Determinism Is Not Enough:
Making Parallel Programs Reliable
with Stable Multithreading

Junfeng Yang
http://www.cs.columbia.edu/~junfeng
Joint work w/ my brilliant students
Heming Cui, Jingyue Wu, Yang Tang, Gang Hu
Columbia University

http://www.cs.columbia.edu/~junfeng
http://www.cs.columbia.edu/~junfeng

One-slide overview

* Despite major advances in tools,
multithreading remains hard to get right

 Why? Nendeterminism too many thread
interleavings, or schedules

e Stable Multithreading (StableMT): a radical
approach to reducing the set of schedules for

relia b|||ty with low overhead [Tern 0sDI 101 [Peregrine SOSP 11]
[Specialization PLDI 12] [Parrot SOSP 13] [HotPar 13] [CACM 14]

Background and motivation

Multithreaded programs:
pervasive and critical

37 32

2007 2008 2009 2010 2011 2012 2013 2014

http://www.drdobbs.com/parallel/design-for-manycore-
systems/219200099

Multithreaded programs:
pervasive and critical

- v Sy

But, extremely hard to get right

But, extremely hard to get right

* Plagued with concurrency bugs uaseLos o9

— Data races, atomicity violations, order violations,
deadlocks, etc

But, extremely hard to get right

* Plagued with concurrency bugs uaseLos o9

— Data races, atomicity violations, order violations,
deadlocks, etc

* Concurrency bugs: bad

— Have taken lives in the Therac 25 incidents and
caused the 2003 Northeast blackout

— May be exploited by attackers to violate
confidentiality, integrity, and availability of critical
SYStemS [Hotpar 12]

Concurrency bug example

Thread © Thread 1
mutex_lock(M)
*obj = ..
mutex_unlock(M)
mutex_lock(M)
free(obj)
mutex_unlock(M)

Apache Bug #21287 (simplified)

Concurrency bug example

Thread © Thread 1 Thread © Thread 1
mutex_lock(M) mutex_lock(M)
*obj = .. free(obj)
mutex_unlock(M) mutex_unlock(M)

mutex_lock(M)

mutex_lock(M)
*obj = ..
mutex_unlock(M)

free(obj)
mutex_unlock(M)

Apache Bug #21287 (simplified)

Concurrency bug example

Thread © Thread 1
mutex_lock(M)
*obj = ..
mutex_unlock(M)
mutex_lock(M)
free(obj)
mutex_unlock(M)

Apache Bug #21287

Thread © Thread 1
mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = ..
mutex_unlock(M)

(simplified)

* |Input: everything a program reads from environment
— E.g., main() arguments, data read from file or socket

Concurrency bug example

Thread © Thread 1

mutex_lock(M)

*obj = ..

mutex_unlock(M)
mutex_lock(M)
free(obj)
mutex_unlock(M)

Apache Bug #21287

Thread © Thread 1
mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = ..
mutex_unlock(M)

(simplified)

* |Input: everything a program reads from environment
— E.g., main() arguments, data read from file or socket

* Schedule: sequence of communication operations
— E.g., total order of synchronizations such as lock()/unlock()

Concurrency bug example

Thread © Thread 1 Thread © Thread 1
mutex_lock(M) mutex_lock(M)
*obj = .. free(obj)
mutex_unlock(M) mutex_unlock(M)

mutex_lock(M)

mutex_lock(M)
*obj = ..
mutex_unlock(M)

free(obj)
mutex_unlock(M)

Apache Bug #21287 (simplified)

* |Input: everything a program reads from environment
— E.g., main() arguments, data read from file or socket

* Schedule: sequence of communication operations
— E.g., total order of synchronizations such as lock()/unlock()

* Buggy schedule: schedule triggering concurrency bug

Advances in tools

* The pursuit of results: systems research focus
shifted from speed to reliability around 2000

* More effective static analysis, model checking,
symbolic execution, verification

— E.g., vulgar version of model checking that

enumerates through real executions for bugs (verisott

POPL 97] [CMC OSDI 02] [FiSC OSDI 04] [eXplode OSDI 06] [MaceMC NSDI 07] [Chess
ODSI 08] [MoDIST NSDI 09] [Inspect SPIN 09] [dBug SPIN 11]

* Unfortunately, concurrency/multithreading
remains the bane of these tools

Why hard?

— lock () lock () lock ()
unlock () anlock () ;;DIOCk ()
K critical
sections |
lock () lock () lock()
— unlock () ;;nlock() GDIOCk()
Y M threads

* Number of schedules: exponential in K, M
 Even more schedules aggregated over all inputs

Why hard?

e)
—+ lock () lock lock
moc 0 moc () M! schedules
unlock () wunlock () unlock ()
.. _
K critical
sections
lock () lock () lock ()
— unlock () ;nlock() ;;DIOCk()
YI\/Ithreads

* Number of schedules: exponential in K, M
 Even more schedules aggregated over all inputs

16

Why hard?
f(/l;ck() lock () lOCk()ﬂ\\

unlock () anlock () ;nlock ()
K critical
sections
lock () lock () N lock ()
\&\Enlock() ;nlock() GDIOCk()
M threads

>= (M!)"rK
schedules

* Number of schedules: exponential in K, M

 Even more schedules aggregated over all inputs

17

K critical
sections

° N

_<

Why hard?

fflock () lock ()

unlock () unlock()

lock()i\\

unlock ()

Finding concurrency bugs

finding needles in a haystack

>= (M!)"rK
schedules

 Even more schedules aggregated over all inputs

18

How to improve checking coverage?

All possible runtime schedules

19

How to improve checking coverage?

All possible runtime schedules

Checked
schedules

20

How to improve checking coverage?

All possible runtime schedules

* Coverage = Checked/All

Checked
schedules

21

How to improve checking coverage?

All possible runtime schedules
* Coverage = Checked/All
checked ® Traditionally: enlarge
schedules Checked exploiting
equivalence

22

How to improve checking coverage?

All possible runtime schedules

Checked
schedules

Coverage = Checked/All

* Traditionally: enlarge

Checked exploiting
equivalence

Equiv. is hard to find

23

How to improve checking coverage?

All possible runtime schedules

Checked
schedules

Coverage = Checked/All

* Traditionally: enlarge

Checked exploiting
equivalence
Equiv. is hard to find

— [pirsosp 11] (joint w/ MSR Asia)
took us 3 years

24

How to improve checking coverage?

All possible runtime schedules

Checked
schedules

Coverage = Checked/All

* Traditionally: enlarge

Checked exploiting
equivalence
Equiv. is hard to find

— [pirsosp 11] (joint w/ MSR Asia)
took us 3 years

— First after [verisoft POPL 97]

25

How to improve checking coverage?

All possible runtime schedules
* Coverage = Checked/All
checked ® Traditionally: enlarge
schedules Checked exploiting
equivalence

e Equiv. is hard to find

— [pirsosp 11] (joint w/ MSR Asia)
took us 3 years

— First after [verisoft POPL 97]

Can we increase coverage
without enlarging Checked?

26

How to improve checking coverage?

All possible runtime schedules

* Coverage = Checked/All

Checked ® Traditionally: enlarge
schedules Checked exploiting
equivalence

e Equiv. is hard to find

— [pirsosp 11] (joint w/ MSR Asia)
took us 3 years

— First after [verisoft POPL 97]

Can we increase coverage
without enlarging Checked?

27

High coverage with StableMT

— lock() lock () lock()
;nlock () ;nlock () ;nlock ()
K critical
sections _<
lock() lock() lock ()
T ;nlock() ;;nlock() ;nlock()
\)
|
M threads

* Enforce round-robin synchronization order

High coverage with StableMT

— lock() lock () lock()

unlock () unlock () unlock ()

K critical
. —_—
sections

iock()

lock ()
— unlock () unlock () unlock ()
\)
|
M threads

* Enforce round-robin synchronization order

High coverage with StableMT

K critical
sections

_<

— lock() lock () lock()

unlock ()

unlock () unlock ()

Al)\ TAAlL/\

Finding concurrency bugs

checking one schedule
er

High coverage with StableMT

— lock() lock () lock()

unlock ()

unlock () unlock ()

K critical

_<

sections

Al)\ TAAlL/\

~ Finding concurrency bugs

checking one schedule

Simple enough that it feels like cheating © ©f

Are all of the exponentially many
schedules necessary?

* |Insight 1: for many programs, a wide range of
inputs shares the same set of schedules pemoso

10] [Peregrine SOSP 11]

* |Insight 2: the overhead of enforcing a
schedule on different inputs is low (e.g., 15%)

[Tern OSDI 10] [Peregrine SOSP 11]

Stable Multithreading

Inputs Schedules Inputs Schedules

el) =
' / [\ (. \\
s'f’ \\ \ ‘
| ‘

Traditional
multithreading multithreading

e Allinputs =2 a greatly reduced set of schedules
* Key benefits

— Vastly shrink the haystack = needles much easier to find

— Provide anticipated stability (robustness against input or
program perturbations)

33

Stable Multithreading

Inputs Schedules Inputs Schedules

e //"_-_h"\\ .
/ , . / \
/ / \ o \
— — Y . . \
! e— T \ |
S / : \ o/
/ _— [— / \
I - e - — [\
f e L N ~ [\
[—
|

“What you check is what you run”

Traditio)
multith - What you can’t check is not run”

* Allinpt Tool + runtime co-design

e Keyber
— Vastly shrink the haystack = needles much easier to find

— Provide anticipated stability (robustness against input or
program perturbations)

34

Stability and determinism are two
separate, complementary properties.

Stability is more useful for reliability.

Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules

/@

36

Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules Inputs Schedules
o~ L /_\ // 7\

/) & g
“‘- \ |

Deterministic
multithreading

37

Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules Inputs Schedules
ya VRN N

/@ —»®
/ \
/ \ |

- -,
e

Deterministic
multithreading

* One testing execution validates all future executions on
the same input

* Reproducing a concurrency bug requires only the input

38

Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules Inputs Schedules
ya TN N

/@ —»®
/ \
/ \ |

- -,
e

Stable, deterministic Deterministic
multithreading multithreading

* One testing execution validates all future executions on
the same input

* Reproducing a concurrency bug requires only the input

39

Input or program perturbation =»
different schedules

— lock () lock () lock ()
;nlock () ;;nlock () ;nlock ()
K critical B
sections
lock() lock() " lock()
I ;;nlock () ;nlock() ;;nlock ()
\)
|

M threads

Input or program perturbation =»
different schedules

— lock () lock () lock () Input 1
;nlock () ;;nlock () ;nlock ()
K critical B
sections
lock() lock() " lock()
] ;;nlock () ;nlock() ;;nlock ()
\)
|

M threads

Input or program perturbation =»
different schedules

— lock () lock () lock () Input 1
unlock () unlock() unlock ()
K critical B
sections
lock () lock ()
— unlock () unlock() unlock ()

\)
f

M threads

Input or program perturbation =»
different schedules

— lock() lock () lock () Input 1
;nlock () ;;nlock() unlock () Input 2
K critical B
sections
lock () lock()
— unlock () unlock() unlock ()

\)
f

M threads

Input or program perturbation =»
different schedules

— lock() lock () lock () Input 1
unlock () unlock (unlock () Input 2
K critical B
sections
lock () lock ()
— unlock () unlock () S Unlock ()

K)
f

M threads

44

Input or program perturbation =»

K critical
sections

_<

different schedules

— lock () <«—leekt{) lock () Input 1
;nlocg?——zzﬁiiﬁxg ;nlock() Input 2

iock()

— unlock (unlock()/ N unlock ()

\)
f

M threads

45

Input or program perturbation =»

K critical
sections

_<

different schedules

— lock () <«—leekt{) lock () Input 1
;nlockmc:\\(A ;nlock () Input 2
lock () Lock ()

I ;;nlock(;;nlock() ;nlock ()

l l

Still too many schedules
Unstable!

46

Deterministic but not stable

Inputs Schedules Inputs Schedules Inputs Schedules
—— /_\ // —\

/) & g
/ \ |

-~ -,
e

’ /

Stable, deterministic Deterministic, unstable
multithreading multithreading

* Determinism is a narrow property
— Same input + same program =2 same behavior
— Input or program changes slightly? Can be unstable

47

Deterministic but not stable

Inputs Schedules Inputs Schedules Inputs Schedules
yan N

/) & g
/ \ |

TN

’ /

Stable, deterministic Deterministic, unstable
multithreading multithreading

* Determr Determinism and stability are
— Same often mistakenly conflated ior

— Input or program changes slightly? Can be unstable

48

Stable but not deterministic

Inputs Schedules Inputs Schedules

-~ -,
e

Deterministic
multithreading

 Determinism is a binary property
— Nondeterministic if one input =» n > 1 schedules

49

Stable but not deterministic

Inputs Schedules Inputs Schedules Inputs Schedules
/ aii :‘/’f-_h-.\ Ay / \ ’/777 \\
;f 1= . J/ \ k \‘
f — - P \ “ “-“ /
o
N *
Stable, nondeterministic Deterministic
multithreading multithreading

 Determinism is a binary property
— Nondeterministic if one input =» n > 1 schedules

50

Stable but not deterministic

Inputs Schedules Inputs Schedules Inputs Schedules
TN an /N

TN

Stable, nondeterministic Deterministic
multithreading multithreading

e Dei Nondeterministic but stable =» easy to
_ bemade reliable through checking

'S

51

How to build StableMT systems

Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs
— Performance: reasonably fast

Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs

hard!

— Performance: reasonably fast

Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs

hard!

— Performance: reasonably fast

lock()

lock()
unlock() / unlock()
lock() Iock()

unlock() unlock()

Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs

hard!
— Performance: reasonably fast
lock() lock() lock() lock()
unlock() unlock() unlock() unlock()
" . comp(...) .
lock() lock() lock() lock()
unlock() unlock() unlock() unlock()

comp(...)

Our 15t attempt: record and reuse
synchronization schedules

On new input, run program as is to record
reasonably fast synchronization schedule

Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

Reuse schedule on inputs satisfying precondition

57

Our 15t attempt: record and reuse

synchronization sche

dules

On new input, run program as is to record

reasonably fast synchronization sc

nedule

Compute relaxed, quickly checkab
of the schedule to capture depend

e preconditionj
encies on input

Reuse schedule on inputs satisfying precondition

58

Our 15t attempt: record and reuse

synchronization sche

dules

On new input, run program as is to record

reasonably fast synchronization sc

nedule

Compute relaxed, quickly checkab
of the schedule to capture depend

e preconditionj
encies on input

Reuse schedule on inputs satisfying precondition

if(x == 1) {
lock();
unlock();

} else
..; // no synch

59

Our 15t attempt: record and reuse

synchronization sche

dules

On new input, run program as is to record

reasonably fast synchronization sc

nedule

Compute relaxed, quickly checkab
of the schedule to capture depend

e preconditionj
encies on input

Reuse schedule on inputs satisfying precondition

if(x == 1) { if(y == 1)
lock(); ..; // no synch
unlock(); else

} else ..; // no synch

..; // no synch

60

Our 15t attempt: record and reuse
synchronization schedules

On new input, run program as is to record
reasonably fast synchronization schedule

Compute relaxed, quickly checkable preconditionj
of the schedule to capture dependencies on input

Reuse schedule on inputs satisfying precondition

if(x == 1) { if(y == 1)
lock(); ..; // no synch
unlock(); else

} else ..; // no synch

..; // no synch

Precondition should constrain x, but not y

Our 15t attempt: record and reuse

synchronization sche

dules

On new input, run program as is to record

reasonably fast synchronization sc

nedule

Compute relaxed, quickly checkab
of the schedule to capture depend

e preconditionj
encies on input

Reuse schedule on inputs satisfying precondition

i

Solution: symbolic execution to track
constraints and precondition slicing to
} remove unnecessary constraints

— e

Precondition should constrain x, but not y

62

The problem of data races

* May cause execution to deviate from schedule

The problem of data races

* May cause execution to deviate from schedule
X = 1;
if(x) {
X = 0; lock();
unlock();
}

The problem of data races

* May cause execution to deviate from schedule

X = 1;

> if(x) {
X = 0; lock();

unlock();
}

The problem of data races

* May cause execution to deviate from schedule

X = 1;

if(x) {
X = 93«////7 lock();

unlock();
}

The problem of data races

* May cause execution to deviate from schedule

X = 1; a[X] = 1;
if(x) { if(aly]) {
X = 0 lock(); a[x] = 0; lock();
unlock(); unlock();

} }

The problem of data races

* May cause execution to deviate from schedule
X = 1; a[x] = 1;
if(x) { if(aly]) {
X = @;/ lock(); a[x] = 0; lock();
unlock(); unlock();
} }

Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime

The problem of data races

* May cause execution to deviate from schedule

X =1; a[x] = 1;
if(x) { if(aly]) {
X = 0; lock(); a[x] = 0; lock();
unlock(); unlock();
} }

Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime

Our 15t attempt: sophisticated enough that it
needed [Tern 0SDI 10] [Loom OSDI 10] [Peregrine SOSP 11] tO explain

Attempts by others

* Ignore thread load imbalance pthreads sosp 11 =9
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

* Fine-grained load balancing with instruction
COUNTS [pmp AsPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10] 9 unstable

70

Attempts by others

* Ignore thread load imbalance pthreads sosp 11 =9
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

* Fine-grained load balancing with instruction
COUNTS [pmp AsPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10] 9 unstable

Seems a very hard challenge,
but there’s a simple solution!

Insight

* Empirical study of 100+ programs

* Most threads spend majority of time in a small
of core computations

* Obvious in retrospect: another example of 80-20 rule

* Balance core computations =» small overhead

Insight

* Empirical study of 100+ programs

* Most threads spend majority of time in a small
of core computations

* Obvious in retrospect: another example of 80-20 rule

* Balance core computations =» small overhead

Coarse-grained load balancing
is good enough!

Performance hints in Parrot
[Parrot SOSP 13]

By default, the Parrot thread runtime runs
synchronizations round-robin

When necessary, developers add performance
hints to their code for speed

— Soft barrier: “coschedule these computations”

— Performance critical section: “get through this code
section fast”

Evaluation on 100+ programs shows that hints
are easy to add and make executions fast

https://github.com/columbia/smt-mc/

74

https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:

[create 2 consumer threads;]
for each file block {

char *block = read block();
Enqueue;

}

consumer thread:
while(1l) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
[char *block = read_block();]
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

[Enqueue;]

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

[Enqueue;]

pthread mutex lock(&mu);
enqueue(qg, block);
pthread cond signal(&cv);
consumer thread: pthread mutex unlock(&mu);

while(1) {
Wait or Dequeue;

}

compress(block);

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

Enqueue;
pthread_mutex_lock(&mu);

enqueue(q, block);
pthread_cond_signal(&cv);
consumer thread: pthread_mutex_unlock(&mu);

while(1) {
Wait or Dequeue;]

compress(block);

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

Enqueue;
pthread_mutex_lock(&mu);

enqueue(q, block);
pthread_cond_signal(&cv);
consumer thread: pthread_mutex_unlock(&mu);

while(1) {
Wait or Dequeue;]

compress(block);

pthread mutex lock(&mu);

} // termination logic elided

while (empty(q))
pthread cond wait(&cv, &mu);

char *block = dequeue(q);

pthread mutex _unlock(&mu);

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

Enqueue;
pthread_mutex_lock(&mu);

enqueue(q, block);
pthread_cond_signal(&cv);
consumer thread: pthread_mutex_unlock(&mu);

while(1) {
Wait or Dequeue;

[compress(block);] pthread mutex lock(&mu);
} // termination logic elided
while (empty(q))
pthread cond wait(&cv, &mu);
char *block = dequeue(q);
pthread mutex _unlock(&mu);

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:

. -
create 2 consumer threads; SChedU|eS are data

for each file block { independent, so that
char *block = read _block(); same schedule can
Enqueue; compress any file

¥ regardless of file

contents
consumer thread:

while(1) {
Wait or Dequeue;
compress(block);

}

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

Core computations:
compress()

Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

$ LD _PRELOAD=parrot.so

* Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

* Core computations:
compress()

./a.out file with two_blocks

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2

create 2 consumer threads;
for each file block {

char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; (waiting) (waiting)
for each file block {

char *block = read_block();

Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue

char *block = read_block();
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block();
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

91

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\A
Enqueue; Dequeue
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

92

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\A
Enqueue; Dequeue

} z////’
consumer thread:
while(1) {
Wait or Dequeue;

compress(block);

}

93

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)

™~

read block Dequeue

d

94

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue

95

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\A
Enqueue; read block Dequeue
} z////’

consumer thread: Enqueue (woken up,

while(1) { idle)

Wait or Dequeue;
compress(block);

}

96

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\i
Enqueue; read block Dequeue
} z////’
consumer thread: Enqueue (woken up,

while(1) { \\\\& idle)

Wait or Dequeue;
compress(block);

}

97

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\i
Enqueue; read block Dequeue
} /

consumer thread: Enqueue (woken up,

while(1) { \ compress idle)

Wait or Dequeue;
compress(block);

}

98

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\A
Enqueue; read block Dequeue
} k/////

consumer thread: Enqueue (woken up,

while(1) { \ compress idle)
Wait or Dequeue; Dequeue
compress(block);

} compress

99

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
idle)

\\\\ﬁ compress
Dequeue\\\\$

compress

100

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
idle)

\\\\ﬁ compress
Dequeue\\\\$

compress Wait

101

Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\A
Enqueue; read _block Dequeue
} /

consumer thread: Enqueue (woken up,

while(1) { compress idle)
Wait or Dequeue; Serialized! Dequeue\

compress(block);
) compress

Wait

102

Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Serialized!

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
\ compress idle)
Dequeue\\\\$
Wait

compress

* Observed 770% overhead on
16 cores in prior system
Dthreads [Dthreads SOSP 11]

103

Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

106

Parrot schedule with hints

main thread:
create 2 consumer threads;

soba_init(2);
for each file block {

char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

107

Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue

soba wait();

compress(block);

}

108

Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

109

Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

main

consumer 1

consumer 2

110

Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; (waiting) (waiting)
soba_init(2);
for each file block {

char *block = read_block();

Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba_wait();
compress(block);

}

111

Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)

for each file block {
char *block = read block();
Enqueue;

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

112

Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read_block(); Dequeue
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue
soba_wait();
compress(block);

}

113

Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up)

114

Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks (woken up)
consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

115

Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue
soba wait();
compress(block);

}

116

Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); soba wait

compress(block);

}

117

Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\&

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue
soba_wait(); soba wait

soba wait
compress(block); returns

}

118

Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); soba_wait _ p . oit
compress(block); returns -
compress compress

}

119

Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); . soba_wait _ po ait
compress(block); Run in parallel! returns
} compress compress

120

Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); . soba_wait _ po ait
compress(block); Run in parallel! returns
} compress compress

* 0.8% overhead

121

Performance hint API

// soft barrier; doesn’t increase # of schedules

void soba init(int count, void *chan = NULL, int
deterministic_timeout = 20);

void soba wait(void *chan = NULL);

// performance critical section; increase # of
// schedules, but can check!

void pcs_enter();

void pcs_exit();

122

Evaluation questions

ow fast is Parrot?
ow easy is it to add hints?
ow much can Parrot improve reliability?

Evaluation questions

ow fast is Parrot?J

ow easy is it to add hints?
ow much can Parrot improve reliability?

Evaluation Setup

* A diverse set of of 108 programs

— 55 Real-world programs: BerkeleyDB, OpenLDAP, Redis,
MPlayer, ImageMagick, STL, PBZip2, pfscan, aget

— 53 programs from 4 complete synthetic benchmark
suites: PARSEC, SPLASH2X, PHOENIX, NPB.

— Diverse: Pthreads, OpenMP, data partition, fork-join,
pipeline, map-reduce, and workpile.

* Maximum allowed cores (24-core Xeon)

* Largest allowed or representative workloads

125

126

GNU C++ STL

EEE———— |mageMagick

execution time
oo
—NNA
VooV
NS
o

(e]@)
(®r0]
(@3¢}
>
Q.
Q
©

-+— Normalized

Overhead (real-world programs): small

synthetic, and 12.7% for all

0000000000

%
%
%
%
%
%
%
%
%
%
* Mean overhead: 6.9% for real-world, 19.0% for

200
180
160
140

Overhead (synthetic benchmarks): small

400%

3509% | Normalized
execution time

300%

250%

200%

150% -

100%

PARSEC SPLASH Phoenix NPB
-2X

N
w
w
=

* Mean overhead: 6.9% for real-world, 19.0% for
synthetic, and 12.7% for all

127

Evaluation questions

ow fast is Parrot?

ow easy is it to add hints?]

ow much can Parrot improve reliability?

Hints: easy to add, effective

programs |# lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

129

Hints: easy to add, effective

programs | # lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 9 90 y 109 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

130

Hints: easy to add, effective

programs |# lines Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 X 109) 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

131

Hints: easy to add, effective

programs |# lines ' Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 . 510% 3 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

132

Hints: easy to add, effective

programs |# lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 510% N 11.9% y

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

133

Evaluation questions

ow fast is Parrot?
ow easy is it to add hints?

ow much can Parrot improve reIiabiIity?J

134

Model checking: higher coverage

* Integrated Parrot with dBug (swsein1y because it’s
open-source, runs on Linux, implements
dynamic partial order reduction (pror rorLos), can
estimate number of possible schedules nuth

* Parrot increases coverage by 10°---10%°/3* (not a
typo ;) for 53 programs

* Parrot increases number of verified programs
from 43 to 99

135

Static analysis: more precise

[Specialization PLDI 12]

e Specialize a program according to a schedule

* Resultant program contains schedule info,
improving precision of stock analysis

Program
C/C++ program Schedule Specialized
with Pthread —P . 1. . P P
Specialization Program
Schedule

Total order of
synchronizations

136

Static
Race
Detector

of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292

Static
Race
Detector

of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292

Static
Race
Detector

of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292

Static
Race
Detector

of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292

Previously Unknown Harmful Races Detected

* 4in aget
* 2 in radix
 1in fft

Conclusion

Inputs Schedules Inputs Schedules Inputs Schedules

Pl T /_ \
@ ‘ \
\
/ \ |
/ \
/ 1 \
| \
|
|

Traditional
multithreading multithreading

Deterministic
multithreading

* Root cause of the multithreading difficulties:
nondeterminism too many schedules

e Stable Multithreading (StableMT): a radical

approach to vastly reducing schedules for reliability with

low overhead [Tern OSDI 10] [Peregrine SOSP 11] [Specialization PLDI 12] [Parrot
SOSP 13] [HotPar 13] [CACM 14]

142

