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One-slide overview

* Despite major advances in tools,
multithreading remains hard to get right

 Why? Nendeterminism too many thread
interleavings, or schedules

e Stable Multithreading (StableMT): a radical
approach to reducing the set of schedules for

relia b|||ty with low overhead [Tern 0sDI 101 [Peregrine SOSP 11]
[Specialization PLDI 12] [Parrot SOSP 13] [HotPar 13] [CACM 14]




Background and motivation
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pervasive and critical
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But, extremely hard to get right

* Plagued with concurrency bugs uaseLos o9

— Data races, atomicity violations, order violations,
deadlocks, etc

* Concurrency bugs: bad

— Have taken lives in the Therac 25 incidents and
caused the 2003 Northeast blackout

— May be exploited by attackers to violate
confidentiality, integrity, and availability of critical
SYStemS [Hotpar 12]




Concurrency bug example
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mutex_lock(M)
free(obj)
mutex_unlock(M)

Apache Bug #21287 (simplified)
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Concurrency bug example

Thread © Thread 1 Thread © Thread 1
mutex_lock(M) mutex_lock(M)
*obj = .. free(obj)
mutex_unlock(M) mutex_unlock(M)

mutex_lock(M)

mutex_lock(M)
*obj = ..
mutex_unlock(M)

free(obj)
mutex_unlock(M)

Apache Bug #21287 (simplified)

* |Input: everything a program reads from environment
— E.g., main() arguments, data read from file or socket

* Schedule: sequence of communication operations
— E.g., total order of synchronizations such as lock()/unlock()

* Buggy schedule: schedule triggering concurrency bug



Advances in tools

* The pursuit of results: systems research focus
shifted from speed to reliability around 2000

* More effective static analysis, model checking,
symbolic execution, verification

— E.g., vulgar version of model checking that

enumerates through real executions for bugs (verisott

POPL 97] [CMC OSDI 02] [FiSC OSDI 04] [eXplode OSDI 06] [MaceMC NSDI 07] [Chess
ODSI 08] [MoDIST NSDI 09] [Inspect SPIN 09] [dBug SPIN 11]

* Unfortunately, concurrency/multithreading
remains the bane of these tools
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Why hard?
f(/l;ck() lock () lOCk()ﬂ\\
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M threads
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 Even more schedules aggregated over all inputs

17



K critical
sections

° N

_<

Why hard?

fflock () lock ()

unlock () unlock()

lock()i\\

unlock ()

Finding concurrency bugs

finding needles in a haystack

>= (M!)"rK
schedules

 Even more schedules aggregated over all inputs
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High coverage with StableMT

— lock() lock () lock()
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lock() lock() lock ()
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\ )
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High coverage with StableMT

— lock() lock () lock()

unlock () unlock () unlock ()

K critical
. —_—
sections

iock()

lock ()
— unlock () unlock () unlock ()
\ )
|
M threads

* Enforce round-robin synchronization order
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High coverage with StableMT

— lock() lock () lock()

unlock ()

unlock () unlock ()

K critical

_<

sections

Al )\ TAAlL/\

~ Finding concurrency bugs

checking one schedule

Simple enough that it feels like cheating © ©f



Are all of the exponentially many
schedules necessary?

* |Insight 1: for many programs, a wide range of
inputs shares the same set of schedules pemoso

10] [Peregrine SOSP 11]

* |Insight 2: the overhead of enforcing a
schedule on different inputs is low (e.g., 15%)

[Tern OSDI 10] [Peregrine SOSP 11]




Stable Multithreading

Inputs Schedules Inputs Schedules

el ) =
' / [ \ (. \\
s'f’ \\ \ ‘
| ‘

Traditional
multithreading multithreading

e Allinputs =2 a greatly reduced set of schedules
* Key benefits

— Vastly shrink the haystack = needles much easier to find

— Provide anticipated stability (robustness against input or
program perturbations)
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Stable Multithreading

Inputs Schedules Inputs Schedules
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“What you check is what you run”

Traditio )
multith - What you can’t check is not run”

* Allinpt Tool + runtime co-design

e Keyber
— Vastly shrink the haystack = needles much easier to find

— Provide anticipated stability (robustness against input or
program perturbations)
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Stability and determinism are two
separate, complementary properties.

Stability is more useful for reliability.



Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules
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multithreading

* One testing execution validates all future executions on
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* Reproducing a concurrency bug requires only the input
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Deterministic multithreading (DMT):
one input =» one schedule

Inputs Schedules Inputs Schedules Inputs Schedules
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Stable, deterministic Deterministic
multithreading multithreading

* One testing execution validates all future executions on
the same input

* Reproducing a concurrency bug requires only the input
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Input or program perturbation =»
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Input or program perturbation =»
different schedules

— lock() lock () lock () Input 1
;nlock () ;;nlock() unlock () Input 2
K critical B
sections
lock () lock()
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Input or program perturbation =»
different schedules

— lock() lock () lock () Input 1
unlock () unlock ( unlock () Input 2
K critical B
sections
lock () lock ()
— unlock () unlock () S Unlock ()

K )
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M threads
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Input or program perturbation =»

K critical
sections

_<

different schedules

— lock () <«—leekt{) lock () Input 1
;nlocg?——zzﬁiiﬁxg ;nlock() Input 2

iock()

— unlock ( unlock()/ N unlock ()

\ )
f

M threads
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Input or program perturbation =»

K critical
sections

_<

different schedules

— lock () <«—leekt{) lock () Input 1
;nlockmc:\\(A ;nlock () Input 2
lock () Lock ()

I ;;nlock( ;;nlock() ;nlock ()

l l

Still too many schedules
Unstable!
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Deterministic but not stable

Inputs Schedules Inputs Schedules Inputs Schedules
—— /_\ // —\
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Stable, deterministic Deterministic, unstable
multithreading multithreading

* Determinism is a narrow property
— Same input + same program =2 same behavior
— Input or program changes slightly? Can be unstable
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Deterministic but not stable

Inputs Schedules Inputs Schedules Inputs Schedules
yan N

/) & g
/ \ |
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’ /

Stable, deterministic Deterministic, unstable
multithreading multithreading

* Determr Determinism and stability are
— Same often mistakenly conflated ior

— Input or program changes slightly? Can be unstable
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Stable but not deterministic

Inputs Schedules Inputs Schedules

-~ -,
e

Deterministic
multithreading

 Determinism is a binary property
— Nondeterministic if one input =» n > 1 schedules
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Stable but not deterministic

Inputs Schedules Inputs Schedules  Inputs Schedules
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Stable, nondeterministic Deterministic
multithreading multithreading

 Determinism is a binary property
— Nondeterministic if one input =» n > 1 schedules
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Stable but not deterministic

Inputs Schedules Inputs Schedules  Inputs Schedules
TN an /N

TN

Stable, nondeterministic Deterministic
multithreading multithreading

e Dei Nondeterministic but stable =» easy to
_ bemade reliable through checking

'S
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How to build StableMT systems



Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs
— Performance: reasonably fast



Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs

hard!

— Performance: reasonably fast



Key challenge: how to compute the
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* Requirements on the schedules
— Stability: process many inputs

hard!

— Performance: reasonably fast

lock()

lock()
unlock() / unlock()
lock() Iock()

unlock() unlock()



Key challenge: how to compute the
schedules to map inputs to

* Requirements on the schedules
— Stability: process many inputs

hard!
— Performance: reasonably fast
lock() lock() lock() lock()
unlock() unlock() unlock() unlock()
" . comp(...) .
lock() lock() lock() lock()
unlock() unlock() unlock() unlock()

comp(...)



Our 15t attempt: record and reuse
synchronization schedules

On new input, run program as is to record
reasonably fast synchronization schedule

Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

Reuse schedule on inputs satisfying precondition
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Our 15t attempt: record and reuse

synchronization sche

dules

On new input, run program as is to record

reasonably fast synchronization sc

nedule

Compute relaxed, quickly checkab
of the schedule to capture depend

e preconditionj
encies on input

Reuse schedule on inputs satisfying precondition

i

Solution: symbolic execution to track
constraints and precondition slicing to
} remove unnecessary constraints

— e

Precondition should constrain x, but not y

62
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Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime



The problem of data races

* May cause execution to deviate from schedule

X =1; a[x] = 1;
if(x) { if(aly]) {
X = 0; lock(); a[x] = 0; lock();
unlock(); unlock();
} }

Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime

Our 15t attempt: sophisticated enough that it
needed [Tern 0SDI 10] [Loom OSDI 10] [Peregrine SOSP 11] tO explain




Attempts by others

* Ignore thread load imbalance pthreads sosp 11 =9
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

* Fine-grained load balancing with instruction
COUNTS [pmp AsPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10] 9 unstable
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Attempts by others

* Ignore thread load imbalance pthreads sosp 11 =9
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

* Fine-grained load balancing with instruction
COUNTS [pmp AsPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10] 9 unstable

Seems a very hard challenge,
but there’s a simple solution!



Insight

* Empirical study of 100+ programs

* Most threads spend majority of time in a small
# of core computations

* Obvious in retrospect: another example of 80-20 rule

* Balance core computations =» small overhead



Insight

* Empirical study of 100+ programs

* Most threads spend majority of time in a small
# of core computations

* Obvious in retrospect: another example of 80-20 rule

* Balance core computations =» small overhead

Coarse-grained load balancing
is good enough!



Performance hints in Parrot
[Parrot SOSP 13]

By default, the Parrot thread runtime runs
synchronizations round-robin

When necessary, developers add performance
hints to their code for speed

— Soft barrier: “coschedule these computations”

— Performance critical section: “get through this code
section fast”

Evaluation on 100+ programs shows that hints
are easy to add and make executions fast

https://github.com/columbia/smt-mc/

74
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Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}
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Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

[Enqueue;]
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Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

Enqueue;
pthread_mutex_lock(&mu);

enqueue(q, block);
pthread_cond_signal(&cv);
consumer thread: pthread_mutex_unlock(&mu);

while(1) {
Wait or Dequeue;]

compress(block);

pthread mutex lock(&mu);

} // termination logic elided

while (empty(q))
pthread cond wait(&cv, &mu);

char *block = dequeue(q);

pthread mutex _unlock(&mu);



Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();

Enqueue;
pthread_mutex_lock(&mu);

enqueue(q, block);
pthread_cond_signal(&cv);
consumer thread: pthread_mutex_unlock(&mu);

while(1) {
Wait or Dequeue;

[compress(block);] pthread mutex lock(&mu);
} // termination logic elided
while (empty(q))
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Example based on PBZip2

main thread:
create 2 consumer threads;
for each file block {
char *block = read _block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

$ LD _PRELOAD=parrot.so

* Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

* Core computations:
compress()

./a.out file with two_blocks



Schedule ignoring load imbalance
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Wait or Dequeue;
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; (waiting) (waiting)
for each file block {

char *block = read_block();

Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}




Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue

char *block = read_block();
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}




Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block();
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue  (woken up)

char *block = read_block(); \\\A
Enqueue; Dequeue
}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue  (woken up)

char *block = read_block(); \\\A
Enqueue; Dequeue

} z////’
consumer thread:
while(1) {
Wait or Dequeue;

compress(block);

}
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Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)

™~

read block Dequeue

d
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Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\A
Enqueue; read block Dequeue
} z////’

consumer thread: Enqueue (woken up,

while(1) { idle)

Wait or Dequeue;
compress(block);

}
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\i
Enqueue; read block Dequeue
} z////’
consumer thread: Enqueue (woken up,

while(1) { \\\\& idle)

Wait or Dequeue;
compress(block);

}
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\i
Enqueue; read block Dequeue
} /

consumer thread: Enqueue (woken up,

while(1) { \ compress idle)

Wait or Dequeue;
compress(block);

}
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue (woken up)

char *block = read_block(); \\\\A
Enqueue; read block Dequeue
} k/////

consumer thread: Enqueue (woken up,

while(1) { \ compress idle)
Wait or Dequeue; Dequeue
compress(block);

} compress
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Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
idle)

\\\\ﬁ compress
Dequeue\\\\$

compress
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Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
idle)

\\\\ﬁ compress
Dequeue\\\\$

compress Wait
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Schedule ignoring load imbalance

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
for each file block { Enqueue  (woken up)

char *block = read_block(); \\\\A
Enqueue; read _block Dequeue
} /

consumer thread: Enqueue (woken up,

while(1) { compress idle)
Wait or Dequeue; Serialized! Dequeue\

compress(block);
) compress

Wait
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Schedule ignoring load imbalance

main thread:
create 2 consumer threads;
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue;
compress(block);

}

Serialized!

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up,
\ compress idle)
Dequeue\\\\$
Wait

compress

* Observed 770% overhead on
16 cores in prior system
Dthreads [Dthreads SOSP 11]
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Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}
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Parrot schedule with hints

main thread:
create 2 consumer threads;

soba_init(2);
for each file block {

char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

107



Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue

soba wait();

compress(block);

}
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Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}
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Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

main

consumer 1

consumer 2
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Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; (waiting) (waiting)
soba_init(2);
for each file block {

char *block = read_block();

Enqueue;

}

consumer thread:
while(1) {
Wait or Dequeue
soba_wait();
compress(block);

}
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Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)

for each file block {
char *block = read block();
Enqueue;

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

112



Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read_block(); Dequeue
Enqueue;
}

consumer thread:
while(1) {
Wait or Dequeue
soba_wait();
compress(block);

}
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Parrot schedule with hints

main thread:
create 2 consumer threads;
soba_init(2);
for each file block {
char *block = read block();
Enqueue;

consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

main consumer 1 consumer 2
(waiting) (waiting)
read block
Enqueue (woken up)
read block Dequeue
Enqueue (woken up)
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Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks  (woken up)
consumer thread:
while(1) {
Wait or Dequeue
soba wait();
compress(block);

}

115



Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue
soba wait();
compress(block);

}
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Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\$

char *block = read block(); read block Dequeue

Enqueue; z/////
h soba_wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); soba wait

compress(block);

}
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Parrot schedule with hints

) (waiting) (waiting)
create 2 consumer threads; read_block
soba_init(2); Enqueue (woken up)
for each file block { \\\\&

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue
soba_wait(); soba wait

soba wait
compress(block); returns

}
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Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); soba_wait  _ p . oit
compress(block); returns -
compress compress

}
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Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); . soba_wait  _ po ait
compress(block);  Run in parallel! returns
} compress compress
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Parrot schedule with hints

main thread: main consumer 1 consumer 2
create 2 consumer threads; read block (waiting) (waiting)
soba_init(2); Enqueue (woken up)
for each file block { \\\\i

char *block = read block(); read block Dequeue

Enqueue; z/////
} soba wait

Enqueue blocks  (woken up)

consumer thread:
while(1) {
Dequeue

Wait or Dequeue

soba_wait(); . soba_wait  _ po ait
compress(block);  Run in parallel! returns
} compress compress

* 0.8% overhead
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Performance hint API

// soft barrier; doesn’t increase # of schedules

void soba init(int count, void *chan = NULL, int
deterministic_timeout = 20);

void soba wait(void *chan = NULL);

// performance critical section; increase # of
// schedules, but can check!

void pcs_enter();

void pcs_exit();
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Evaluation questions

ow fast is Parrot?
ow easy is it to add hints?
ow much can Parrot improve reliability?
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Evaluation Setup

* A diverse set of of 108 programs

— 55 Real-world programs: BerkeleyDB, OpenLDAP, Redis,
MPlayer, ImageMagick, STL, PBZip2, pfscan, aget

— 53 programs from 4 complete synthetic benchmark
suites: PARSEC, SPLASH2X, PHOENIX, NPB.

— Diverse: Pthreads, OpenMP, data partition, fork-join,
pipeline, map-reduce, and workpile.

* Maximum allowed cores (24-core Xeon)

* Largest allowed or representative workloads
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Overhead (synthetic benchmarks): small

400%

3509% | Normalized
execution time
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* Mean overhead: 6.9% for real-world, 19.0% for
synthetic, and 12.7% for all
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Evaluation questions

ow fast is Parrot?

ow easy is it to add hints?]

ow much can Parrot improve reliability?



Hints: easy to add, effective

# programs |# lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs
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Hints: easy to add, effective

# programs | # lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 9 90 y 109 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs
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Hints: easy to add, effective

# programs |# lines Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 X 109 ) 510% 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs
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Hints: easy to add, effective

# programs |# lines ' Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 . 510% 3 11.9%

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs
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Hints: easy to add, effective

# programs |# lines | Overhead | Overhead

requiring w/o hints | w/ hints
hints
Soft barrier 81 87 484% 9.0%
Performance 9 22 830% 42.1%
critical section
Total 90 109 510% N 11.9% y

* Average to 1.2 lines per program
* A few hints in common libs benefit many programs

* 0.5--2 hours per program added by mostly MS
students who didn’t write the programs
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Evaluation questions

ow fast is Parrot?
ow easy is it to add hints?

ow much can Parrot improve reIiabiIity?J
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Model checking: higher coverage

* Integrated Parrot with dBug (swsein1y because it’s
open-source, runs on Linux, implements
dynamic partial order reduction (pror rorLos), can
estimate number of possible schedules nuth

* Parrot increases coverage by 10°---10%°/3* (not a
typo ;) for 53 programs

* Parrot increases number of verified programs
from 43 to 99
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Static analysis: more precise

[Specialization PLDI 12]

e Specialize a program according to a schedule

* Resultant program contains schedule info,
improving precision of stock analysis

Program
C/C++ program Schedule Specialized
with Pthread —P . 1. . P P
Specialization Program
Schedule

Total order of
synchronizations
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Static
Race
Detector

# of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292
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Static
Race
Detector

# of False
Positives

Program w/o StableMT w/ StableMT
aget 72 0
PBZip2 125 0

fft 96 0
blackscholes 3 0
swaptions 165 0
streamcluster 4 0
canneal 21 0
bodytrack 4 0
ferret 6 0
raytrace 215 0
cholesky 31 7
radix 53 14
water-spatial 2447 1799
lu-contig 18 18
barnes 370 369
water-nsquared 354 333
ocean 331 292




Previously Unknown Harmful Races Detected

* 4in aget
* 2 in radix
 1in fft



Conclusion

Inputs Schedules Inputs Schedules Inputs Schedules
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/ \
/ 1 \
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|

Traditional
multithreading multithreading

Deterministic
multithreading

* Root cause of the multithreading difficulties:
nondeterminism too many schedules

e Stable Multithreading (StableMT): a radical

approach to vastly reducing schedules for reliability with

low overhead [Tern OSDI 10] [Peregrine SOSP 11] [Specialization PLDI 12] [Parrot
SOSP 13] [HotPar 13] [CACM 14]
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