
Technische Universität München
Institut für Informatik

Modeling Software and System Reliability

Manfred Broy
Lehrstuhl für Software & Systems Engineering

Manfred Broy 2 ETH Zürich October 2014

From programs to cyber-physical systems

•  Programs:
◊ mappings states to states or data to data,
◊  supposed to terminate,
◊  time and interaction not an issue,
◊  concept of computation: Turing machines – algorithms

•  Cyber-physical systems:
◊  connected to the physical world,
◊  needs a coherent model of context, interface, interaction, time,

architecture, state, probability, data and event flow
◊  concept of computation: interaction,

generalized Mealy machines
◊  extended requirement for dependability

Manfred Broy 3 ETH Zürich October 2014

Correctness and reliability …

And what about requirements specification?
•  Correctness does not make sense without specifications!
•  Reliability needs also notions of correctness!

However for cyber-physical system specification and
correctness is a bit more tricky …
•  Time
•  Probability
•  Precision
•  Uncertainty of the physical world
•  …

Manfred Broy 4 ETH Zürich October 2014

The challenge: uncertainty and correctness of software/systems

•  Classical: „sharp“ correctness – black or white
◊  a system/program is correct or not

•  Unsharp correctness:
◊  Correct to a certain degree
◊  Correct with a certain probability
◊  Correct over a certain time
◊  Correct in some fuzzy way

Challenge
•  specification
•  verification
in der presence von unsharpness/uncertainty

Manfred Broy 5 ETH Zürich October 2014

Formalizations of unsharp correctness

•  Classical correctness: Given: set T ⊆ A* of streams of
correct output sequences

 output t‘ ∈ A* is correct, iff t‘ ∈ T
•  Extension: output t` more correct than output t“

Define distance d(t, t‘) between output streams:
t‘ is more correct as t“ iff

min { d(t, t‘): t ∈ T } < min { d(t, t“): t ∈ T }
•  result t‘ ∈ A* is correct with a certain probability :

P[t‘ ∈ T] > 0.9
P[min { d(t, t‘): t ∈ T } < 0.1] > 0.9

•  Fuzzy: result t‘ ∈ A* is roughly correct – formalized in
fuzzy logic

Manfred Broy 6 ETH Zürich October 2014

Reliability as an element of Dependability

Comprehensive view dependability:

•  Availability - readiness for service
•  Reliability - continuity of correct service
•  Safety - absence of catastrophic consequences on the

user(s) and the environment
•  Security - Integrity - absence of improper system

alteration/degree of resistance to or protection from
vulnerability

•  Maintainability - ability for a process to undergo
modifications and repairs

Manfred Broy 7 ETH Zürich October 2014

System and its context

Manfred Broy 8 ETH Zürich October 2014

Basic System Notion: What is a discrete system (model)

A system has
•  a system boundary that determines

◊  what is part of the systems and
◊  what lies outside (called its context)

•  an interface (determined by the system boundary), which determines,
◊  what ways of interaction (actions) between the system und its context

are possible (static or syntactic interface)
◊  which behavior the system shows from view of the context (interface

behavior, dynamic interface, interaction view)

•  a structure and distribution addressing internal structure, given
◊  by its structuring in sub-systems (sub-system architecture)
◊  by its states und state transitions (state view, state machines)

•  quality profile
•  the views use a data model
•  the views may be documented by adequate models

Manfred Broy 9 ETH Zürich October 2014

System Views

•  Operational Context View (CIB – context interface
behavior)
◊  Behavior of the operational context

•  Interface View: System Interface Behavior (SIB)
◊  Functional View: Interface Behavior
◊  Functional features: hierarchy and feature interaction

•  Interaction between CIB and SIB:
◊ Observable behavior: process OBS

•  Architectural View
◊ Hierarchical decomposition in sub-systems
◊  Sub-system behavior

•  State View
◊  State space
◊  State transition

Process – interaction between system
and ist operational context

Operational Context (CIB)

User
Interface

Physical
and

technical
context

System under Consideration (SuC)

External (observable)
failure

Context/process
observations (OBS)

A depandability
view onto a system
and its context

No failure:

CIB ∧ SIB ⇒ No_failure(OBS)

SIB

Manfred Broy 11 ETH Zürich October 2014

Discrete systems: the modeling theory

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I ! O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

IH[C] = {C → STREAM[T]}

interface behaviour for syn. interface (I ! O)

[I ! O] = {IH[I] → ℘(IH[O])}

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering.
The Computer Journal: Vol. 53, No. 10, 2010,
1758-1782

Manfred Broy 12 ETH Zürich October 2014

I O
Component interface

System interface behaviour - causality

 (I ! O) syntactic interface with set of
 input channels I and of output channels O

 F : IH[I] → ℘(IH[O]) semantic interface for (I ! O)
 with timing property addressing strong causality
 let x, z ∈ IH[I], y ∈ IH[O], t ∈ IN):

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)}

 x↓t prefix of history x of length t

A system shows a total behavior

Manfred Broy 13 ETH Zürich October 2014

Characteristics of the model

•  Essential: interface behavior
•  Time:

◊  Causality – modeling time flow
◊  System time vs. physical time
◊  time requirements vs. execution time

•  Interaction: sequence of steps
◊  Context modeling – and the interaction between system and environment

•  Non termination: Systems run without time limits
•  Composition with the environment

◊  Functional safety – no hazards
◊  Security
◊  Reliability
◊  ...

Manfred Broy 14 ETH Zürich October 2014

Example: System interface specification

A transmission component TMC

TMC
 in x: T
 out y: T
 x ~ y

x ~ y ≡ (∀ m ∈ T: m#x = m#y)

TMC
x ~ y

x:T y:T

Specifying interface assertion

Manfred Broy 15 ETH Zürich October 2014

Verification: Proving properties about specified systems

From the interface assertions we can prove

•  Safety properties

m#y > 0 ∧ y ∈ TMC(x) ⇒ m#x > 0

•  Liveness properties

m#x > 0 ∧ y ∈ TMC(x) ⇒ m#y > 0

Manfred Broy 16 ETH Zürich October 2014

Verification: adding causality

From the interface assertions we can derive properties!
Specification:

y ∈ TMC(x) ⇒ (∀ m ∈ T: m#x = m#y)
Strong causality:
x↓t = z↓t ⇒ {y↓t+1: y ∈ TMC(x)} = {y↓t+1: y ∈ TMC(z)}

From which by choosing z such that
∀ m ∈ T: m#(z↑t) = 0

we can deduce (note then m#x↓t = m#z)
y ∈ TMC(x) ⇒ ∀ t ∈ Time, m ∈ T: m#(y↓t+1) ≤ m#(x�t)

Manfred Broy 17 ETH Zürich October 2014

Specification of Timing Properties

TMC
 in x: T
 out y: T
∀ t ∈ IN: ∀ m ∈ T:
m#(y↓t+delay) ≤ m#(x↓t) ≤ m#(y↓t+delay+deadline)

TMC x:T y:T Example: TMC with Timing
Restrictions

Manfred Broy 18 ETH Zürich October 2014

Modularity: Rules of compositions for interface specs

F1
 in x1, z21: T
 out y1, z12: T
 S1

F2
 in x2, z12: T
 out y2, z21: T
 S2

F1⊗F2

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

F1⊗F2
 in x1, x2: T
 out y1, y2: T

F1⊗F2
 in x1, x2: T
 out y1, y2: T
∃ z12, z21: S1 ∧ S2

Manfred Broy 19 ETH Zürich October 2014

Specification with Probabilities

TMC
 in x: T
 out y: T
∀ t ∈ IN: ∀ m ∈ T:
P(m#(x↓t) ≤ m#(y↓t+delay+deadline)) ≥ 0.8

TMC x:T y:T
Example:
TMC with Probability Restrictions

Manfred Broy 20 ETH Zürich October 2014

Discrete systems: the modeling theory - probability

Sets of typed channels

 I = {x1 : T1, x2 : T2, ... }

 O = {y1 : T’1, y2 : T’2, ... }

syntactic interface

(I ! O)

data stream of type T

STREAM[T] = {IN\{0} → T*}

valuation of channel set C

IH[C] = {C → STREAM[T]}

interface behaviour for syn. interface (I ! O)

[I ! O] = {IH[I] → PD[℘(IH[O])] }

System x1 : T1

y4 : T’4

x4 : T4

x3 : T3 x2 : T2

x5 : T5

y1 : T’1

y2 : T’2

y3 : T’3

See: P. Neubeck: A Probabilitistic Theory of Interactive
Systems. PH. D. Dissertation, Technische Universität
München, Fakultät für Informatik, December 2012

Set of all probability
distributions over sets
of output histories

Manfred Broy 21 ETH Zürich October 2014

Probabilistic Behavior Composition

Probabilistic behavior
 F: ℘(IH[I]) → (℘(IH[O]) → [0:1])

We write for X ⊆ IH[I], Y ⊆ IH[O]

 F(X)[Y] for the probability
that the output is in Y provided the input is in X

Manfred Broy 22 ETH Zürich October 2014

Probabilistic Behavior Composition

Given probabilistic behaviors
F1: ℘(IH[I1]) → (℘(IH[O1]) → [0:1])
F2: ℘(IH[I1]) → (℘(IH[O2]) → [0:1])
Where O1 ∩ O2 = ∅; we define
I = I1\O2 ∪ I2\O1, O = (O1 ∪ O2)\Z,
Z = (I1 ∩ O2) ∪ (I2 ∩ O1) shared channels
Composition: define

 G: ℘(IH[I1 ∪ I2]) → (℘(IH[O1 ∪ O2]) → [0:1])
by

 G(X)[Y] = F1(X|I1)[{y1: ∃ y ∈ Y: y|O1 = y1}] ×
F2(X|I2)[{y2: ∃ y ∈ Y: y|O2 = y2}]

I1 = {x1, z21} O1 = {y1, z12}
I2 = {x2, z12} O2 = {y2, z21}

x2

y2

z12

z21

y1

x1
F1

S1

F2

S2

G

x2

y2

z12

z21

y1

x1
F1

S1

F2

S2

Assuming probabilistic
independence

Manfred Broy 23 ETH Zürich October 2014

Probabilistic Behavior Composition

Given G we specify F = F1⊗F2
 F: ℘(IH[I]) → (℘(IH[O]) → [0:1])

by

 F(X)[Y] = G(X’)[{y’: ∃ x’ ∈ X’: y’|O ∈ Y ∧ x’|Z = y’|Z}]

where X’ = {x: x|I ∈ X} .

F

x2

y2 z12

z21 y1

x1
F1

S1

F2

S2

Technische Universität München
Institut für Informatik

Modelling Reliability & Availability

Manfred Broy 25 ETH Zürich October 2014

Quantitative Properties

•  Many interesting properties of systems have to be
expressed quantitatively, using metrics or measures

•  Examples
◊  Resource Usage
◊  System Operation Costs
◊ Dependability

•  Examples for dependability metrics
◊ Uptime, Downtime
◊  Reliability
◊  Point-, Interval-, Steady State Availability

Manfred Broy 26 ETH Zürich October 2014

Quantitative Specifications

Quantitative Specifications map observations about a
system to a numeric value (i.e. the metric):

Cantor Metric: depends on the length of the longest
common prefix of histories.

d: IH[C] × IH[C] → IR ∪ {-∞, +∞}
d(x, x’) = glb {1/2t: x�t = x’�t }

Chatterjee, Henzinger, Jobastman, Singh: Measuring and
Synthesizing Systems in Probabilistic Environments, CAV
2010

Manfred Broy 27 ETH Zürich October 2014

Measurability

Let D be an arbitrary set and F be a set of subsets of D. We
call F a field of sets if
•  ∅ ∈ F,
•  if A is a set in F then its complement D \ A is in F, and
•  if A and B are in F then their union A ∪ B is also in F.

F is called a Borel field, if it fulfills the additional property
that for every countable enumeration of sets A1, A2, ... ∈ F
we get
•  ∪ {Ai: i ∈ IN} ∈ F

Manfred Broy 28 ETH Zürich October 2014

Measurability

A function
µ : F → IR ∪ {-∞, +∞}

from a Borel field F of sets to the extended real numbers IR
∪ {-∞, +∞} is called a measure if the following properties
holds:
•  µ(A) ≥ 0 for all A ∈ F
•  µ(∪ {Ai: i ∈ IN}) = Σ {µ(Ai): i ∈ IN}

for all pairwise disjoint sets A1, A2, ... ∈ F,
i.e. with Ai ∩ Aj = ∅ for all i ≠ j
(the measure µ is then called completely additive)

Manfred Broy 29 ETH Zürich October 2014

Measurability

The set D with a measure function µ defined on a field of
sets F is called a measure space and the sets in F are called
measurable.

Measure spaces are taken as the basis for probability theory.

Manfred Broy 30 ETH Zürich October 2014

Availability & Reliability

Our view on Availability & Reliability:

Availability & Reliability are properties
of the (black-box) interface behavior
of the system as observed by a user or
external system.

Both quantify the amount of
observable failures of the system.

What counts as failure needs to be
explicitly defined!

System

See: M Junker, P Neubeck: A Rigorous Approach
to Availability Modeling. Modeling in Software
Engineering (MISE), 2012 ICSE Workshop

Manfred Broy 31 ETH Zürich October 2014

Reliability Metrics

Example: Reliability
From reliability theory:
Reliability distribution

R(t) = P[lifetime of system is at least as long as t]

Manfred Broy 32 ETH Zürich October 2014

Reliability

Given: set Y ⊆ IH[O] histories
•  output y‘ ∈ IH[O] is correct, iff y‘ ∈ Y
•  system with output set Y‘ ⊆ IH[O] is correct, iff Y‘ ⊆ Y

•  Probabilistic system behavior: P: ℘(IH[O]) → [0:1]

Correctness w.r.t Y: P[Y]

•  Reliability: expected value ER of t for distribution

R(t) = P[{y’ ∈ IH[O]: ∃ y ∈ Y: y’�t = y�t }]
is given by

Σ {t.R(t): t ∈ IN}

Manfred Broy 33 ETH Zürich October 2014

Availability & Reliability Metrics

More sophisticated concepts of correctness and reliability:
•  with which probability is the system output correct to

which extent over which expected interval of time

Example: Availability
•  An important metric for availability is the percentage of

uptime.

Manfred Broy 34 ETH Zürich October 2014

System Quality Models: Quality Concerns

1.2 Main Quality Attributes

Reliability

AppraisabilityQuality in Business

Time behavior

Functional correctness

CPU Consumption

Memory ConsumptionExecutability

Testability

Reviewability
Verifiability

Releasability

Modifiability

Analyzability

Operability

Configurability

Installability

Learnability

Maintainability

Accessibility

Security

Quality in Operation

Quality in End-Use

Functional Suitability

Usability

Q
ua

lity

Co-existence

Response time

Throughput

Error protection

Confidentiality

Integrity

Supportability

Safety

Functional appropriateness

Quality in Development
and Evolution

Economic damage risk

Health and safety risk

Environmental harm risk

Functional completeness

Reusability

Auxiliary Quality Attributes

Performance

Portability

Adaptability

4

K. Lochmann, S. Wagner:
A Quality Model for Software Quality. Internal report TUM

Manfred Broy 35 ETH Zürich October 2014

A novel characterization of system properties and
requirements

 Syntactic Basis Behavior

Logical Probabilistic
“External”

Black
Box
View

Functional
view

Syntactic Interface Logical interface behavior Probabilistic interface
behavior

“Internal”
Glass
Box
View

Architecture
view

Hierarchical data flow
graph of subsystems

Subsystems and their
logical Interface behavior

Subsystems and their
probabilistic Interface

behavior
State view State space structure

(Attributes) I/O
messages

Logical state machine
logical state transitions

Probabilistic state machine
probabilistic state

transitions

Manfred Broy 36 ETH Zürich October 2014

A novel characterization of functional requirements

 Interface Architecture State

 Functional properties

S
yn

ta
ct

ic

Lo
gi

ca
l

P
ro

ba
bi

ls
itc

S
yn

ta
ct

ic

Lo
gi

ca
l

P
ro

ba
bi

ls
itc

S
yn

ta
ct

ic

Lo
gi

ca
l

P
ro

ba
bi

ls
itc

R
ep

re
se

nt
at

io
n

Functional Suitability
Usability

Reliability
Security

Safety
Performance

Maintainability
Reusability

Releasability
Executability

Supportability

Manfred Broy 37 ETH Zürich October 2014

Rich Interface Specifications

•  In a rich interface specification we speak about several
views

•  Example: Add probability
Given:
◊  logical interface behavior for syn. interface (I ! O)

{IH[I] → ℘(IH[O])}
◊  probabilistic interface behavior for syn. interface (I ! O)

{IH[I] → PD [℘(IH[O])] }
◊  interface specification by an interface assertion q(x, y)
◊  specify for each input history x = a probability distributions P(y|a)

on the set of output histories
 {y: q(a, y)}

Manfred Broy 38 ETH Zürich October 2014

Rich Specifications

In a rich specification we specify functional and “non-
functional” properties of system functions
•  logical interface behavior
•  probabilistic interface behavior
•  quality concerns

◊ Usability

◊  Time behavior

◊  Reliability

◊  Security

◊  Safety
◊  quality of service
◊  ...

Manfred Broy 39 ETH Zürich October 2014

Conclusion

•  To model, specify and verify cyber-physical systems we
need quantitative notions of behavior and correctness

•  These models have to to coherent extensions of existing
theories

•  Such models support a variety of key notions
◊  classical functional correctness
◊  probabilistic correctness
◊  quality attributes

•  We want to express specifications:
The system produces an output that is correct to a certain
degree over a certain time span with a certain probability

