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Highly Asynchronous, 

Complex control flow 
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What do we learn from these? 

 

 Asynchrony causes non-determinism which 
may cause unwanted behavior 

 

 Non-determinism is caused by interfering 
unordered accesses to shared locations 

 can be seen as data races 

 

    Can we detect such data races? 



Concurrent 
program 

Happens-
Before 
Model 

Memory 
Locations 

 Race Detection Template 

race 1 

race 2 

race 3 

…. 

race N 

Race Detector 



 Race Detection: Web 

 

  

      ? ? 

? 

? 



  Memory locations 

 "Normal", C-like, memory locations for 
JavaScript variables 

 

 Functions are treated like "normal" locations 

 

 HTML DOM elements 

 

 Event, event-target and event-handler tuple 



 Happens-Before: Ingredients 

 What is an atomic action ? 
 E.g.:  parsing a single HTML element, executing a script, processing an 

event handler 

 

 How to order actions ? 
 E.g.: parsing of HTML elements of the page is ordered 

 

 Laborious to define: go over HTML5 spec 
 Browser differences… 
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      ? ? 

We will explore dynamic race detectors 



Race Detection for Web: Challenges 

 Precision: state-of-the-art detectors lead to 
too many false positives 

 caused by synchronization with read/writes, very 
common on the Web 

 Scalability: state-of-the-art race detectors do 
not scale 

 blow-up in size of data structures caused by too 
many event handlers 
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 Precision Issue: Example 

<html><body> 

 

<script> 

 var init = false, y = null; 

 function f() { 

   if (init)  

     alert(y.g); 

   else  

     alert("not ready"); 

 } 

</script> 

 

<input type="button“ id="b1“ 

 onclick="javascript:f()"> 

 

<script> 

  y = { g:42 }; 

  init = true; 

</script> 

 

</body></html> 

• 3 variables with races: 

init 

y 

y.g 

 

 

• some races are synchronization: 

init  

 

 

• reports false races: 

y 

y.g 



 Wanted: “guaranteed” races 
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Intuition: identify races that are 

guaranteed to exist.  

 

We want to report races on variable  

      init  

 

 

But not on: 

y 

y.g 

 

Because fixing the races on init will 

always remove all races on y and g 

(in this trace). 
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 Wanted: “guaranteed” races 

(c,d) is a guaranteed race if  ’  (), c and d 

are a guaranteed race in the concrete trace ’  

But how are we going to compute these 

In the abstract ? 



  Key Idea 1: Coverage 

Definition of <R> 

(c,d) is a guaranteed race if  ’  (), c and d 

are a guaranteed race in the concrete trace ’  

Theorem:  

 

        A  <R>  race is a guaranteed race 



  Key Idea 1: Coverage 

Definition: race (c,d) covers race (a,b) if  

a ≼ c (or a and c are in the same action),  

and d ≼ b. 

 

Generalizes to coverage by multiple races 

(c,d) is a guaranteed race if  ’  (), c and d 

are a guaranteed race in the concrete trace ’  

Theorem:  

 

     An  uncovered race is a guaranteed race. 
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Race Detection for Web: Challenges 





 Scalability: state-of-the-art race detectors do 
not scale 

 blow-up in size of data structures caused by too 
many event handlers 



   Computing Races 

A race detector should compute races.  The basic query 
is whether two operations a and b are ordered:  

 

          a ≼ b 

 

Observation: represent ≼ as a directed acyclic graph and 
perform graph connectivity queries to answer a ≼ b 



 The happens-before graph 

For this graph: 

 

       A ≼ B 

       A ≼ C 

       B ≼ D 

       C ≼ D 

       D ≼ E 

       A ≼ D 

       A ≼ E 

       C ≼ E 

       B ≼ E 

       B ⋠ C 

  

A 

B C 

D 

E 



  a ≼ b via BFS 

A 

B C 

D 

E 

M  - number of edges 

N  - number of nodes 

 

 

Query Time:   O(M) 

Space        :   O(N) 

 

 

 

 

? 



 a ≼ b  via vector clocks 
  (classic race detection) 

A 

B C 

D 

E 

A vector clock vc is a map: 

 
        vc   TID  N 

 

associate a vector clock  

with each node 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

<1,0,0,0,0> ⊑ <1,1,1,1,0> 

it follows that A ≼ D 

 

<1,1,0,0,0> ⋢ <1,0,1,0,0> 

it follows that B ⋠ C 

? 



 a ≼ b  via vector clocks 
  (classic race detection) 

A 

B C 

D 

E 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

Space Explosion 

? 

 

Pre-computation Time:  O(M  N) 

 

               Query  Time:   O(1) 

 

                        Space:   O(N2) 

 

 

 

 



A 

B C 

D 

E 

Key idea: Re-discover threads by 

partitioning the nodes into chains. 

 

due to:  

 

“A Compression Technique to Materialize 

Transitive Closure”, 1990, H.V. Jagadish 

ACM Trans. Database Syst 

     computes  a map: 

 
        c   Nodes ChainIDs 

 

associate a chain with each node 

 a ≼ b  via combining chain 
decomposition with vector clocks 

? 

http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
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A 

B C 

D 

E 

1,0 

2,0 1,1 

2,2 

2,3 

C = number of chains 

 

Chain Computation Time:  O(N3 + C  M) 

 

Vector clock computation: O(C  M) 

 

                    Query  Time:  O(1) 

 

                             Space:  O(C  N) 

Improved 

 a ≼ b  via combining chain 
decomposition with vector clocks 
   (optimal version)  

? 



 a ≼ b  via combining chain 
decomposition with vector clocks 
   (greedy version)  
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C = number of chains 

 

Chain Computation Time:  O(C  M) 

 

Vector clock computation: O(C  M) 

 

                    Query  Time:  O(1) 

 

                             Space:  O(C  N) 



 Race Detection: Web 

Happens-
Before 
Model 

Memory 
Locations 

 

  

      ? 

race 
coverage 

chain 
decomposition 

vector 
clocks 

Race Detector 

Pre-computation Time:  O(C  M) 

               Query  Time:  O(1) 

                        Space:   O(C  N) 



  Implementation 

 

 Based on WebKit  Browser 

 Used by Apple’s Safari and Google’s Chrome 

 

 

 Quite robust, Demo:  

 http://www.eventracer.org 

 

http://www.eventracer.org/


 

  

 ~17 per  

web site 

Happens-
Before 
Model 

Memory 
Locations 

Experiments: Forune 100 web sites 

race 
coverage 

chain 
decomposition 

vector 
clocks 

Race Detector 



Experiments: usability 

Metric 
 
 

Mean 
# race vars 

Max 
# race vars 

All 634.6 3460 

Only uncovered races 45.3 331 

Filtering methods 

Writing same value 0.75 12 

Only local reads 3.42 43 

Late attachment of event handler 16.7 117 

Lazy initialization 4.3 61 

Commuting operations - className, cookie 4.0 80 

Race with unload 1.1 33 

Remaining after all filters 17.8 261 



Experiments: speed 

Metric 
 
 

Mean Max 

Number of event actions 5868 114900 

Number of chains 175 792 

Graph connectivity algorithm 

Vector clocks w/o chain decomposition >0.1sec OOM 

Vector clocks + chain decomposition 0.04sec 2.4sec 

Breadth-first search >22sec TIMEOUT 



Experiments: space 

Metric 
 
 

Mean Max 

Number of event actions 5868 114900 

Number of chains 175 792 

Graph connectivity algorithm 

Vector clocks w/o chain decomposition 544MB 25181MB 

Vector clocks + chain decomposition 5MB 171MB 



Manual inspection of 314 races 

 57% are synchronization races 

 many idioms: conditionals, try-catch, looping over arrays 

 

 24% are harmful races 

 many cases of reading from undefined 

 new bugs:UI glitches, broken functionality after a race, needs 
page refresh, missing event handlers, broken analytics. 

 

 17% are harmless races 

 



  Future Work 

 Race Detection as Abstract Interpretation 

 

 Generalized Race Detection to  Commutativity 

 

 Synthesis of Repairs 

 

 Reachability algorithms based on graph contraction 

 inspired by algorithms for road networks 

 

 Stateless model checking 

 race-guided exploration of  the web page 



     Summary 

 Introduced Happens-Before model for web 
applications 

 useful for any concurrency analysis 

 

 Race coverage: report only real races 

 

 Efficient Analysis 

 combines vector clocks, chain decomposition and race 
coverage 



   Try it out 

 

 

 

                    http://www.eventracer.org 

 

http://www.eventracer.org/

