRUCTED
IMAGES

In Sec. 5 and App. F.1, we focussed on reporting the quality of our image reconstructions in terms
of the popular PSNR image quality metric. In this section, we provide additional image quality
measurements in terms of the mean square error of the individual pixels (MSE) and the learned
perceptual image patch similarity (LPIPS) metrics. We present the additional measurements for
all large batch experiments from App. F.1 in Table 17 and Table 18 for CIFAR10 and CIFAR100,
respectively. Further, in Table 19, we present the additional measurements for the multi-client
experiments originally presented in Sec. 5. The additional measurements reinforce our observations
from Sec. 5 that SEER consistently reconstructs client data well.
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