

From programs to cyber-physical systems

- Programs:
 - mappings states to states or data to data,
 - supposed to terminate,
 - time and interaction not an issue,
 - concept of computation: Turing machines algorithms
- Cyber-physical systems:
 - connected to the physical world,
 - needs a coherent model of context, interface, interaction, time, architecture, state, probability, data and event flow
 - concept of computation: interaction, generalized Mealy machines
 - extended requirement for dependability

TUT

And what about requirements specification?

- Correctness does not make sense without specifications!
- Reliability needs also notions of correctness!

However for cyber-physical system specification and correctness is a bit more tricky ...

- Time
- Probability
- Precision
- Uncertainty of the physical world
- ...

ETH Zürich October 2014	Manfred Broy	TUT	3
-------------------------	--------------	-----	---

The challenge: uncertainty and correctness of software/systems

- Classical: "sharp" correctness black or white
 a system/program is correct or not
- Unsharp correctness:
 - Correct to a certain degree
 - Correct with a certain probability
 - Correct over a certain time
 - Correct in some fuzzy way

Challenge

- specification
- verification

in der presence von unsharpness/uncertainty

Formalizations of unsharp correctness

 Classical correctness: Given: set T ⊆ A* of streams of correct output sequences

output t' $\in A^*$ is correct, iff t' $\in T$

 Extension: output t` more correct than output t`` Define distance d(t, t`) between output streams: t` is more correct as t`` iff

min { d(t, t'): t \in T } < min { d(t, t''): t \in T }

• result $t' \in A^*$ is correct with a certain probability :

```
P[t` ∈ T] > 0.9
```

```
P[min { d(t, t'): t ∈ T } < 0.1] > 0.9
```

 Fuzzy: result t' ∈ A* is roughly correct – formalized in fuzzy logic

ETH Zürich October 2014

Manfred Broy

5

Reliability as an element of Dependability

Comprehensive view **dependability**:

- Availability readiness for service
- **Reliability** continuity of correct service
- **Safety** absence of catastrophic consequences on the user(s) and the environment
- **Security** Integrity absence of improper system alteration/degree of resistance to or protection from vulnerability
- Maintainability ability for a process to undergo modifications and repairs

System and its context

Basic System Notion: What is a discrete system (model)

A system has

- a system boundary that determines
 - what is part of the systems and
 - what lies outside (called its context)
- an interface (determined by the system boundary), which determines,
 - what ways of interaction (actions) between the system und its context are possible (static or syntactic interface)
 - which behavior the system shows from view of the context (interface behavior, dynamic interface, interaction view)
- a structure and distribution addressing internal structure, given
 - by its structuring in sub-systems (sub-system architecture)
 - by its states und state transitions (state view, state machines)
- quality profile
- the views use a data model
- the views may be documented by adequate models

System Views

- Operational Context View (CIB context interface behavior)
 - Behavior of the operational context
- Interface View: System Interface Behavior (SIB)
 - Functional View: Interface Behavior
 - Functional features: hierarchy and feature interaction
- Interaction between CIB and SIB:
 - Observable behavior: process OBS
- Architectural View
 - Hierarchical decomposition in sub-systems
 - Sub-system behavior

System under Consideration (SuC)

- State View
 - ♦ State space
 - ♦ State transition

TUT | ETH Zürich October 2014 Manfred Broy 9 A depandability **Operational Context (CIB)** view onto a system and its context Context/process Physical observations (OBS) and technical context External (observable) User failure Interface No failure: SIB CIB \land SIB \Rightarrow No_failure(OBS)

Sets of typed channels

 $I = \{x_1 : T_1, x_2 : T_2, ... \}$ y₁ : T'₁ $O = \{y_1 : T'_1, y_2 : T'_2, \dots\}$ System syntactic interface (I ► 0) data stream of type T $\mathsf{STREAM}[\mathsf{T}] = \{\mathbb{N} \setminus \{0\} \to \mathsf{T}^*\}$ $X_5 : T_5$ valuation of channel set C $\mathbb{H}[C] = \{C \rightarrow STREAM[T]\}$ See: M. Broy: A Logical Basis for Component-Oriented Software and Systems Engineering. interface behaviour for syn. interface (I > O)The Computer Journal: Vol. 53, No. 10, 2010, 1758-1782 $[\mathbf{I} \triangleright \mathbf{O}] = \{ \mathbb{H}[\mathbf{I}] \rightarrow \wp(\mathbb{H}[\mathbf{O}]) \}$

System interface behaviour - causality

- Essential: interface behavior
- Time:
 - ♦ Causality modeling time flow
 - System time vs. physical time
 - time requirements vs. execution time
- Interaction: sequence of steps
 - Context modeling and the interaction between system and environment
- Non termination: Systems run without time limits
- Composition with the environment
 - Functional safety no hazards
 - Security
 - ♦ Reliability
 - <u>ہ</u> ...

ETH Zürich October 2014	Manfred Broy	ТЛП	13

Example: System interface specification

From the interface assertions we can prove

• Safety properties

$$m#y > 0 \land y \in TMC(x) \Rightarrow m#x > 0$$

• Liveness properties

$$m#x > 0 \land y \in TMC(x) \Rightarrow m#y > 0$$

ETH Zürich October 2014	Manfred Broy	TUTT	15

Verification: adding causality

From the interface assertions we can derive properties! Specification:

 $y \in \mathsf{TMC}(x) \Rightarrow (\forall \ m \in \mathsf{T}: \ m\#x = m\#y)$ Strong causality: $x \downarrow t = z \downarrow t \Rightarrow \{y \downarrow t+1: \ y \in \mathsf{TMC}(x)\} = \{y \downarrow t+1: \ y \in \mathsf{TMC}(z)\}$ From which by choosing z such that $\forall \ m \in \mathsf{T}: \ m\#(z \uparrow t) = 0$ we can deduce (note then $m\#x \downarrow t = m\#z$) $y \in \mathsf{TMC}(x) \Rightarrow \forall \ t \in \mathsf{Time}, \ m \in \mathsf{T}: \ m\#(y \downarrow t+1) \le m\#(x \downarrow t)$

Specification of Timing Properties

ETH Zürich October 2014	Manfred Broy	TUT	17

Modularity: Rules of compositions for interface specs

							1		
	хI	F1⊗F2	E 1	ן z12 ן	EO		y2		
			ΓI		F2		· • •		
	v1		S 1	z21	\$2		x2		
	y 1 ◀		51		52				
				-					
F1						F2			
in x1,	z21: '	Т				in	x2, z12: 7	г	
out y1,	z12: '	Т				ou	ut y2, z21: 7	.	
S 1						S2	2		_

Specification with Probabilities

Probabilistic Behavior Composition

Probabilistic behavior

 $\mathsf{F:} \ \wp(\mathbb{H}[\mathrm{I}]) \to (\wp(\mathbb{H}[\mathrm{O}]) \to [0:1])$

We write for $X \subseteq \mathbb{H}[I]$, $Y \subseteq \mathbb{H}[O]$

F(X)[Y] for the probability

that the output is in Y provided the input is in X

Probabilistic Behavior Composition

Given G we specify $F = F1 \otimes F2$ F: $\wp(\mathbb{H}[I]) \rightarrow (\wp(\mathbb{H}[O]) \rightarrow [0:1])$

by

 $F(X)[Y] = G(X')[\{y': \exists x' \in X': y'|_{0} \in Y \land x'|_{Z} = y'|_{Z}\}]$

where $X' = \{x: x |_I \in X\}$.

ETH Zürich October 2014	Manfred Broy	TUT	23

Modelling Reliability & Availability

Technische Universität München Institut für Informatik

- Many interesting properties of systems have to be expressed **quantitatively**, using metrics or measures
- Examples
 - ♦ Resource Usage
 - System Operation Costs
 - Opendability

• Examples for **dependability metrics**

- ♦ Uptime, Downtime
- Reliability
- Point-, Interval-, Steady State Availability

ETH Zürich October 2014	Manfred Broy	25

Quantitative Specifications

Quantitative Specifications map observations about a system to a numeric value (i.e. the metric):

Cantor Metric: depends on the length of the longest common prefix of histories.

d: $\mathbb{H}[C] \times \mathbb{H}[C] \to \mathbb{R} \cup \{-\infty, +\infty\}$ d(x, x') = glb {1/2^t: x \cdot t = x' \cdot t }

Chatterjee, Henzinger, Jobastman, Singh: Measuring and Synthesizing Systems in Probabilistic Environments, CAV 2010

ETH Zürich October 2014

Let D be an arbitrary set and F be a set of subsets of D. We call F a *field of sets if*

- $\emptyset \in F$,
- if A is a set in F then its complement D \ A is in F, and
- if A and B are in F then their union $A \cup B$ is also in F.

F is called a *Borel field*, if it fulfills the additional property that for every countable enumeration of sets $A_1, A_2, ... \in F$ we get

 $\bullet \ \cup \{A_i: i \in {\rm I\!N}\} \in F$

ETH Zürich October 2014	Manfred Broy	TUT	27

Measurability

A function

```
\mu: \mathsf{F} \to \mathbb{R} \cup \{-\infty, +\infty\}
```

from a Borel field F of sets to the extended real numbers $\mathbb{R} \cup \{-\infty, +\infty\}$ is called a *measure* if the following properties holds:

- $\mu(A) \ge 0$ for all $A \in F$
- μ(∪ {A_i: i ∈ IN}) = Σ {μ(A_i): i ∈ IN} for all pairwise disjoint sets A₁, A₂, ... ∈ F, i.e. with A_i ∩ A_j = Ø for all i ≠ j (the measure μ is then called *completely additive*)

The set D with a measure function μ defined on a field of sets F is called a *measure space* and the sets in F are called *measurable*.

Measure spaces are taken as the basis for probability theory.

ETH Zürich October 2014	Manfred Broy	TUT	29

Availability & Reliability

Our view on Availability & Reliability:

Availability & Reliability are properties of the (black-box) **interface behavior** of the system as observed by a user or external system.

Both quantify the amount of observable failures of the system.

What counts as failure needs to be explicitly defined!

See: M Junker, P Neubeck: A Rigorous Approach to Availability Modeling. Modeling in Software Engineering (MISE), 2012 ICSE Workshop

Example: Reliability

From reliability theory: Reliability distribution

 $R(t) = \mathbf{P}[lifetime of system is at least as long as t]$

ETH Zürich October 2014	Manfred Broy	ТЛП	31

Reliability

Given: set $Y \subseteq \mathbb{H}[O]$ histories

- output $y' \in \mathbb{H}[O]$ is correct, iff $y' \in Y$
- system with output set $\Upsilon \subseteq \mathbb{H}[O]$ is correct, iff $\Upsilon \subseteq \Upsilon$
- Probabilistic system behavior: P: ℘(𝗏[O]) → [0:1] Correctness w.r.t Y: P[Y]
- Reliability: expected value E_R of t for distribution
 R(t) = P[{y' ∈ IH[O]: ∃ y ∈ Y: y'↓t = y↓t }] is given by

$$\Sigma \{ t \cdot \mathbf{R}(t) : t \in \mathbb{N} \}$$

More sophisticated concepts of correctness and reliability:

• with which probability is the system output correct to which extent over which expected interval of time

Example: Availability

An important metric for availability is the percentage of uptime.

ETH Zürich October 2014	Manfred Broy	TUT	3	3

System Quality Models: Quality Concerns

A novel characterization of system properties and requirements

		Syntactic Basis	Behavior			
			Logical	Probabilistic		
"External" Black Box View	Functional view	Syntactic Interface	Logical interface behavior	Probabilistic interface behavior		
"Internal" Glass	Architecture view	Hierarchical data flow graph of subsystems	Subsystems and their logical Interface behavior	Subsystems and their probabilistic Interface behavior		
Box View	State view	State space structure (Attributes) I/O messages	Logical state machine logical state transitions	Probabilistic state machine probabilistic state transitions		

ETH Zürich October 2014

Manfred Broy

35

A novel characterization of functional requirements

	Interface			Architecture			State			
	Functional properties									
	Syntactic	Logical	Probabilsitc	Syntactic	Logical	Probabilsitc	Syntactic	Logical	Probabilsitc	Representation
Functional Suitability										
Usability										
Reliability										
Security										
Safety										
Performance										
Maintainability										
Reusability										
Releasability										
Executability										
Supportability										

- In a rich interface specification we speak about several views
- Example: Add probability Given:

 logical interface behavior for syn. interface (I ► 0) {𝔅(𝔅[0])}
 - ◇ probabilistic interface behavior for syn. interface (I ► 0)

$$\{\mathbb{H}[\mathrm{I}] \to \mathsf{PD} [\mathscr{O}(\mathbb{H}[\mathrm{O}])] \}$$

- \diamond interface specification by an interface assertion q(x, y)
- specify for each input history x = a probability distributions P(y|a) on the set of output histories

{y: q(a, y)}

ETH Zürich October 2014

Manfred Broy

37

Rich Specifications

In a rich specification we specify functional and "nonfunctional" properties of system functions

- logical interface behavior
- probabilistic interface behavior
- quality concerns
 - Usability
 - Time behavior
 - Reliability
 - Security
 - Safety
 - o quality of service

◇ ...

Conclusion

- To model, specify and verify cyber-physical systems we need quantitative notions of behavior and correctness
- These models have to to coherent extensions of existing theories
- Such models support a variety of key notions
 - classical functional correctness
 - probabilistic correctness
 - quality attributes
- We want to express specifications: The system produces an output that is correct to a certain degree over a certain time span with a certain probability

ETH Zürich	October	2014
------------	---------	------

Manfred Broy

39