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Policy Enforcement Mechanisms are Omnipresent
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Enforcing Policies at all Hardware/Software Layers

� Memory management hardware

� Operating systems and file systems

� Middleware and application servers

� Network traffic: firewalls and VPNs

� Applications: databases, mail servers, etc.
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Policies Come in all Shapes and Sizes

History-based Access Control

Chinese
Wall Information

Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy

. . .
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So Which Policies can be Enforced?
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Examples
AC / General

policies

� Only Alice may update customer data.

� Employees may overspend their budget by 50% provided they
previously received managerial approval.

� Bob may make up to most 5 copies of movie XYZ.

......................................................................................................

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds
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Relevance of Research Question

� Fundamental question about mechanism design.

∗∗∗ Focus: conventional mechanisms that operate by monitoring execution
and preventing actions that violate policy.

∗∗∗ Given omnipresence of such mechanisms and diversity of policies it
is natural to ask: which policies can be enforced?

� Enforce versus monitor

∗∗∗ Enforcement often combined with system monitoring.

∗∗∗ Why do both? Defense in depth? Accountability? Something deeper?

� Fun problem. Nice example of applied theory.

∗∗∗ Temporal reasoning, logic, formal languages, complexity theory
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Enforcement by Execution Monitoring

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

So which policies are enforceable?

system

enforcement
mechanism

allowed
action?
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Characterizing EM enforceability — formal setup

� Let Ψ denote universe of all possible finite/infinite sequences.

∗∗∗ Represents executions at some abstraction level.

∗∗∗ E.g., sequences of actions, program states, state/action pairs, ...

∗∗∗ Example: request · tick · deliver · tick · tick · request · deliver · tick . . .

� A security policy P is specified as a predicate on sets of executions,
i.e., it characterizes a subset of 2Ψ.

� A system S defines a set ΣS ⊆ Ψ
of actual executions.

� S satisfies P iff ΣS ∈ P. S

P Ψ

Σ
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Characterizing EM enforceability: trace properties

� EMs work by monitoring target execution. So any enforceable policy
P must be specified so that

Π ∈ P ⇐⇒ ∀σ ∈ Π. σ ∈ P̂ .

P̂ formalizes criteria used by EM to decide whether a trace σ is
acceptable, i.e., whether or not to abort (“execution cutting”).

� Hence Requirement 1: P must be a property formalizable in terms
of a predicate P̂ on executions.

A set is a property iff set membership is determined by each element
alone and not by other elements of the set.

� Contrast: properties of behaviors vs. properties of sets of behaviors.

∗∗∗ “Average response time, over all executions, should be ≤ 10ms.”
∗∗∗ “Actions of high users have no effect on observations of low users.”
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Characterization (cont.)

� Mechanism cannot decide based on possible future execution.

tick · tick · BadThing · tick · tick · GreatThing · tick . . .

⇑ ???

� Consequence: (Recall Π ∈ P ⇔ ∀σ ∈ Π. σ ∈ P̂)

∗∗∗ Suppose σ′ is a prefix of σ, such that σ′ 6∈ P̂, and σ ∈ P̂.

∗∗∗ Then policy P is not enforceable since we do not know whether system
terminates before σ′ is extended to σ.

� Requirement 2, above, is called prefix closure.
∗∗∗ If a trace is not in P̂, then the same holds for all extensions.

∗∗∗ Conversely if a trace is in P̂, so are all its prefixes.

� Moreover, Requirement 3, finite refutability: If a trace is not in P̂,
we must detect this based on some finite prefix.
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Characterization (cont.)

� Let τ ≤ σ if τ is a finite prefix of σ.

� Requirement 2: prefix closure.

∀σ ∈ Ψ. σ ∈ P̂ → (∀τ ≤ σ. τ ∈ P̂)

� Requirement 3: finite refutability.

∀σ ∈ Ψ. σ 6∈ P̂ → (∃τ ≤ σ. τ 6∈ P̂)

� Sets satisfying all three requirements are called safety properties.
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Safety properties — remarks

� Safety properties are a class of trace properties.
Essentially they state that nothing bad ever happens.

� Finite refutability means if bad thing occurs, this happens after
finitely many steps and we can immediately observe the violation.

� Examples
∗∗∗ Reactor temperature never exceeds 1000o C .

∗∗∗ If the key is not in the ignition position, the car will not start.

∗∗∗ You may play a movie at most three times after paying for it.

∗∗∗ Any history-based policy depending on the present and past.

� Nonexample (liveness): If the key is in the ignition position, the car
will start eventually.

Why?

This cannot be refuted on any finite execution.
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Consequences

� If set of executions for a security policy P is not a safety property,
then no EM enforcement mechanism exists for P. Examples:

∗∗∗ Mechanism grants access if a certificate is delivered in future.

∗∗∗ Some non-trace properties (hyper-properties) like non-interference.

� EM-enforceable policies can be composed by running mechanisms in
parallel.

� EM mechanisms can be implemented by automata.

∗∗∗ Büchi automata are automata on infinite words.

∗∗∗ A variant, security automata, accept safety properties.
These constitute a central security model.

∗∗∗ Topic of another talk!
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Story so far...

Enforceable Security Policies
Fred B. Schneider, ACM Trans. Inf. Syst. Sec., 2000

Abstract Setting

� System iteratively executes actions

� Enforcement mechanism intercepts them
(prior to their execution)

� Enforcement mechanism terminates system
in case of violation

Main Concerns

� enforceable policy
=⇒=⇒=⇒
666⇐=⇐=⇐=

safety property

� match with reality?

system

enforcement
mechanism

allowed
action?
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Follow-Up Work
� SASI enforcement of security policies

Ú. Erlingsson and F. Schneider, NSPW’99

� IRM enforcement of Java stack inspection
Ú. Erlingsson and F. Schneider, S&P’00

� Access control by tracking shallow execution history
P. Fong, S&P’04

� Edit automata: enforcement mechanisms for run-time security properties
J. Ligatti, L. Bauer, and D. Walker, Int. J. Inf. Secur., 2005

� Computability classes for enforcement mechanisms
K. Hamlen, G. Morrisett, and F. Schneider, ACM Trans. Inf. Syst. Secur., 2006

� Run-time enforcement of nonsafety policies
J. Ligatti, L. Bauer, and D. Walker, ACM Trans. Inf. Syst. Secur., 2009

� A theory of runtime enforcement, with results
J. Ligatti and S. Reddy, ESORICS’10

� Do you really mean what you actually enforced?
N. Bielova and F. Massacci, Int. J. Inf. Secur., 2011

� Runtime enforcement monitors: composition, synthesis and enforcement abilities
Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, Form. Methods Syst. Des., 2011

� Service automata
R. Gay, H. Mantel, and B. Sprick, FAST’11

� Cost-aware runtime enforcement of security policies
P. Drábik, F. Martinelli, and C. Morisset, STM’12
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Match with reality ???

� A login must not happen within 3 seconds after a fail

� Each request must be followed by a deliver within 3 seconds

Both are safety properties.

Can we enforce both by preventing events causing policy
violations from happening?
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Some Auxiliary Definitions

� Σ∗ and Σω, are the finite and infinite sequences over alphabet Σ.
Σ∞ := Σ∗ ∪ Σω.

� For σ ∈ Σ∞, denote set of its prefixes by pre(σ) and set of its finite
prefixes by pre∗(σ). I.e., pre∗(σ) := pre(σ) ∩ Σ∗.

� The truncation of L ⊆ Σ∗ is the largest prefix-closed subset of L.

trunc(L) := {σ ∈ Σ∗ | pre(σ) ⊆ L}

� Its limit closure contains both the sequences in L and the infinite
sequences whose finite prefixes are all in L.

limitclosure(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}

� For L ⊆ Σ∗ and K ⊆ Σ∞, their concatenation is defined by:

L · K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}
18



Refined Abstract Setting
Accounting For Controllability

Actions

Set of actions Σ = O ∪ C:

� O = {observable actions}
� C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

� U 6= ∅
� U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on an Enforcement Mechanism)

� Soundness: prevents policy-violating traces

� Transparency: allows policy-compliant traces

� Computability: makes decisions
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Formalization

system

enforcement mechanism

action
an

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

20



Formalization

system

enforcement mechanism

action
an

DTM

. . .

a1 a2 . . . an−1 an #

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

20



Formalization

system

enforcement mechanism

action
an+1

DTM

. . .

a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

20



Formalization

system

enforcement mechanism

action
an+1

DTM

. . .

a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒⇐⇒⇐⇒ exists DTM M with

1. ε ∈ L(M)
“M accepts the empty trace”

2. M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies an intercepted action”

3. M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits an intercepted observable action”

4. limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”
20



Examples

Setting

� Controllable actions: C = {login, request,deliver}
� Observable actions: O = {tick, fail}
� Set of actions: Σ = C ∪O

� Trace universe: U = Σ∗ ∪ (Σ∗ · {tick})ω

Policies

P1. A login must not happen within 3 seconds after a fail
⇒ enforceable (TM stops inappropriate login events)

P2. Each request must be followed by a deliver within 3 seconds
⇒ not enforceable (no TM can stop inappropriate tick events)
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The Evolution of Safety

� L. Lamport, 1977: “A safety property is one which states that
something bad will not happen.”

� B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

∗∗∗ Violations are finitely observable and irremedial.
∗∗∗ Reformulates what we previously saw.

� Folklore: A property P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ /∈ P → ∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

� T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω

∀σ ∈ U. σ /∈ P → ∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩U
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Safety
(with Universe and Observables)

� Intuition

∗∗∗ P is safety in U and
∗∗∗ Bad things are not caused by elements from O.

� Formalization: A property P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ /∈ P → ∃i ∈ N. σ<i /∈ Σ∗ ·O∧∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

∗∗∗ Generalizes previous defs: O = ∅ and Σω and Σ∞ are instances of U.

∗∗∗ As U and O become smaller it is more likely a trace set P is (U,O)-safety.
(Indeed, for U = ∅, P is always (U,O)-safety).

� Liveness also generalizes to this setting
(“something good can happen in U after actions not in O”)
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Example

P1. A login must not happen within 3 seconds after a fail

P2. Each request must be followed by a deliver within 3 seconds

� P1 is ∞-safety.

∗∗∗ Any trace that violates P1 has a prefix ending in login that violates P1.

∗∗∗ All extensions of this prefix still violate P1.

� P2 is also ∞-safety. Argument analogous with violations due to tick.

� But P1 is (U,O)-safety & P2 is not (U,O)-safety, for O = {tick, fail}
∗∗∗ P1 violated by executing login ∈ C. No policy compliant extensions.

∗∗∗ For P2 simply consider:

request · tick · tick · tick · tick . . .
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Safety and Enforceability

Theorem

Let P be a property and U a trace universe with U ∩ Σ∗ decidable.

P is (U,O)-enforceable ⇐⇒⇐⇒⇐⇒
(1) P is (U,O)-safety,

(2) pre∗(P ∩U) is a decidable set, and

(3) ε ∈ P.

Proof uses characterization that

P is (U,O)-safety iff limitclosure(pre∗(P ∩U) ·O∗) ∩U ⊆ P.

Schneider’s “characterization:” only =⇒=⇒=⇒ for (1)
where U = Σ∞ and O = ∅
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Realizability of Enforcement Mechanisms

Fundamental Algorithmic Problems

Given a specification of a policy.

� Is it enforceable?

� If yes, can we synthesize an enforcement mechanism for it?

� With what complexity can we do so?

Some Results

Deciding if P is (U, O)-enforceable when both U and P are given as

� FSAs is PSPACE-complete.

� PDAs is undecidable.

� LTL formulas is PSPACE-complete.

� MLTL formulas is EXPSPACE-complete.
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Checking Enforceability and Safety
(PDA and FSA)1

Checking Enforceability

Let U and P be given as PDAs or FSAs AU and AP .

1. pre∗(L(AP) ∩ L(AU)) is known to be decidable

2. check whether ε ∈ L(AP)

3. check whether L(AP) is (L(AU), O)-safety

Checking Safety

Let U and P be given as PDAs or FSAs AU and AP .

� PDAs: undecidable in general

� FSAs: generalization of standard techniques

1Automata have 2 sets of accepting states, for finite and for infinite sequences.
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Checking Enforceability and Safety
(LTL and MLTL)

Checking Enforceability

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. pre∗(L(ϕP) ∩ L(ϕU)) is known to be decidable

2. check whether ε ∈ L(ϕP)

3. check whether L(ϕP) is (L(ϕU), O)-safety

Checking Safety

Let U and P be given as LTL or MLTL formulas ϕU and ϕP .

1. translate ϕU and ϕP into FSAs AU and AP

2. use the results of the previous slide on AU and AP

3. perform all these calculations on-the-fly

28



Beyond a Yes-No Answer

� If yes . . .
synthesize an enforcement mechanism from AP and AU

(Do so by building FSA security automata for AP ∩ AU.)

� If no . . .
return a witness illustrating why P is not (U,O)-enforceable
(Construct trace in U \ P with suffix in P (violating transparency)
or that would not be prevented (violating soundness).)

� If no . . .
return the maximal trace universe V in which P is
(V,O)-enforceable
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Conclusion

Summary

� Formalization of enforceability in a refined abstract setting

� Characterization of enforceability

� Generalization of notion of safety (and liveness)

� Realizability problem for enforcement

� Interesting connections to control theory (Ramadge-Wonham
Framework), not discussed here

Future Work

� Enforceability for other relevant specification languages

� Tool support for enforcement (PEP/PDP, code weaving, ...).

� How best to combine monitoring and enforcement
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