
Economic Approaches
to

Software Correctness

David F. Bacon *
Yiling Chen

Ian Kash
David Parkes

Manu Sridharan *
Malvika Rao

Harvard University

* IBM Research

This Makes Me Mad

Engineering-Based
Correctness

Software Engineering

 Methodology

 Process

 Fatal Flaws:

• Not Quantitative

• Degenerates to Religion

Mathematics-Based
Correctness

Formal Methods

 Specs & Proofs

 Model Checking

 Fatal Flaws:

• Rely on Spec

•Don’t Scale

“Software Crisis” -
Solved!

“well before the seventies have run to completion, we
shall be able to design and implement … systems

virtually free of bugs.”

-- Edsger Dijkstra, 1972 Turing Award Lecture

Bugs Have a Long Tail

These get fixed… maybe
These don’t

security bugs
B

ug
 F

ix
 V

al
ue

HOW DO BUGS GET SORTED??

Bugs sorted by Value

HOW ARE COSTS DETERMINED??

Users and Developers Are
Isolated From Each Other

...deliberately
because feedback can’t be accumulated automatically

Can a Market Help
Solve This Problem?

 Large supply of work

 Large supply of capable workers

 Real value for performing the work

Imagine...

Offer Bounty

Click Reopen to open the application again. Click Report to see details or send
a report. Click Offer Bounty to contribute to a bounty for fixing this bug.

Select an amount to offer as a bounty for fixing this bug.

Your bounty will be held in escrow until the bug is fixed or the time limit
expires. The default time limit is 6 months.

Currently, 875 users have offered a total of $2298.45 for fixing this bug.
You have been affected by this bug 7 times.

Max: $50Avg: $2.63$0.99 Other

Market Demand

U users

J jobs

W workers

Ruj reward by user u for job j

Demand for job j = Rj = ∑ Ruj
u ϵ U

j ϵ J
Correctness Demand = R = ∑ Rj

Market Supply

Ruj reward by user u for job j

Cwj cost to worker w for job j

U users

J jobs

W workers

Potential Value for job j =
Pj = max(Rj -Cwj , 0)

w ϵ W

j ϵ J

Correctness Potential = P = ∑ Pj

Correctness Equilibrium

Potential Value for job j =
Pj = max(Rj -Cwj , 0)

w ϵ W

Ruj reward by user u for job j

Cwj cost to worker w for job j

= 0

U users

J jobs

W workers

j ϵ J

Correctness Potential = P = ∑ Pj

Dynamic Equilibrium

 Market is in correctness equilibrium when
correctness potential = 0

 In “living” software that never happens:

 new bugs are found

 bug bids change

 workers come and go

 Goal: design a system that tends towards
dynamic equilibrium

Bug ≃ Lack of Feature

Bug ≃ Lack of Application

Re-Imaging Software
Development

 Come up with an idea

 Fund development via crowdsourcing

 Implement via open market of programmers

 Deploy to a wide market of users

 Users report bugs and missing features

 User bid on work items

 Programmers fix bugs and improve software

 Users test fixes/improvements

Fund Development

Implement with Open Market

Deploy to a Wide Market

Users Report Bugs

Users Bid On Work Items

Programmers Fix Bugs

Drive Out Inefficiencies

How do we Design
such a Market?

 GUIDING PRINCIPLES:

 Autonomy: all actions are market-driven

 Inclusiveness: all contributors are rewarded

 Transparency: “financial disclosure”

 Reliability: robustness to manipulation

 Apply both market pressure and software tools

What are the
Components?

 Funding

 Workflow Process

 Reputation System

Funding
 Cash or scrip or votes?

 Sources of real cash:

 direct user bids

 escrow from sale (closed source)

 escrow from contribution (shareware)

 escrow from registration (open source)

 Time limit on bids - money reverts to source

Workflow: Bug

 Report

 Bid

 Categorize

 Reproduce

 Fix

 Test

 Commit

 Distribute

Every
one S

hares
 Rew

ard

Humans v
s T

ools?

Lots of Uncertainty
 When are two crashes the “same bug”?

 Line number? Data set?

 When does a change “fix” a bug?

 Partial fixes & incorrect fixes are not uncommon

 One fix may improve or worsen another bug

 If multiple fixes submitted, which is best?

 Band-aids versus Deep fixes

 Program analysis can help reduce uncertainty, but will
never eliminate it

Time

Bi
ds

 -
Pa

yo
ut

s

High Priority, Easy to Fix
High Priority, Hard to Fix
Low Priority, Easy to Fix
Low Priority, Hard to Fix

t0

Demand Trajectory

Mechanism Design
Problems

 Avoiding Freeloading

 Preventing Fraudulent “Fixed” Claims by Providers

 Preventing Fraudulent “Not Fixed” Claims by Consumers

 Lag in fix verification by Consumers

Reputation System

 Ratings based on past performance

 Control certain activities (e.g. commits)

 May also affect reward distribution

 Adjusted with information about software lifetime

 Can be seeded by central organization

 useful when project is small

 occasional escape hatch

Market-Based Software

• Only Scalable Solution

• Empowers Users and Programmers

• Makes Problem Quantitative

Thanks.

Questions?

