
“the prevalent theme is
programming languages,
while this kind of work can
sometimes lead somewhere,
projects mostly fail while
promising grandiose general
results”

-- anonymous reviewer

Jz

JavaScript
Programmers
Hate You

orthodoxy

Program have types

Types increase productivity

Static is better

Correctness is the goal

VB dyn 1991

Python dyn 1991

Lua dyn 1993

R dyn 1993

Java stat+dyn 1995

JavaScript dyn 1995

PHP dyn 1995

Ruby dyn 1995

Clojure dyn 2007 D
ec

ad
es

 o
f d

yn
am

is
m

Troy Gaul. Lightroom Exposed. http://www.troygaul.com

ObjC
12%

C
9%

C++
16% Lua

63%

Premiepensionsmyndigheten’s Pluto

“This system is behind the Swedish
Premium Pension. It automatically
invests and manages 220 billion SEK
across 5 million accounts.”

Pluto = 320 000 lines of Perl

Lundborg, Lemonnier. PPM or how a system written in Perl can juggle with billions. Freenix 2006

Premiepensionsmyndigheten’s Pluto

Lemonnier. Testing Large Software With Perl. Nordic Perl Workshop 2007

contract(‘do_sell_current_holdings’)
 -> in(&is_person, &is_date)
 -> out(&is_state)
 -> enable;

sub do_sell_current_holdings {
 my ($person, $date) …
 if ($operation eq “BUD_”) {…}
 return $state;
}

Objective C

 “Obj-C used in 9.3 % of
world’s software, while
C++ stands at 9.1%”
 -- TIOBE Index

Objective C

 dynamic object types
 on top of weak static types

JavaScript

Jz

JavaScript
Programmers
Hate You

because you design
languages no one uses!

A Clash of World Views

Computer Science

Fixed programs, transient data
there will always be another input

Data Science

Fixed data, transient programs
there will always be another query

Programming for the masses

ML, Haskell, Scala, C++
are all domain
specific languages
The “domain” is programming in the large by experts

Programming for the masses

Programming languages
should be gateway drugs
to computational thinking
Instead enforce a rigid programming discipline

Dynamic Typing

If static typing has benefits:
•preventing some errors ahead of time
•simplifying generation of efficient code
•providing machine-checked documentation

Why is it a bad idea?

Dynamic Typing

Static typing only catches trivial errors
most systems can’t even catch NPEs, or off-by-one errors

Static typing ossifies code and hinders evolution
make the type checker globally happy before testing a local change

Static typing slows down the rate of development
 pessimistic typing, in case of doubt just say no

Dynamic Typing

Hypothesis:

No difference in time solving
semantic bugs with a dynamically
or statically typed language

7.3 Data Exploration and Result Visualization 65

Box-Whisker-Plot

The boxplot from figure 7.241 visualizes the results from the tasks having imple-
mented semantic errors.

Figure 7.24: Boxplot - Semantic Bugs - Results of both groups

For the tasks having a di↵culty level of 1 it can be recognized that the subjects
using Java to complete the task needed less time than the subjects using Groovy.

The boxplots for level 2 look di⌦erent. The minimum of the Groovy and Java
boxplot are almost the same, but the lower quantile as well as the median are below
the ones of the Groovy boxplot. The upper quantile and the maximum of Java is
higher than Groovy’s.

The results for level 3 show, that Java is slower than Groovy. Additionally, there
exist outliers for every task.

1 One outlier for level 3 Groovy is not displayed, being near 8000000

1
00
0

2
00
0

s
e
c
s

Tasks

Groovy
Java

Steinberg. What is the impact of static type systems on maintenance tasks? MSc Thesis U.Duisburg-Essen

Programming for the masses

R learned in one lecture
Most PHP programmers
never read a language manual
Design languages for all

Jz

JavaScript
Programmers
Hate You

because you ignore
the real world!

Programs as Data

Programming language design
should be informed by
empirical studies of actual use
Design languages with the same attention to detail Apple pays the iPhone?

Prototype, appearing on 21 and 9 sites, respectively. Such libraries
provide simplified and well-tested coding patterns for problems in-
cluding UI widgets, animation, DOM manipulation, serialization,
asynchronous page loading, and class-based workarounds built on
top of JavaScript’s prototype-based system. In general, the presence
of a particular library does not imply a major change in the pro-
gram’s dynamic behavior. This is in part due to the large feature sets
of most libraries. Prototype offers all of the functionality mentioned
above (besides UI widgets and animation), and jQuery similarly of-
fers all of the above (except an implementation of “classes”). Be-
cause there are many use cases for each library, there are few char-
acteristic runtime behaviors exhibited. Exceptions to this tend to be
artifacts of implementation techniques specific to a library (such as
Prototype’s dynamic construction of prototype objects, or the dis-
proportionate allocation of Date objects by animation libraries).

7. Measuring the Behavior of Benchmarks
There are several popular benchmark suites used to determine the
quality and speed of JavaScript implementations. However, using
these benchmarks as metrics assumes that they are representative
of JavaScript programs at large. We looked at three suites in partic-
ular to determine their relevance: SunSpider: (SUNS) A wide range
of compute-intensive benchmarks. Includes deserialization, a ray-
tracer, and many other primarily mathematical tasks. V8: (V8BM)
The benchmarks associated with Google’s Chrome browser. Again
they include computationally-intensive benchmarks., such as cryp-
tography and another raytracer. Dromaeo: (DROM) Unlike the other
suites, these benchmarks are intended to test the browser’s DOM,
as opposed to the JavaScript engine itself. In several ways, these
benchmarks have proven to be inconsistent with the real-world
JavaScript code we tested. We discuss our main observations:

7.1 Object Kinds
Benchmarks tend to heavily stress a few types of objects, which
have little similarity to the object types used by real-world sites.
Figure 17 shows the benchmarks’ disproportionate number of in-
stances and arrays. Comparing the benchmarks to the All Sites
bar, one can clearly observe that constructed objects (instances) are
overrepresented in V8BM and SUNS, whereas DROM is almost ex-
clusively preoccupied with arrays.

The extensive use of constructed objects in benchmarks is no-
table. In SUNS, 39% of objects are instances, and in V8BM, 63%
are. In the real-world sites, only GMAP and LIVE produced more
than 10% instance objects (with GMAP and LIVE producing 35%
and 24%, respectively). It seems likely therefore that a JavaScript
implementation that favored other object types would be poorly
represented by SUNS and V8BM.

7.2 Uses of eval
While SUNS has benchmarks which use eval, performing 2785
evals in our trace with only 33 deserializing JSON data, V8BM
performs no evals. DROM performed 32 evals, with only 1 deseri-
alizing JSON data. This suggests that SUNS is more representative

DROM

SUNS

V8BM

All Sites

anonymous
dom

arrays
dates

regexps
functions

instances
errors

prototypes

Figure 17. Kinds of allocated objects.

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Figure 18. Object timelines. SUNS (above) and V8BM (below).
The dashed line indicates the end of object construction.

of real-world workloads, the others less so. The latter is not surpris-
ing given the nature of the benchmarks (there is a lot of mathemat-
ical computation which is not typical of most JavaScript programs
in the wild).

7.3 Object Protocol Dynamism
Although many sites have relatively sane and stable use of ob-
jects, with object initialization occurring mostly during construc-
tion, several do not. Figure 18 shows the object timelines of SUNS
and V8BM. The behavior of most sites at construction time is mod-
eled by SUNS, with a post-construction hump as seen in several
real-world sites. However, the lifetime of objects in SUNS is atyp-
ical, with most objects fairly long-lived. V8BM’s object dynamism
is completely dissimilar to any real-world site, to the benefit of
Google’s V8 JavaScript engine. The lifetimes of objects in V8BM
is similar to object lifetimes of real-world JavaScript, with the ex-
ception that objects have fairly constant lifetimes, as shown by the
steep dropoffs in living objects in Figure 18. This peculiarity was
not seen in any real-world sites. DROM uses no constructed ob-
jects, as its intention is primarily to test the implementation of the
DOM API, and is thus not very useful as general purpose JavaScript
benchmark.

7.4 Function Variadicity and Polymorphism
Variadicity in the benchmarks was not dissimilar to real-world pro-
grams. DROM and SUNS each had about 5% of functions used vari-
adically (close to the 6% seen accross all sites), and V8BM had
about 2% variadic. Polymorphism was rarer in the benchmarks,
with 3%, 2% and 1% of call sites being polymorphic in DROM,
SUNS and V8BM (respectively). As 19% of call sites were polymor-
phic across all sites, implementations which do not handle poly-
morphic call sites well will perform better with benchmarks than
real-world JavaScript.

Sunspider
0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

0.0

0.2

0.4

0.6

0.8

1.0

Dead
Read
Update
Add
Delete

Google

Richards, Lesbrene, Burg, Vitek. An Analysis of the Dynamic Behavior of JavaScript Programs. PLDI’10

1.5.0.9 2.0.0.20 3.0.9 3.5.19 3.6.17 4.0.1 5.0.1 6.0.2

0

10

20

30

40

50

60

Firefox Speedup SunSpider vs JSBench

SunSpider JSBench

Version

S
p

e
e

d
u

p
 r

e
la

ti
ve

 t
o

 1
.5

.0
.9

49x

4x

Richards, Gal, Eich, Vitek. JSBench: Automating the Construction of JavaScript Benchmarks. OOPSLA’11

Programs to Data

The Ostrich posture does
not make Reflection go away
Accept that reflection is here to stay and deal with it

Eval Usage
100% of top 100 sites use JavaScript

82% use eval!

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0
10

20
30

40 77 127 1331

Call Sites

Interactive PageLoad Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

3491 9114 111535

Calls

Interactive PageLoad Random

0B
12
8B

25
6B

38
4B

51
2B

230387 470871 527529

String Size

Richards, Hammer, Burg, Vitek. The Eval that Men Do. ECOOP 2011

The Shape of Eval

JSON
JSONP

Read
Assign
Typeof
Try
Call
Empty

Identified common patterns:

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 8. Patterns by websites. Number of web sites in each data set with at least one eval argument
in each category (a single web site can appear in multiple categories).

J
S
O
N
P

A
s
s
ig
n

O
th
e
r

J
S
O
N

R
e
a
d

T
y
p
e
o
f

C
a
ll

L
ib
ra
ry

E
m
p
ty

T
ry

0%

5%

10%

15%

20%

25%

30%

35%

(a) INTERACTIVE (b) PAGELOAD (c) RANDOM

Fig. 9. Patterns. Ratio of evals in each category.

Both JSON and JSONP are quite common. In each data set, JSONP is at worst the
third most common category in both Fig. 8 and Fig. 9, and JSON and JSONP strings
accounted for between 22% (RANDOM) and 37% (INTERACTIVE) of all strings eval’d.
Since most call sites do not change categories (discussed later in Section 5.5) these
numbers indicate that analyses could make optimistic assumptions about the use of eval
for JSON, but will need to accomodate the common pattern of JSON being assigned to
a single, often easily-determinable, variable.

Most of the remaining evals are in the categories of simple accesses. Property and
variable accesses, both simple accesses which generally have no side-effects, are in all
data sets amongst the second to fifth most common categories for sites to use. They
account for 8%, 27% and 24% of eval calls in INTERACTIVE, PAGELOAD and RAN-
DOM, respectively. The most problematic categories7 appear in fewer sites, but seem to
be used frequently in those sites where they do appear. However, this does not include
uncategorized evals, which also have problematic and unpredictable behavior.
Impact on analysis. Most eval call sites in categories other than Library, Other and
Call are replaceable by less dynamic features such as JSON.parse, hashmap access,
and proper use of JavaScript arrays. On INTERACTIVE, these categories account for

7 By problematic categories, we include evals with complex side effects such as assignments
and declarations, and those categories with unconstrained behavior such as calls.

5.5 Consistency

Patterns 1 2 3 4 5
Callsites 27553 303 92 3 1

Fig. 13. Consistency. Number of differ-
ent patterns per call site.

window.location
dw Inf.get(dw Inf.ar)
dw Inf.x0();

Each eval call site is quite consistent with re-
spect to the pattern of the string argument, but
there are exceptions. Across all of our data sets,
we observed only 399 eval call sites (1.4% of all
call sites) with strings in multiple pattern cat-
egories, see Fig. 13. Many of these “polymor-
phic” cases were clearly a single centralized eval
used from many branches and for many pur-
poses. For instance, the following three strings
are all eval’d by the same call site, found at
www.netcarshow.com in RANDOM (although the library that this eval belongs to is
found at a few other sites as well). More perplexing call sites include ones that evals
the strings ”4”, ”5” and ”a”, callsites that alternate between simple constants and bound
variables, and a call site that at times evaluated ”(null)” (which happens be valid JSON)
and at other times evaluated ”(undefined)” (which is not). Another call site evals JSON
strings in most cases, but sometimes evaluates JSON-like object literals which include
function literals, which neither JSON nor relaxed JSON accept. Of the 399 eval call
sites with strings in multiple patterns, the maximum number of categories was 5, at the
call site mentioned above.

6 Other Faces of Eval

Eval is only one of several entry points to generate executable JavaScript code dynami-
cally. This section reports on the use of the other methods of dynamic code generation
available to programmers. We identified the following eight mechanisms of dynamic
code generation provided to web programmers:

Eval Call to eval, executing in local scope.
GlobalEval Call to an alias executing in global scope.
Function Create a new function from a pair of strings. (Global scope)
SetInterval Execute a string periodically. (Global scope)
SetTimeout Execute a string after a specified point in time. (Global scope)
ScriptCont DOM operation that changes the contents of a script tag. (Global scope)
ScriptScr DOM operation that changes the src attribute of a script tag. (Global scope)
Write DOM operation that writes to the document in place. (Global scope)

The first three mechanisms are part of the JavaScript language. An example is the code
var y=Function(”x”, ”print(x)”) which creates a new function that takes the parameter x
and passes it to the print function. The following two mechanisms are not standard-
ized but commonly implemented as properties of the window object. A simple exam-
ple is setTimeout(”callback()”,1000) which invokes the callback function after 1 sec-
ond. The final three mechanisms are related to DOM8 manipulation. ScriptCont cov-
ers changes to script tags such as setting the text or innerHTML property, or calling

8 The Document Object Model (DOM) represents an HTML page as a tree, where nested tags
are encoded as child nodes.

eval(‘{“x”: 2}’)
eval(“f({x: 2})”)

eval(“obj . f ”)
eval(“id = x”)

eval(‘typeof(’+x+’)!=”undefined”’)
eval(‘try{throw v=14}catch(e){}’)

eval(‘get(”menu”)’)

Eval begone!
window.width = 10;
window.height = 20;

function getDimension(x){
	 d = eval("window." + x);
}

getDimension("width");
getDimension("height");

d = (x == "width"
	 ? window.width
	 : window.height);

+
 



 



=


 





Meawad, Richards, Morandat, Vitek. Eval Begone! : Semi-Automated Removal of Eval from JavaScript Programs OOPSLA ’12

Jz

JavaScript
Programmers
Hate You

because you solve
irrelevant problems!

Avoid non-Problems

Decades of research on
Alias analysis for Java,
Ownership types, and
Information flow…

Noble, Potter, Vitek. Flexible Alias Protection, ECOOP 1998.

Programmer Productivity First

The metric that matters
is time-to-solution
Late answers are wrong answers

Dynamic languages keep the program running…

… by execution of incomplete programs

… by converting data types automatically

… by swallowing errors

“Best effort”, optimistic, execution

Failure Obliviousness

Getting an error in JavaScript is difficult

x = {}; // object

x.b = 42; // field add

y = x[“f”]; // undefined

z = y.f; // error

Failure Obliviousness

•New JS VM that aborts untrusted JavaScript code on policy
violation

•From program’s point of view these are random failures

•Most programs are resilient and keep working

Real-Site Behavior

Policy Functional AdBlock Partial Broken
Empty 50 0 0 0
AddOnly 36 8 5 1
SendAfterRead 42 7 1 0

Fully functional. No visible features hindered.
Ads blocked. The site itself worked, but some ads did not.
Partially Functional. Reduced functionality, but site still usable.
Broken. Fundamental features of site broken.

Introduction Motivation Security with Delimited Histories Evaluation Summary

26/29

Hammer, Richards, Vitek. Flexible Access Control Policies w. Delimited Histories & Revocation, OOPSLA13

Failure Obliviousness

Programmer Productivity First

Don’t prove theorems
because you know how
but because you need to
What are the properties that really improve time to solution

Gradual Typing

Introduce a novel type construct that mediates between static and dynamic.

static
fast

catch errors

?

catch some errors

still flexible flexible

dynamic

Wrigstad, Nardelli, Lebresne, Ostlund,Vitek. Integrating Typed and Untyped Code in a Scripting Language POPL10

 def id(x : [Int]) = x;

 x = id([“toobad”])

 x[0] + “!”

Gradual Typing

Wrigstad, Nardelli, Lebresne, Ostlund,Vitek. Integrating Typed and Untyped Code in a Scripting Language POPL10

 def id(x : [Int]) = x;

 … id([42,24]) …

Gradual Typing

Wrigstad, Nardelli, Lebresne, Ostlund,Vitek. Integrating Typed and Untyped Code in a Scripting Language POPL10

 def id(x :like[Int]) = x;

 x = id([“toobad”])

 x[0] + “!”

Gradual Typing

Wrigstad, Nardelli, Lebresne, Ostlund,Vitek. Integrating Typed and Untyped Code in a Scripting Language POPL10

•In Thorn, a simple contract:

• adding type annotations will never slow down the program

• adding type annotations will not break a running program

• type system is “always on”

Gradual Typing

Bloom, Field, Nystrom, Ostlund, Richards, Strnisa, Vitek, Wrigstad.
Thorn-Robust, Concurrent, Extensible Scripting on the JVM. OOPSLA’12

Programmer Productivity First

Programming
languages matter
much less then we
like to admit
Millions of lines of PHP at Facebook, Sweden’s pluto is in Perl

Variable lookup in R

10 Morandat et al.

substitute. As the object system is built on those, we will only hint at its defini-
tion. The syntax of Core R, shown in Fig. 1, consists of expressions, denoted by e,
ranging over numeric literals, string literals, symbols, array accesses, blocks, function
declarations, function calls, variable assignments, variable super-assignments, array
assignments, array super-assignments, and attribute extraction and assignment. Expres-
sions also include values, u, and partially reduced function calls, ⌫(a), which are not
used in the surface syntax of the language but are needed during evaluation. The pa-
rameters of a function declaration, denoted by f, can be either variables or variables
with a default value, an expression e. Symmetrical arguments of calls, denoted a, are
expressions which may be named by a symbol. We use the notation a to denote the
possibly empty sequence a1 . . . an. Programs compute over a heap, denoted H , and a

H::= ; | H[◆/F]
| H[�/e�] | H[�/⌫]
| H[⌫/↵]

↵::= ⌫? ⌫? u ::= � | ⌫
::= num[n] | str[s]

| gen[⌫] | �f.e, �
F ::= [] | F [x/u]
� ::= [] | ◆ ⇤ �
S::= [] | e� ⇤ S

Fig. 2. Data

stack, S, as shown in Fig. 2. For simplicity, the heap dif-
ferentiates between three kinds of addresses: frames, ◆,
promises, �, and data objects, ⌫. The notation H[◆/F]
denotes the heap H extended with a mapping from ◆
to F . The metavariable ⌫? denotes ⌫ extended with the
distinguished reference ? which is used for missing val-
ues. Metavariable ↵ ranges over pairs of possibly missing
addresses, ⌫? ⌫0?. The metavariable u ranges over both
promises and data references. Data objects, ↵, consist
of a primitive value  and attributes ↵. Primitive val-
ues can be either an array of numerics, num[n1 . . . nn],
an array of strings, str[s1 . . . sn], an array of references
gen[⌫1 . . . ⌫n], or a function, �f.e, � , where � is the func-

tion’s environment. A frame, F , is a mapping from a symbol to a promise or data
reference. An environment, � , is a sequence of frame references. Finally, a stack, S,
is a sequence of pairs, e� , such that e is the current expression and � is the current
environment. Evaluating the Design of R 11

[EXP]
e� ; H ! e

0; H 0

C[e] � ⇤ S; H =� C[e0] � ⇤ S; H 0

[FORCEP]
H(�) = e� 0

C[�] � ⇤ S; H =� e� 0 ⇤C[�] � ⇤ S; H

[FORCEF]
getfun(H, �, x) = �

C[x(a)] � ⇤ S; H =� � � ⇤C[x(a)] � ⇤ S; H

[GETF]
getfun(H, �, x) = ⌫

C[x(a)] � ⇤ S; H =� C[⌫(a)] � ⇤ S; H
[INVF]

H(⌫) = �f.e, � 0
args(f, a, �, � 0, H) = F, � 00, H 0

C[⌫(a)] � ⇤ S; H =� e� 00 ⇤C[⌫(a)] � ⇤ S; H 0

[RETP]
H 0 = H[�/⌫]

R[⌫] � 0 ⇤C[�] � ⇤ S; H =� C[�] � ⇤ S; H 0

[RETF]

R[⌫] � 0 ⇤C[⌫0(a)] � ⇤ S; H =� C[⌫] � ⇤ S; H 0

Evaluation Contexts:

C ::= [] | x<�C | x[[C]] | x[[e]] <�C | x[[C]] <� ⌫ | {C; e} | {⌫;C}
| attr(C, e) | attr(⌫,C) | attr(e, e) <�C | attr(C, e) <� ⌫ | attr(⌫,C) <� ⌫

R ::= [] | {⌫;R}

Fig. 3. Reduction relation =) .

26 Morandat et al.

[GETF1]
� = ◆ ⇤ � 0 ◆(H, x) = ⌫ H(⌫) = �f.e, � 00

getfun(H, �, x) = ⌫

[GETF2]
� = ◆ ⇤ � 0 ◆(H, x) = ⌫ H(⌫) 6= �f.e, � 00

getfun(H, �, x) = getfun(H, � 0, x)

[GETF3]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = ⌫ H(⌫) = �f.e, � 00

getfun(H, �, x) = ⌫

[GETF4]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = e� 00

getfun(H, �, x) = �

[GETF5]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = ⌫ H(⌫) 6= �f.e, � 00

getfun(H, �, x) = getfun(H, � 0, x)

[SPLIT1]
split(a, P, N) = P 0, N 0

split(x = e a, P, N) = P 0, x = eN 0

[SPLIT2]
split(a, P, N) = P 0, N 0

split(e a, P, N) = eP 0, N 0

[SPLIT3]

split([], P, N) = P, N

[ARGS]
split(a, [], []) = P, N ◆ fresh � 00 = ◆ ⇤ � 0

args2(f, P, N, �, � 00, H) = F, H 0 H 00 = H 0[◆/F]

args(f, a, �, � 0, H) = F, � 00, H 00

[ARGS1]
(f0 � x � f0 � x = e

0) N � N 0
x = eN 00

args2(f, P, N 0N 00, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e�]

args2(f0f, P, N, �, � 0, H) = F [x/�], H 00

[ARGS2]
(f0 � x � f0 � x = e

0) x 62 N
args2(f, P, N, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e�]

args2(f0f, eP, N, �, � 0, H) = F [x/�], H 00

[ARGS3]
x 62 N

args2(f, [], N, �, � 0, H) = F, H 0

args2(x f, [], N, �, � 0, H) = F [x/?], H 0

[ARGS4]
x 62 N args2(f, [], N, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e� 0]

args2(x = e f, [], N, �, � 0, H) = F [x/�], H 00

[ARGS5]

args2([], [], [], �, � 0, H) = [], H

Fig. 17. Auxiliary definitions.
Fig. 4. Auxiliary definitions: Function lookup and argument processing.

Fig. 3. Reduction relation =) .

Evaluating the Design of R 11

Reduction relation. The semantics of Core R is defined by a small step operational
semantics with evaluation contexts [21]. The reduction relation S;H =)S’;H’, shown
in Fig. 3, takes a stack S and a heap H and performs one step of reduction. The rules rely
on two evaluation contexts, C, to return the next expression to evaluate and R, to return
the result of a sequence of expressions. There are seven reduction rules. Rule [EXP]
deals with expressions, where C[e] uniquely identifies the next expression e to evaluate.
The expression is reduced in a single step, e� ;H ! e

0;H 0, where e

0 is resulting
expression. H 0 is the modified heap. If the expression is a promise, C[�], and � has not
been evaluated, rule [FORCEP] will push a new frame on the stack containing the body of
the promise, e � ⇤ � 0. Rule [RETP] pops a fully evaluated promise frame and binds the
result to a promise address. Context sensitive lookup is implemented by [FORCEF] and
[GETF]. The former forces the evaluation of promises bound to the name of the function
being looked up, the latter selects a reference, ⌫, to a function. The getfun() auxiliary
function, defined in Fig. 4, looks up x in the environment, skipping over bindings to data
objects. Function invocation is handled by [INVF], which retrieves the function bound to
⌫ and invokes args() to process the arguments a and the default values f of the call. The
output of args() is a mapping from parameters to values, F , an environment, � 00, and a
modified heap, H 0. For each argument, a promise is allocated in the heap and the current
environment is captured. The rule [RETF] simply pops the evaluated frame and replaces
the call with its result.

26 Morandat et al.

[GETF1]
� = ◆ ⇤ � 0 ◆(H, x) = ⌫ H(⌫) = �f.e, � 00

getfun(H, �, x) = ⌫

[GETF2]
� = ◆ ⇤ � 0 ◆(H, x) = ⌫ H(⌫) 6= �f.e, � 00

getfun(H, �, x) = getfun(H, � 0, x)

[GETF3]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = ⌫ H(⌫) = �f.e, � 00

getfun(H, �, x) = ⌫

[GETF4]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = e� 00

getfun(H, �, x) = �

[GETF5]
� = ◆ ⇤ � 0 ◆(H, x) = � H(�) = ⌫ H(⌫) 6= �f.e, � 00

getfun(H, �, x) = getfun(H, � 0, x)

[SPLIT1]
split(a, P, N) = P 0, N 0

split(x = e a, P, N) = P 0, x = eN 0

[SPLIT2]
split(a, P, N) = P 0, N 0

split(e a, P, N) = eP 0, N 0

[SPLIT3]

split([], P, N) = P, N

[ARGS]
split(a, [], []) = P, N ◆ fresh � 00 = ◆ ⇤ � 0

args2(f, P, N, �, � 00, H) = F, H 0 H 00 = H 0[◆/F]

args(f, a, �, � 0, H) = F, � 00, H 00

[ARGS1]
(f0 � x � f0 � x = e

0) N � N 0
x = eN 00

args2(f, P, N 0N 00, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e�]

args2(f0f, P, N, �, � 0, H) = F [x/�], H 00

[ARGS2]
(f0 � x � f0 � x = e

0) x 62 N
args2(f, P, N, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e�]

args2(f0f, eP, N, �, � 0, H) = F [x/�], H 00

[ARGS3]
x 62 N

args2(f, [], N, �, � 0, H) = F, H 0

args2(x f, [], N, �, � 0, H) = F [x/?], H 0

[ARGS4]
x 62 N args2(f, [], N, �, � 0, H) = F, H 0

� fresh H 00 = H 0[�/e� 0]

args2(x = e f, [], N, �, � 0, H) = F [x/�], H 00

[ARGS5]

args2([], [], [], �, � 0, H) = [], H

Fig. 17. Auxiliary definitions.
Fig. 4. Auxiliary definitions: Function lookup and argument processing.

Variable lookup in R

< 0.05% context sensitive lookups

symbols that affected are c and file

Morandat, Hill, Osvald, Vitek. Evaluating the Design of the R Language. ECOOP’12

c() ≠ d←c; d()

•Programming language techniques are needed
in practice

•But we must change our value system to
reward and measure benefits to users

•Language research must be informed and
motivated by real-world usage

•We must embrace dynamism and push
static techniques into the runtime

