
 RACE DETECTION
 FOR
EVENT DRIVEN APPLICATIONS

Martin Vechev Manu Sridharan

 ETH Zurich IBM T. J. Watson

Veselin Raychev

 ETH Zurich

2

~ 1 trillion websites today

~ 1 billion smartphones by 2016

Reacts to events: user clicks, arrival
of network requests

 Event-Driven: Motivation

3

~ 1 trillion websites today

~ 1 billion smartphones by 2016

Reacts to events: user clicks, arrival
of network requests

 Event-Driven: Motivation

Wanted: fast response time

4

~ 1 trillion websites today

~ 1 billion smartphones by 2016

Reacts to events: user clicks, arrival
of network requests

 Event-Driven: Motivation

Wanted: fast response time

Highly Asynchronous,

Complex control flow

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

Non-determinism: network latency

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

Non-determinism: network latency

Gates = great

great is read
from Gates

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

Non-determinism: network latency

Gates = great

great is read
from Gates

great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

img1.png loaded

Non-determinism: network latency

Gates = great

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

img1.png loaded

Non-determinism: network latency

Gates = great

Gates = poor

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

Gates = great

Gates = poor

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

Gates = great

Gates = poor

poor is read from
Gates

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

fetch img1.png

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

Gates = great

Gates = poor

poor is read from
Gates

poor

18

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

Non-determinism: user interaction

19

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

Non-determinism: user interaction

20

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

click button

 read(“f”),

 crash

Non-determinism: user interaction

21

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

click button

 read(“f”),

 crash

Non-determinism: user interaction

parse/exec

<script>,

write (“f”)

What do we learn from these?

 Asynchrony causes non-determinism which
may cause unwanted behavior

 Non-determinism is caused by interfering
unordered accesses to shared locations

 can be seen as data races

 Can we detect such data races?

Concurrent
program

Happens-
Before
Model

Memory
Locations

 Race Detection Template

race 1

race 2

race 3

….

race N

Race Detector

 Race Detection: Web

 ? ?

?

?

 Memory locations

 "Normal", C-like, memory locations for
JavaScript variables

 Functions are treated like "normal" locations

 HTML DOM elements

 Event, event-target and event-handler tuple

 Happens-Before: Ingredients

 What is an atomic action ?
 E.g.: parsing a single HTML element, executing a script, processing an

event handler

 How to order actions ?
 E.g.: parsing of HTML elements of the page is ordered

 Laborious to define: go over HTML5 spec
 Browser differences…

 Example of Happens-Before

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

 Example of Happens-Before

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

 Example of Happens-Before

<html>

<head></head>

<body>

<script>

var Gates = “great”;</script>

</script>

</body>

</html>

Happens-
Before
Model

Memory
Locations

 Race Detection Template

 ? ?

We will explore dynamic race detectors

Race Detection for Web: Challenges

 Precision: state-of-the-art detectors lead to
too many false positives

 caused by synchronization with read/writes, very
common on the Web

 Scalability: state-of-the-art race detectors do
not scale

 blow-up in size of data structures caused by too
many event handlers

Race Detection for Web: Challenges

 Precision: state-of-the-art detectors lead to
too many false positives

 caused by synchronization with read/writes, very
common on the Web





 Precision Issue: Example

<html><body>

<script>

 var init = false, y = null;

 function f() {

 if (init)

 alert(y.g);

 else

 alert("not ready");

 }

</script>

<input type="button“ id="b1“

 onclick="javascript:f()">

<script>

 y = { g:42 };

 init = true;

</script>

</body></html>

• 3 variables with races:

init

y

y.g

• some races are synchronization:

init

• reports false races:

y

y.g

 Wanted: “guaranteed” races

<html><body>

<script>

 var init = false, y = null;

 function f() {

 if (init)

 alert(y.g);

 else

 alert("not ready");

 }

</script>

<input type="button“ id="b1“

 onclick="javascript:f()">

<script>

 y = { g:42 };

 init = true;

</script>

</body></html>

Intuition: identify races that are

guaranteed to exist.

We want to report races on variable

 init

But not on:

y

y.g

Because fixing the races on init will

always remove all races on y and g

(in this trace).

<html><body>

<script>

 var init = false, y = null;

 function f() {

 if (init)

 alert(y.g);

 else

 alert("not ready");

 }

</script>

<input type="button“ id="b1“

 onclick="javascript:f()">

<script>

 y = { g:42 };

 init = true;

</script>

</body></html>

a: y = {g:42};

c: init = true;

d: if (init)

b: alert(y.g);

A race (c, d) is guaranteed if in one trace we

see c … d and in another trace we see d … c

 Here, race (c,d) is guaranteed

 Wanted: “guaranteed” races

<html><body>

<script>

 var init = false, y = null;

 function f() {

 if (init)

 alert(y.g);

 else

 alert("not ready");

 }

</script>

<input type="button“ id="b1“

 onclick="javascript:f()">

<script>

 y = { g:42 };

 init = true;

</script>

</body></html>

Approach: record the full program trace and

then compute data-dependence, etc…

 Expensive !

 Wanted: “guaranteed” races

a: y = {g:42};

c: init = true;

d: if (init)

b: alert(y.g);

A race (c, d) is guaranteed if in one trace we

see c … d and in another trace we see d … c

<html><body>

<script>

 var init = false, y = null;

 function f() {

 if (init)

 alert(y.g);

 else

 alert("not ready");

 }

</script>

<input type="button“ id="b1“

 onclick="javascript:f()">

<script>

 y = { g:42 };

 init = true;

</script>

</body></html>

a: read(y)

c: write(init)

d: read(init)

b: read(y.g)

An abstraction of the program trace:

 Wanted: “guaranteed” races

Common approach: record only shared

reads and writes.

a: read(y)

c: write(init)

d: read(init)

b: read(y.g)

An abstraction of the program trace:

 Wanted: “guaranteed” races

Common approach: record only shared

reads and writes.

a: read(y)

c: write(init)

d: read(init)

b: read(y.g)

An abstraction of the program trace:

 Wanted: “guaranteed” races

Common approach: record only shared

reads and writes.

a: read(y)

c: write(init)

d: read(init)

b: read(y.g)

An abstraction of the program trace:

 Wanted: “guaranteed” races

Common approach: record only shared

reads and writes.

Which races are “guaranteed to exist” ?

a:

c:

d:

b:

An abstraction of the program trace:

 Wanted: “guaranteed” races

a:

c:

d:

b:

An abstraction of the program trace:

 Wanted: “guaranteed” races

a:

c:

d:

b:

An abstraction of the program trace:

 Wanted: “guaranteed” races

Which races are “guaranteed to exist” ?

a:

c:

d:

b:

 Wanted: “guaranteed” races

(c,d) is a guaranteed race if  ’  (), c and d

are a guaranteed race in the concrete trace ’

But how are we going to compute these

In the abstract ?

 Key Idea 1: Coverage

Definition of <R>

(c,d) is a guaranteed race if  ’  (), c and d

are a guaranteed race in the concrete trace ’

Theorem:

 A <R> race is a guaranteed race

 Key Idea 1: Coverage

Definition: race (c,d) covers race (a,b) if

a ≼ c (or a and c are in the same action),

and d ≼ b.

Generalizes to coverage by multiple races

(c,d) is a guaranteed race if  ’  (), c and d

are a guaranteed race in the concrete trace ’

Theorem:

 An uncovered race is a guaranteed race.

Race Detection for Web: Challenges

 Precision: state-of-the-art detectors lead to
too many false positives

 caused by synchronization with read/writes, very
common on the Web

 Scalability: state-of-the-art race detectors do
not scale

 blow-up in size of data structures caused by too
many event handlers

Race Detection for Web: Challenges





 Scalability: state-of-the-art race detectors do
not scale

 blow-up in size of data structures caused by too
many event handlers

 Computing Races

A race detector should compute races. The basic query
is whether two operations a and b are ordered:

 a ≼ b

Observation: represent ≼ as a directed acyclic graph and
perform graph connectivity queries to answer a ≼ b

 The happens-before graph

For this graph:

 A ≼ B

 A ≼ C

 B ≼ D

 C ≼ D

 D ≼ E

 A ≼ D

 A ≼ E

 C ≼ E

 B ≼ E

 B ⋠ C

A

B C

D

E

 a ≼ b via BFS

A

B C

D

E

M - number of edges

N - number of nodes

Query Time: O(M)

Space : O(N)

?

 a ≼ b via vector clocks
 (classic race detection)

A

B C

D

E

A vector clock vc is a map:

 vc  TID N

associate a vector clock

with each node

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

<1,0,0,0,0> ⊑ <1,1,1,1,0>

it follows that A ≼ D

<1,1,0,0,0> ⋢ <1,0,1,0,0>

it follows that B ⋠ C

?

 a ≼ b via vector clocks
 (classic race detection)

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

Space Explosion

?

Pre-computation Time: O(M  N)

 Query Time: O(1)

 Space: O(N2)

A

B C

D

E

Key idea: Re-discover threads by

partitioning the nodes into chains.

due to:

“A Compression Technique to Materialize

Transitive Closure”, 1990, H.V. Jagadish

ACM Trans. Database Syst

 computes a map:

 c  Nodes ChainIDs

associate a chain with each node

 a ≼ b via combining chain
decomposition with vector clocks

?

http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90

A

B C

D

E

Key idea: Re-discover threads by

partitioning the nodes into chains.

due to:

“A Compression Technique to Materialize

Transitive Closure”, 1990, H.V. Jagadish

ACM Trans. Database Syst

 computes a map:

 c  Nodes ChainIDs

associate a chain with each node

 a ≼ b via combining chain
decomposition with vector clocks

?

http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods15.html#Jagadish90

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(N3 + C  M)

Vector clock computation: O(C  M)

 Query Time: O(1)

 Space: O(C  N)

Improved

 a ≼ b via combining chain
decomposition with vector clocks
 (optimal version)

?

 a ≼ b via combining chain
decomposition with vector clocks
 (greedy version)

?

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(C  M)

Vector clock computation: O(C  M)

 Query Time: O(1)

 Space: O(C  N)

 Race Detection: Web

Happens-
Before
Model

Memory
Locations

 ?

race
coverage

chain
decomposition

vector
clocks

Race Detector

Pre-computation Time: O(C  M)

 Query Time: O(1)

 Space: O(C  N)

 Implementation

 Based on WebKit Browser

 Used by Apple’s Safari and Google’s Chrome

 Quite robust, Demo:

 http://www.eventracer.org

http://www.eventracer.org/

 ~17 per

web site

Happens-
Before
Model

Memory
Locations

Experiments: Forune 100 web sites

race
coverage

chain
decomposition

vector
clocks

Race Detector

Experiments: usability

Metric

Mean
race vars

Max
race vars

All 634.6 3460

Only uncovered races 45.3 331

Filtering methods

Writing same value 0.75 12

Only local reads 3.42 43

Late attachment of event handler 16.7 117

Lazy initialization 4.3 61

Commuting operations - className, cookie 4.0 80

Race with unload 1.1 33

Remaining after all filters 17.8 261

Experiments: speed

Metric

Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition >0.1sec OOM

Vector clocks + chain decomposition 0.04sec 2.4sec

Breadth-first search >22sec TIMEOUT

Experiments: space

Metric

Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition 544MB 25181MB

Vector clocks + chain decomposition 5MB 171MB

Manual inspection of 314 races

 57% are synchronization races

 many idioms: conditionals, try-catch, looping over arrays

 24% are harmful races

 many cases of reading from undefined

 new bugs:UI glitches, broken functionality after a race, needs
page refresh, missing event handlers, broken analytics.

 17% are harmless races

 Future Work

 Race Detection as Abstract Interpretation

 Generalized Race Detection to Commutativity

 Synthesis of Repairs

 Reachability algorithms based on graph contraction

 inspired by algorithms for road networks

 Stateless model checking

 race-guided exploration of the web page

 Summary

 Introduced Happens-Before model for web
applications

 useful for any concurrency analysis

 Race coverage: report only real races

 Efficient Analysis

 combines vector clocks, chain decomposition and race
coverage

 Try it out

 http://www.eventracer.org

http://www.eventracer.org/

