
Determinism Is Not Enough:
Making Parallel Programs Reliable

with Stable Multithreading

Junfeng Yang

http://www.cs.columbia.edu/~junfeng

Joint work w/ my brilliant students

Heming Cui, Jingyue Wu, Yang Tang, Gang Hu

Columbia University

1

http://www.cs.columbia.edu/~junfeng
http://www.cs.columbia.edu/~junfeng

One-slide overview

• Despite major advances in tools,
multithreading remains hard to get right

• Why? Nondeterminism too many thread
interleavings, or schedules

• Stable Multithreading (StableMT): a radical
approach to reducing the set of schedules for
reliability with low overhead [Tern OSDI 10] [Peregrine SOSP 11]
[Specialization PLDI 12] [Parrot SOSP 13] [HotPar 13] [CACM 14]

2

Background and motivation

3

Multithreaded programs:
pervasive and critical

4

http://www.drdobbs.com/parallel/design-for-manycore-
systems/219200099

Multithreaded programs:
pervasive and critical

5

But, extremely hard to get right

6

But, extremely hard to get right

• Plagued with concurrency bugs [Lu ASPLOS 09]

– Data races, atomicity violations, order violations,
deadlocks, etc

7

But, extremely hard to get right

• Plagued with concurrency bugs [Lu ASPLOS 09]

– Data races, atomicity violations, order violations,
deadlocks, etc

• Concurrency bugs: bad

– Have taken lives in the Therac 25 incidents and
caused the 2003 Northeast blackout

– May be exploited by attackers to violate
confidentiality, integrity, and availability of critical
systems [Hotpar 12]

8

9

Thread 0 Thread 1

Apache Bug #21287 (simplified)

mutex_lock(M)
*obj = …
mutex_unlock(M)
 mutex_lock(M)

free(obj)
mutex_unlock(M)

Concurrency bug example

10

Thread 0 Thread 1

Apache Bug #21287 (simplified)

Thread 0 Thread 1

mutex_lock(M)
*obj = …
mutex_unlock(M)

mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = …
mutex_unlock(M)
 mutex_lock(M)

free(obj)
mutex_unlock(M)

Concurrency bug example

11

Thread 0 Thread 1

Apache Bug #21287 (simplified)

Thread 0 Thread 1

mutex_lock(M)
*obj = …
mutex_unlock(M)

mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = …
mutex_unlock(M)
 mutex_lock(M)

free(obj)
mutex_unlock(M)

Concurrency bug example

• Input: everything a program reads from environment
– E.g., main() arguments, data read from file or socket

12

Thread 0 Thread 1

Apache Bug #21287 (simplified)

Thread 0 Thread 1

mutex_lock(M)
*obj = …
mutex_unlock(M)

mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = …
mutex_unlock(M)
 mutex_lock(M)

free(obj)
mutex_unlock(M)

Concurrency bug example

• Input: everything a program reads from environment
– E.g., main() arguments, data read from file or socket

• Schedule: sequence of communication operations
– E.g., total order of synchronizations such as lock()/unlock()

13

Thread 0 Thread 1

Apache Bug #21287 (simplified)

Thread 0 Thread 1

mutex_lock(M)
*obj = …
mutex_unlock(M)

mutex_lock(M)
free(obj)
mutex_unlock(M)

mutex_lock(M)
*obj = …
mutex_unlock(M)
 mutex_lock(M)

free(obj)
mutex_unlock(M)

Concurrency bug example

• Input: everything a program reads from environment
– E.g., main() arguments, data read from file or socket

• Schedule: sequence of communication operations
– E.g., total order of synchronizations such as lock()/unlock()

• Buggy schedule: schedule triggering concurrency bug

Advances in tools

• The pursuit of results: systems research focus
shifted from speed to reliability around 2000

• More effective static analysis, model checking,
symbolic execution, verification
– E.g., vulgar version of model checking that

enumerates through real executions for bugs [Verisoft

POPL 97] [CMC OSDI 02] [FiSC OSDI 04] [eXplode OSDI 06] [MaceMC NSDI 07] [Chess
ODSI 08] [MoDIST NSDI 09] [Inspect SPIN 09] [dBug SPIN 11]

• Unfortunately, concurrency/multithreading
remains the bane of these tools

14

Why hard?

• Number of schedules: exponential in K, M

• Even more schedules aggregated over all inputs

15

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Why hard?

• Number of schedules: exponential in K, M

• Even more schedules aggregated over all inputs

16

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

M! schedules
lock()

…

unlock()

.

.

.

lock()

…

unlock()

Why hard?

• Number of schedules: exponential in K, M

• Even more schedules aggregated over all inputs

17

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

>= (M!)^K
schedules

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Why hard?

• Number of schedules: exponential in K, M

• Even more schedules aggregated over all inputs

18

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

>= (M!)^K
schedules

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Finding concurrency bugs
 ==
finding needles in a haystack

How to improve checking coverage?

19

All possible runtime schedules

How to improve checking coverage?

20

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

21

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

22

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

• Equiv. is hard to find

23

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

• Equiv. is hard to find

– [DIR SOSP 11] (joint w/ MSR Asia)
took us 3 years

24

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

• Equiv. is hard to find

– [DIR SOSP 11] (joint w/ MSR Asia)
took us 3 years

– First after [VeriSoft POPL 97]

25

All possible runtime schedules

Checked
schedules

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

• Equiv. is hard to find

– [DIR SOSP 11] (joint w/ MSR Asia)
took us 3 years

– First after [VeriSoft POPL 97]

26

All possible runtime schedules

Checked
schedules

Can we increase coverage
without enlarging Checked?

How to improve checking coverage?

• Coverage = Checked/All

• Traditionally: enlarge
Checked exploiting
equivalence

• Equiv. is hard to find

– [DIR SOSP 11] (joint w/ MSR Asia)
took us 3 years

– First after [VeriSoft POPL 97]

27

All possible runtime schedules

Checked
schedules

Can we increase coverage
without enlarging Checked?

High coverage with StableMT

• Enforce round-robin synchronization order

28

lock()

…

unlock()

.

.

.

lock()

…

unlock()

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

High coverage with StableMT

• Enforce round-robin synchronization order

29

lock()

…

unlock()

.

.

.

lock()

…

unlock()

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

High coverage with StableMT

• Enforce round-robin synchronization order

30

lock()

…

unlock()

.

.

.

lock()

…

unlock()

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Finding concurrency bugs
 ==
 checking one schedule

K critical
sections

High coverage with StableMT

• Enforce round-robin synchronization order

31

lock()

…

unlock()

.

.

.

lock()

…

unlock()

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Finding concurrency bugs
 ==
 checking one schedule

K critical
sections

Simple enough that it feels like cheating 

Are all of the exponentially many
schedules necessary?

• Insight 1: for many programs, a wide range of
inputs shares the same set of schedules [Tern OSDI

10] [Peregrine SOSP 11]

• Insight 2: the overhead of enforcing a
schedule on different inputs is low (e.g., 15%)
[Tern OSDI 10] [Peregrine SOSP 11]

32

Stable Multithreading

• All inputs  a greatly reduced set of schedules
• Key benefits

– Vastly shrink the haystack  needles much easier to find
– Provide anticipated stability (robustness against input or

program perturbations)

33

Traditional
multithreading

Stable
multithreading

Stable Multithreading

• All inputs  a greatly reduced set of schedules
• Key benefits

– Vastly shrink the haystack  needles much easier to find
– Provide anticipated stability (robustness against input or

program perturbations)

34

Traditional
multithreading

Stable
multithreading

“What you check is what you run”

“What you can’t check is not run”

Tool + runtime co-design

Stability and determinism are two
separate, complementary properties.

Stability is more useful for reliability.

35

Deterministic multithreading (DMT):
one input  one schedule

36

Traditional
multithreading

Stable
multithreading

Deterministic multithreading (DMT):
one input  one schedule

37

Traditional
multithreading

Deterministic
multithreading

Stable
multithreading

Deterministic multithreading (DMT):
one input  one schedule

• One testing execution validates all future executions on
the same input

• Reproducing a concurrency bug requires only the input

38

Traditional
multithreading

Deterministic
multithreading

Stable
multithreading

Deterministic multithreading (DMT):
one input  one schedule

• One testing execution validates all future executions on
the same input

• Reproducing a concurrency bug requires only the input

39

Traditional
multithreading

Deterministic
multithreading

Stable, deterministic
multithreading

Input or program perturbation 
different schedules

40

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

41

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

Input 1 lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

42

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

Input 1 lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

43

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

Input 1

Input 2

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

44

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

Input 1

Input 2

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

45

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads

Input 1

Input 2

…

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Input or program perturbation 
different schedules

46

lock()

…

unlock()

.

.

.

lock()

…

unlock()

K critical
sections

lock()

…

unlock()

.

.

.

lock()

…

unlock()

…

M threads Still too many schedules
Unstable!

Input 1

Input 2

…

lock()

…

unlock()

.

.

.

lock()

…

unlock()

Deterministic but not stable

• Determinism is a narrow property

– Same input + same program  same behavior

– Input or program changes slightly? Can be unstable

47

Traditional
multithreading

Deterministic, unstable
multithreading

Stable, deterministic
multithreading

Deterministic but not stable

• Determinism is a narrow property

– Same input + same program  same behavior

– Input or program changes slightly? Can be unstable

48

Traditional
multithreading

Determinism and stability are
often mistakenly conflated

Deterministic, unstable
multithreading

Stable, deterministic
multithreading

Stable but not deterministic

• Determinism is a binary property

– Nondeterministic if one input  n > 1 schedules

49

Traditional
multithreading

Deterministic
multithreading

Stable but not deterministic

• Determinism is a binary property

– Nondeterministic if one input  n > 1 schedules

50

Traditional
multithreading

Stable, nondeterministic
multithreading

Deterministic
multithreading

Stable but not deterministic

• Determinism is a binary property

– Nondeterministic if one input  n > 1 schedules

51

Traditional
multithreading

Stable, nondeterministic
multithreading

Deterministic
multithreading

Nondeterministic but stable  easy to
be made reliable through checking

How to build StableMT systems

52

Key challenge: how to compute the
schedules to map inputs to

• Requirements on the schedules

– Stability: process many inputs

– Performance: reasonably fast

53

Key challenge: how to compute the
schedules to map inputs to

• Requirements on the schedules

– Stability: process many inputs

– Performance: reasonably fast

54

hard!

Key challenge: how to compute the
schedules to map inputs to

• Requirements on the schedules

– Stability: process many inputs

– Performance: reasonably fast

55

lock()

unlock()

…

lock()

unlock()

lock()

unlock()

…

lock()

unlock()

hard!

Key challenge: how to compute the
schedules to map inputs to

• Requirements on the schedules

– Stability: process many inputs

– Performance: reasonably fast

56

lock()

unlock()

…

lock()

unlock()

lock()

unlock()

…

lock()

unlock()

hard!

lock()

unlock()

comp(…)

lock()

unlock()

lock()

unlock()

…

lock()

unlock()

comp(…)

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

57

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

58

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

59

if(x == 1) {

 lock();

 unlock();

} else

 …; // no synch

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

60

if(x == 1) {

 lock();

 unlock();

} else

 …; // no synch

if(y == 1)

 …; // no synch

else

 …; // no synch

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

61

if(x == 1) {

 lock();

 unlock();

} else

 …; // no synch

if(y == 1)

 …; // no synch

else

 …; // no synch

Precondition should constrain x, but not y

Our 1st attempt: record and reuse
synchronization schedules

• On new input, run program as is to record
reasonably fast synchronization schedule

• Compute relaxed, quickly checkable precondition
of the schedule to capture dependencies on input

• Reuse schedule on inputs satisfying precondition

62

if(x == 1) {

 lock();

 unlock();

} else

 …; // no synch

if(y == 1)

 …; // no synch

else

 …; // no synch

Precondition should constrain x, but not y

Solution: symbolic execution to track
constraints and precondition slicing to
remove unnecessary constraints

The problem of data races

• May cause execution to deviate from schedule

63

The problem of data races

• May cause execution to deviate from schedule

64

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

The problem of data races

• May cause execution to deviate from schedule

65

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

The problem of data races

• May cause execution to deviate from schedule

66

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

The problem of data races

• May cause execution to deviate from schedule

67

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

a[x] = 1;

a[x] = 0;

if(a[y]) {

 lock();

 unlock();

}

The problem of data races

• May cause execution to deviate from schedule

68

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

a[x] = 1;

a[x] = 0;

if(a[y]) {

 lock();

 unlock();

}

Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime

The problem of data races

• May cause execution to deviate from schedule

69

x = 1;

x = 0;

if(x) {

 lock();

 unlock();

}

a[x] = 1;

a[x] = 0;

if(a[y]) {

 lock();

 unlock();

}

Solution: custom race detector to detect such races,
then custom instrumentor to deterministically resolve
races at runtime

Our 1st attempt: sophisticated enough that it
needed [Tern OSDI 10] [Loom OSDI 10] [Peregrine SOSP 11] to explain

Attempts by others

• Ignore thread load imbalance [Dthreads SOSP 11] 
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

• Fine-grained load balancing with instruction
counts [DMP ASPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10]  unstable

70

Attempts by others

• Ignore thread load imbalance [Dthreads SOSP 11] 
sometimes pathological slowdown (e.g., 100x)
because parallel computations are serialized

• Fine-grained load balancing with instruction
counts [DMP ASPLOS 09] [Kendo ASPLOS 09] [CoreDet ASPLOS 10]  unstable

71

Seems a very hard challenge,
but there’s a simple solution!

Insight

• Empirical study of 100+ programs

• Most threads spend majority of time in a small
of core computations
• Obvious in retrospect: another example of 80-20 rule

• Balance core computations  small overhead

72

Insight

• Empirical study of 100+ programs

• Most threads spend majority of time in a small
of core computations
• Obvious in retrospect: another example of 80-20 rule

• Balance core computations  small overhead

73

Coarse-grained load balancing
is good enough!

Performance hints in Parrot
[Parrot SOSP 13]

• By default, the Parrot thread runtime runs
synchronizations round-robin

• When necessary, developers add performance
hints to their code for speed
– Soft barrier: “coschedule these computations”

– Performance critical section: “get through this code
section fast”

• Evaluation on 100+ programs shows that hints
are easy to add and make executions fast

• https://github.com/columbia/smt-mc/

74

https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/
https://github.com/columbia/smt-mc/

Example based on PBZip2

75

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

76

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

77

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

78

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

79

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

pthread_mutex_lock(&mu);
enqueue(q, block);
pthread_cond_signal(&cv);
pthread_mutex_unlock(&mu);

Example based on PBZip2

80

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

pthread_mutex_lock(&mu);
enqueue(q, block);
pthread_cond_signal(&cv);
pthread_mutex_unlock(&mu);

Example based on PBZip2

81

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

pthread_mutex_lock(&mu);
enqueue(q, block);
pthread_cond_signal(&cv);
pthread_mutex_unlock(&mu);

pthread_mutex_lock(&mu);
// termination logic elided
while (empty(q))
 pthread_cond_wait(&cv, &mu);
char *block = dequeue(q);
pthread_mutex_unlock(&mu);

Example based on PBZip2

82

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

pthread_mutex_lock(&mu);
enqueue(q, block);
pthread_cond_signal(&cv);
pthread_mutex_unlock(&mu);

pthread_mutex_lock(&mu);
// termination logic elided
while (empty(q))
 pthread_cond_wait(&cv, &mu);
char *block = dequeue(q);
pthread_mutex_unlock(&mu);

Example based on PBZip2

83

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

• Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

84

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

• Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

• Core computations:
compress()

85

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Example based on PBZip2

• Schedules are data-
independent, so that
same schedule can
compress any file
regardless of file
contents

• Core computations:
compress()

86

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

$ LD_PRELOAD=parrot.so ./a.out file_with_two_blocks

Schedule ignoring load imbalance

87

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Schedule ignoring load imbalance

88

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

Schedule ignoring load imbalance

89

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

Schedule ignoring load imbalance

90

Enqueue
read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

Schedule ignoring load imbalance

91

Enqueue
read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

Schedule ignoring load imbalance

92

Enqueue
read_block

Dequeue

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

Schedule ignoring load imbalance

93

Enqueue
read_block

Dequeue

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

Schedule ignoring load imbalance

94

Enqueue
read_block

Dequeue read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

Schedule ignoring load imbalance

95

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

Schedule ignoring load imbalance

96

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

97

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

98

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

99

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

Dequeue

compress

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

100

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

Dequeue

compress

main consumer 1 consumer 2 main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

101

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

Dequeue

compress

main consumer 1 consumer 2

Wait

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

102

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

Dequeue

compress

main consumer 1 consumer 2

Wait

Serialized!

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Schedule ignoring load imbalance

• Observed 770% overhead on
16 cores in prior system
Dthreads [Dthreads SOSP 11]

103

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

Dequeue

compress

main consumer 1 consumer 2

Wait

Serialized!

main thread:

 create 2 consumer threads;

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue;

 compress(block);

 }

(waiting) (waiting)

(woken up)

(woken up,
idle)

Parrot schedule with hints

106

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Parrot schedule with hints

107

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Parrot schedule with hints

108

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Parrot schedule with hints

109

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Parrot schedule with hints

110

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

main consumer 1 consumer 2

Parrot schedule with hints

111

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

main consumer 1 consumer 2
(waiting) (waiting)

Parrot schedule with hints

112

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

main consumer 1 consumer 2
(waiting) (waiting)

(woken up)

Parrot schedule with hints

113

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

main consumer 1 consumer 2
(waiting) (waiting)

(woken up)

Parrot schedule with hints

114

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2
(waiting) (waiting)

(woken up)

(woken up)

Parrot schedule with hints

115

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2
(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

Parrot schedule with hints

116

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

Parrot schedule with hints

117

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

soba_wait

Parrot schedule with hints

118

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

soba_wait soba_wait
returns

Parrot schedule with hints

119

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

soba_wait soba_wait
returns

compress

Parrot schedule with hints

120

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

soba_wait soba_wait
returns

compress
Run in parallel!

Parrot schedule with hints

121
• 0.8% overhead

main thread:

 create 2 consumer threads;

 soba_init(2);

 for each file block {

 char *block = read_block();

 Enqueue;

 }

consumer thread:

 while(1) {

 Wait or Dequeue

 soba_wait();

 compress(block);

 }

Enqueue
read_block

Dequeue

Enqueue

read_block

compress

main consumer 1 consumer 2

Dequeue

(waiting) (waiting)

(woken up)

(woken up)
soba_wait

blocks

soba_wait soba_wait
returns

compress
Run in parallel!

Performance hint API

122

// soft barrier; doesn’t increase # of schedules

void soba_init(int count, void *chan = NULL, int
deterministic_timeout = 20);

void soba_wait(void *chan = NULL);

// performance critical section; increase # of

// schedules, but can check!

void pcs_enter();

void pcs_exit();

Evaluation questions

• How fast is Parrot?

• How easy is it to add hints?

• How much can Parrot improve reliability?

123

Evaluation questions

• How fast is Parrot?

• How easy is it to add hints?

• How much can Parrot improve reliability?

124

Evaluation Setup

• A diverse set of of 108 programs
– 55 Real-world programs: BerkeleyDB, OpenLDAP, Redis,

MPlayer, ImageMagick, STL, PBZip2, pfscan, aget

– 53 programs from 4 complete synthetic benchmark
suites: PARSEC, SPLASH2X, PHOENIX, NPB.

– Diverse: Pthreads, OpenMP, data partition, fork-join,
pipeline, map-reduce, and workpile.

• Maximum allowed cores (24-core Xeon)

• Largest allowed or representative workloads

125

Overhead (real-world programs): small

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

b
d

b

o
p

en
ld

ap

red
is

m
p

layer
p

b
zip

2

p
b

zip
2

 -d

p
fscan

aget

Im
ageM

agick

G
N

U
 C

+
+ STL

Normalized
execution time

126

• Mean overhead: 6.9% for real-world, 19.0% for
synthetic, and 12.7% for all

Overhead (synthetic benchmarks): small

0%

50%

100%

150%

200%

250%

300%

350%

400%

PARSEC SPLASH
-2x

Phoenix
2

NPB
3.3.1

Normalized
execution time

127

• Mean overhead: 6.9% for real-world, 19.0% for
synthetic, and 12.7% for all

Evaluation questions

• How fast is Parrot?

• How easy is it to add hints?

• How much can Parrot improve reliability?

128

Hints: easy to add, effective

129

programs
requiring
hints

lines
of
hints

Overhead
w/o hints

Overhead
w/ hints

Soft barrier 81 87 484% 9.0%

Performance
critical section

9 22 830% 42.1%

Total 90 109 510% 11.9%

• Average to 1.2 lines per program

• A few hints in common libs benefit many programs

• 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

Hints: easy to add, effective

130

programs
requiring
hints

lines
of
hints

Overhead
w/o hints

Overhead
w/ hints

Soft barrier 81 87 484% 9.0%

Performance
critical section

9 22 830% 42.1%

Total 90 109 510% 11.9%

• Average to 1.2 lines per program

• A few hints in common libs benefit many programs

• 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

Hints: easy to add, effective

131

programs
requiring
hints

lines
of
hints

Overhead
w/o hints

Overhead
w/ hints

Soft barrier 81 87 484% 9.0%

Performance
critical section

9 22 830% 42.1%

Total 90 109 510% 11.9%

• Average to 1.2 lines per program

• A few hints in common libs benefit many programs

• 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

Hints: easy to add, effective

132

programs
requiring
hints

lines
of
hints

Overhead
w/o hints

Overhead
w/ hints

Soft barrier 81 87 484% 9.0%

Performance
critical section

9 22 830% 42.1%

Total 90 109 510% 11.9%

• Average to 1.2 lines per program

• A few hints in common libs benefit many programs

• 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

Hints: easy to add, effective

133

programs
requiring
hints

lines
of
hints

Overhead
w/o hints

Overhead
w/ hints

Soft barrier 81 87 484% 9.0%

Performance
critical section

9 22 830% 42.1%

Total 90 109 510% 11.9%

• Average to 1.2 lines per program

• A few hints in common libs benefit many programs

• 0.5--2 hours per program added by mostly MS
students who didn’t write the programs

Evaluation questions

• How fast is Parrot?

• How easy is it to add hints?

• How much can Parrot improve reliability?

134

Model checking: higher coverage

• Integrated Parrot with dBug [dBug SPIN 11] because it’s
open-source, runs on Linux, implements
dynamic partial order reduction [DPOR POPL 05], can
estimate number of possible schedules [Knuth]

• Parrot increases coverage by 106---1019734 (not a
typo ;) for 53 programs

• Parrot increases number of verified programs
from 43 to 99

135

Static analysis: more precise
[Specialization PLDI 12]

• Specialize a program according to a schedule

• Resultant program contains schedule info,
improving precision of stock analysis

136

Schedule

Schedule
Specialization

Program

C/C++ program
with Pthread

Total order of
synchronizations

Specialized
Program

137

Program w/o StableMT w/ StableMT

aget 72 0

PBZip2 125 0

fft 96 0

blackscholes 3 0

swaptions 165 0

streamcluster 4 0

canneal 21 0

bodytrack 4 0

ferret 6 0

raytrace 215 0

cholesky 31 7

radix 53 14

water-spatial 2447 1799

lu-contig 18 18

barnes 370 369

water-nsquared 354 333

ocean 331 292

Static
Race
Detector

of False
Positives

138

Program w/o StableMT w/ StableMT

aget 72 0

PBZip2 125 0

fft 96 0

blackscholes 3 0

swaptions 165 0

streamcluster 4 0

canneal 21 0

bodytrack 4 0

ferret 6 0

raytrace 215 0

cholesky 31 7

radix 53 14

water-spatial 2447 1799

lu-contig 18 18

barnes 370 369

water-nsquared 354 333

ocean 331 292

Static
Race
Detector

of False
Positives

139

Program w/o StableMT w/ StableMT

aget 72 0

PBZip2 125 0

fft 96 0

blackscholes 3 0

swaptions 165 0

streamcluster 4 0

canneal 21 0

bodytrack 4 0

ferret 6 0

raytrace 215 0

cholesky 31 7

radix 53 14

water-spatial 2447 1799

lu-contig 18 18

barnes 370 369

water-nsquared 354 333

ocean 331 292

Static
Race
Detector

of False
Positives

140

Program w/o StableMT w/ StableMT

aget 72 0

PBZip2 125 0

fft 96 0

blackscholes 3 0

swaptions 165 0

streamcluster 4 0

canneal 21 0

bodytrack 4 0

ferret 6 0

raytrace 215 0

cholesky 31 7

radix 53 14

water-spatial 2447 1799

lu-contig 18 18

barnes 370 369

water-nsquared 354 333

ocean 331 292

Static
Race
Detector

of False
Positives

Previously Unknown Harmful Races Detected

• 4 in aget

• 2 in radix

• 1 in fft

141

Conclusion

• Root cause of the multithreading difficulties:
nondeterminism too many schedules

• Stable Multithreading (StableMT): a radical
approach to vastly reducing schedules for reliability with
low overhead [Tern OSDI 10] [Peregrine SOSP 11] [Specialization PLDI 12] [Parrot
SOSP 13] [HotPar 13] [CACM 14]

142

Traditional
multithreading

Deterministic
multithreading

Stable
multithreading

