Enforceable Security
Policies

David Basin
ETH Zurich

Joint work with Vincent Jugé, Felix Klaedtke and Eugen Z3linescu

Policy Enforcement Mechanisms are Omnipresent

E Client Request ‘I ﬁ Authorized | }’
— Client Request
Client FEP Resources

XACML RequestiResponse

Internet

Internal External
Firewall Firewall

Mail, Web, etc. gyternal
e Firewall

Service
Gateway
Firewall

Private
Network

\k'\/\‘/

Internal
Firewall

DMZ

External
Firewall

|
Internal o
& Business
Firewall s
Services

Enforcing Policies at all Hardware/Software Layers

» Memory management hardware

» Operating systems and file systems

Page table: process B

» Middleware and application servers

» Network traffic: firewalls and VPNs

Page table: process A

» Applications: databases, mail servers, etc.

Page frames.

Policies Come in all Shapes and Sizes

History-based Access Control

Chinese
Wall Information
Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy

So Which Policies can be Enforced?

Examples
AC / General

policies

» Only Alice may update customer data.

» Employees may overspend their budget by 50% provided they
previously received managerial approval.

» Bob may make up to most 5 copies of movie XYZ.

Examples ,%—G
AC / General / 7 @

» Only Alice may update customer data.

» Employees may overspend their budget by 50% provided they
previously received managerial approval.

» Bob may make up to most 5 copies of movie XYZ.

> A login must not happen within 3 seconds after a fail

» Each request must be followed by a deliver within 3 seconds

Pe N
Relevance of Research Question |

» Fundamental question about mechanism design.

* Focus: conventional mechanisms that operate by monitoring execution
and preventing actions that violate policy.

* Given omnipresence of such mechanisms and diversity of policies it
is natural to ask: which policies can be enforced?

» Enforce versus monitor
* Enforcement often combined with system monitoring.
* Why do both? Defense in depth? Accountability? Something deeper?

» Fun problem. Nice example of applied theory.
* Temporal reasoning, logic, formal languages, complexity theory

Enforcement by Execution Monitoring

Enforceable Security Policies

Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000 L
Abstract Setting [system]
allowed

» System iteratively executes actions action?

» Enforcement mechanism intercepts them [

(prior to their execution)

enforcement
mechanism

» Enforcement mechanism terminates system
in case of violation

Enforcement by Execution Monitoring

A\
Enforceable Security Policies l ‘_ ﬁ
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000
Abstract Setting [system]
allowed

» System iteratively executes actions action?

» Enforcement mechanism intercepts them
(prior to their execution)

enforcement
mechanism

» Enforcement mechanism terminates system
in case of violation

So which policies are enforceable?

Characterizing EM enforceability — formal setup

» Let W denote universe of all possible finite/infinite sequences.
* Represents executions at some abstraction level.

* E.g., sequences of actions, program states, state/action pairs, ...

* Example: request - tick - deliver - tick - tick - request - deliver - tick. ..

» A security policy P is specified as a predicate on sets of executions,
i.e., it characterizes a subset of 2V.

> A system S defines aset Y5 C WV
of actual executions.

» S satisfies P iff s € P.

Characterizing EM enforceability: trace properties

» EMs work by monitoring target execution. So any enforceable policy
P must be specified so that

MeP +«= VYocNocP.

P formalizes criteria used by EM to decide whether a trace o is
acceptable, i.e., whether or not to abort (“execution cutting”).

» Hence Requirement 1: P must be a property formalizable in terms
of a predicate P on executions.

A set is a property iff set membership is determined by each element
alone and not by other elements of the set.

» Contrast: properties of behaviors vs. properties of sets of behaviors.

* “Average response time, over all executions, should be < 10ms.”
* “Actions of high users have no effect on observations of low users.”

10

Characterization (cont.)

» Mechanism cannot decide based on possible future execution.
tick - tick - BadThing - tick - tick - GreatThing - tick. ..
1 77?

» Consequence: (Recall e P& Vo eM.o € P)
% Suppose o’ is a prefix of o, such that o/ & P, and o € P.

* Then policy P is not enforceable since we do not know whether system
terminates before ¢’ is extended to o.

> Requirement 2, above, is called prefix closure.
* |f a trace is not in P, then the same holds for all extensions.

* Conversely if a trace is in P, so are all its prefixes.

A

» Moreover, Requirement 3, finite refutability: If a trace is not in P,
we must detect this based on some finite prefix.

Characterization (cont.)

> Let 7 < o if 7 is a finite prefix of o.

» Requirement 2: prefix closure.
VoeV.oeP = (Vr<o.7eP)

> Requirement 3: finite refutability.

VoeV.ogP — (Ir<o.r¢P)

> Sets satisfying all three requirements are called safety properties.

12

Safety properties — remarks

Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

Examples
* Reactor temperature never exceeds 1000° C.

* If the key is not in the ignition position, the car will not start.
* You may play a movie at most three times after paying for it.

% Any history-based policy depending on the present and past.

Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why?

13

Safety properties — remarks

Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

Examples
* Reactor temperature never exceeds 1000° C.

* If the key is not in the ignition position, the car will not start.
* You may play a movie at most three times after paying for it.

% Any history-based policy depending on the present and past.

Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why? This cannot be refuted on any finite execution.

13

Consequences

> If set of executions for a security policy P is not a safety property,
then no EM enforcement mechanism exists for P. Examples:

* Mechanism grants access if a certificate is delivered in future.

* Some non-trace properties (hyper-properties) like non-interference.

» EM-enforceable policies can be composed by running mechanisms in
parallel.

» EM mechanisms can be implemented by automata.
* Biichi automata are automata on infinite words.

% A variant, security automata, accept safety properties.
These constitute a central security model.

* Topic of another talk!

14

Story so far... . \ﬁi

Enforceable Security Policies

Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000 l é
Abstract Setting
) _) [system]
» System iteratively executes actions
» Enforcement mechanism intercepts them allowed
. . : action?
(prior to their execution)

» Enforcement mechanism terminates system [enforl(]:en]ent]
: ol mechanism
in case of violation

15

Story so far...

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

» System iteratively executes actions

[system]

» Enforcement mechanism intercepts them allowed
. ; . action?
(prior to their execution)
» Enforcement mechanism terminates system [enforl(]:en]ent]
in case of violation mechamsm

Main Concerns

. -
» enforceable policy o safety property

» match with reality?

15

Follow-Up Work

SASI enforcement of security policies
U. Erlingsson and F. Schneider, NSPW'99

IRM enforcement of Java stack inspection

U. Erlingsson and F. Schneider, S&P’'00

Access control by tracking shallow execution history

P. Fong, S&P’'04

Edit automata: enforcement mechanisms for run-time security properties

J. Ligatti, L. Bauer, and D. Walker, Int. J. Inf. Secur., 2005

Computability classes for enforcement mechanisms

K. Hamlen, G. Morrisett, and F. Schneider, ACM Trans. Inf. Syst. Secur., 2006
Run-time enforcement of nonsafety policies

J. Ligatti, L. Bauer, and D. Walker, ACM Trans. Inf. Syst. Secur., 2009

A theory of runtime enforcement, with results

J. Ligatti and S. Reddy, ESORICS'10

Do you really mean what you actually enforced?

N. Bielova and F. Massacci, Int. J. Inf. Secur., 2011

Runtime enforcement monitors: composition, synthesis and enforcement abilities
Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, Form. Methods Syst. Des., 2011
Service automata

R. Gay, H. Mantel, and B. Sprick, FAST'11

Cost-aware runtime enforcement of security policies
P. Drébik, F. Martinelli, and C. Morisset, STM'12

16

Match with reality 777

> A login must not happen within 3 seconds after a fail

» Each request must be followed by a deliver within 3 seconds

Both are safety properties.

Can we enforce both by preventing events causing policy
violations from happening?

17

Some Auxiliary Definitions

> * and X%, are the finite and infinite sequences over alphabet ..
Y =3YruUxv.

For o € £, denote set of its prefixes by pre(c) and set of its finite
prefixes by pre, (o). l.e., pre, (o) := pre(c) N X*.

The truncation of L C X" is the largest prefix-closed subset of L.
trunc(L) := {oc € ¥* | pre(o) C L}

Its limit closure contains both the sequences in L and the infinite
sequences whose finite prefixes are all in L.

limitclosure(L) := LU {0 € X% | pre,(c) C L}
For L C ¥* and K C X°°, their concatenation is defined by:

L-K:={oreX>®|oceland 1€ K}

18

Refined Abstract Setting
Accounting For Controllability

Actions Traces

Set of actions >~ = O U C: Trace universe U C X °°;
» O = {observable actions} » U#£D
» C = {controllable actions} » U prefix-closed

Example: request - tick - deliver - tick - tick - request - deliver - tick... € U

19

Refined Abstract Setting
Accounting For Controllability

Actions Traces

Set of actions ¥ = O UC: Trace universe U C X *°:

» O = {observable actions} » U#D

» C = {controllable actions} » U prefix-closed

Example: request - tick - deliver - tick - tick - request - deliver - tick... € U

Requirements (on an Enforcement Mechanism)

» Soundness: prevents policy-violating traces
» Transparency: allows policy-compliant traces
» Computability: makes decisions

19

Formalization

enforcement mechanism

20

Formalization

H ai Haz ‘...‘aml an #‘

enforcement mechanism
action
system
dn

DTM

20

Formalization

enforcement mechanism

act|on H al Ha2 ‘. . ‘aml an an.H‘

| system l

an+1
DTM

20

Formalization

action
system
an+1

enforcement mechanism

H al Ha2 ‘ ‘aH‘ an

anH

DTM

P C (OUC)= is enforceable in U <% exists DTM M with
1. e L(M)
“M accepts the empty trace”

2. M halts on inputs in (trunc(L(M))-(OUC))NU

“M either permits or denies an intercepted action”

3. M accepts inputs in (trunc(L(M))-0) NU

“M permits an intercepted observable action”

4. limitclosure(trunc(L(M))) NU =PNU
“soundness (C) and transparency (2)"

20

Examples

» Controllable actions: C = {login, request, deliver}
» Observable actions: O = {tick, fail}

> Set of actions: ¥ =CUO

» Trace universe: U =X* U (X* - {tick})“

Policies

P1. A login must not happen within 3 seconds after a fail
= enforceable (TM stops inappropriate login events)
P>. Each request must be followed by a deliver within 3 seconds
= not enforceable (no TM can stop inappropriate tick events)

21

The Evolution of Safety

> L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

22

The Evolution of Safety

> L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

» B. Alpern and F. Schneider, 1986: A property P C ¥* is w-safety if
VoeY“ o¢P—-3ieNVrer o .7¢P

* Violations are finitely observable and irremedial.
* Reformulates what we previously saw.

22

The Evolution of Safety

> L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

» B. Alpern and F. Schneider, 1986: A property P C ¥* is w-safety if
VoeY“ o¢P—-3ieNVrer o .7¢P

* Violations are finitely observable and irremedial.
* Reformulates what we previously saw.

» Folklore: A property P C X*° is co-safety if
VoeX® o¢P—3ieNVrer® o<.r¢pP

22

The Evolution of Safety

> L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

» B. Alpern and F. Schneider, 1986: A property P C ¥* is w-safety if
VoeY“ o¢P—-3ieNVrer o .7¢P

* Violations are finitely observable and irremedial.
* Reformulates what we previously saw.

» Folklore: A property P C X*° is co-safety if
VoeX® o¢P—3ieNVrer® o<.r¢pP

» T. Henzinger, 1992: A property P C ¥“ is safety in U C ¥
VocUo¢P—-3ieNVrerx® o .r¢PNU

22

Safety

(with Universe and Observables)

» Intuition

* P is safety in U and
* Bad things are not caused by elements from O.

» Formalization: A property P C X* is (U,O)-safety if
VoeU.ocgP >3 eNc™ ¢ -OAVr €L 0% . 7¢ PNU

* Generalizes previous defs: O = () and X% and ¥ are instances of U.
* As U and O become smaller it is more likely a trace set P is (U,O)-safety.
(Indeed, for U = @, P is always (U,O)-safety).

23

Safety

(with Universe and Observables)

» Intuition

* P is safety in U and
* Bad things are not caused by elements from O.

» Formalization: A property P C X is (U,O)-safety if

VUGU-U¢'D_>3’.€N-‘7<i¢Z*-0/\VT€Z°°,U<i.T¢,DQU

* Generalizes previous defs: O = () and X% and ¥ are instances of U.

* As U and O become smaller it is more likely a trace set P is (U,O)-safety.

(Indeed, for U = @, P is always (U,O)-safety).

> Liveness also generalizes to this setting
(“something good can happen in U after actions not in O")

23

Example

P1. A login must not happen within 3 seconds after a fail

P>. Each request must be followed by a deliver within 3 seconds

> P; is oo-safety.
% Any trace that violates P; has a prefix ending in login that violates P;.

* All extensions of this prefix still violate P;.

> P is also co-safety. Argument analogous with violations due to tick.
» But Py is (U, O)-safety & P, is not (U, O)-safety, for O = {tick, fail}
* P; violated by executing login € C. No policy compliant extensions.

* For P, simply consider:
request - tick - tick - tick - tick. ..

24

Safety and Enforceability

Theorem
Let P be a property and U a trace universe with U N X* decidable.

(1) Pis (U, O)-safety,
P is (U, O)-enforceable <= (2) pre,(PNU) is a decidable set, and
(3) e € P.

Proof uses characterization that

P is (U, O)-safety iff limitclosure(pre,(PNU)-0*)NnU C P.

Schneider's “characterization:” only = for (1)
where U =% and O =0

25

Realizability of Enforcement Mechanisms

Fundamental Algorithmic Problems

Given a specification of a policy.
> Is it enforceable?
> If yes, can we synthesize an enforcement mechanism for it?

» With what complexity can we do so?

Some Results

Deciding if P is (U, O)-enforceable when both U and P are given as
> FSAs is PSPACE-complete.

» PDAs is undecidable.

> LTL formulas is PSPACE-complete.

» MLTL formulas is EXPSPACE-complete.

26

Checking Enforceability and Safety
(PDA and FSA)!

Checking Enforceability
Let U and P be given as PDAs or FSAs Ay and Ap.

1. pre,(L(Ap) N L(Ay)) is known to be decidable
2. check whether ¢ € L(Ap)
3. check whether L(Ap) is (L(Ay), O)-safety

Checking Safety
Let U and P be given as PDAs or FSAs Ay and Ap.
» PDAs: undecidable in general

> FSAs: generalization of standard techniques

! Automata have 2 sets of accepting states, for finite and for infinite sequences.

27

Checking Enforceability and Safety
(LTL and MLTL)

Checking Enforceability
Let U and P be given as LTL or MLTL formulas ¢y and ¢p.

1. pre,(L(wp) N L(py)) is known to be decidable
2. check whether € € L(pp)
3. check whether L(pp) is (L(vu), O)-safety

Checking Safety

Let U and P be given as LTL or MLTL formulas ¢y and ¢p.

1. translate py and ¢p into FSAs Ay and Ap
2. use the results of the previous slide on Ay and Ap

3. perform all these calculations on-the-fly

28

Beyond a Yes-No Answer

> If yes ...
synthesize an enforcement mechanism from Ap and Ay
(Do so by building FSA security automata for Ap N Ay.)

» Ifno ...
return a witness illustrating why P is not (U, O)-enforceable
(Construct trace in U\ P with suffix in P (violating transparency)
or that would not be prevented (violating soundness).)

» Ifno ...
return the maximal trace universe V in which P is
(V, O)-enforceable

29

Conclusion

Summary

» Formalization of enforceability in a refined abstract setting
» Characterization of enforceability

» Generalization of notion of safety (and liveness)

> Realizability problem for enforcement

» Interesting connections to control theory (Ramadge-Wonham

Framework), not discussed here

Future Work

» Enforceability for other relevant specification languages
» Tool support for enforcement (PEP/PDP, code weaving, ...).

» How best to combine monitoring and enforcement

30

References

David Basin, Vincent Jugé, Felix Klaedtke and Eugen Z3linescu,
Enforceable Security Policies Revisited
ACM Transactions on Information and System Security, 2013.

David Basin, Matuis$ Harvan, Felix Klaedtke and Eugen Zalinescu,
Monitoring Data Usage in Distributed Systems,
IEEE Transactions on Software Engineering, 2013.

David Basin, Matuis$ Harvan, Felix Klaedtke and Eugen Zalinescu,
MONPOLY: Monitoring Usage-control Policies,

Proceedings of the 2nd International Conference on Runtime Verification
(RV), 2012.

David Basin, Ernst-Ruediger Olderog, and Paul Sevinc,

Specifying and analyzing security automata using CSP-OZ,

Proceedings of the 2007 ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2007.

31

