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From programs to cyber-physical systems                      

•  Programs:  
◊ mappings states to states or data to data,  
◊  supposed to terminate, 
◊  time and interaction not an issue, 
◊  concept of computation: Turing machines – algorithms 

•  Cyber-physical systems:  
◊  connected to the physical world,  
◊  needs a coherent model of context, interface, interaction, time, 

architecture, state, probability, data and event flow 
◊  concept of computation: interaction, 

generalized Mealy machines 
◊  extended requirement for dependability 
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Correctness and reliability … 

And what about requirements specification? 
•  Correctness does not make sense without specifications! 
•  Reliability needs also notions of correctness! 
 
However for cyber-physical system specification and 
correctness is a bit more tricky … 
•  Time 
•  Probability 
•  Precision 
•  Uncertainty of the physical world 
•  … 

Manfred Broy 4 ETH Zürich October 2014 

The challenge: uncertainty and correctness of software/systems 

•  Classical: „sharp“ correctness – black or white 
◊  a system/program is correct or not 

•  Unsharp correctness:  
◊  Correct to a certain degree 
◊  Correct with a certain probability 
◊  Correct over a certain time 
◊  Correct in some fuzzy way 

 
Challenge 
•  specification 
•  verification 
in der presence von unsharpness/uncertainty 
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Formalizations of unsharp correctness  

•  Classical correctness: Given: set T ⊆ A* of streams of 
correct output sequences 

 output t‘ ∈ A*  is correct, iff t‘ ∈ T  
•  Extension: output t` more correct than output t“ 

Define distance d(t, t‘) between output streams:  
t‘ is more correct as t“ iff 

min { d(t, t‘): t ∈ T } < min { d(t, t“): t ∈ T } 
•  result t‘ ∈ A* is correct with a certain probability : 

P[t‘ ∈ T] > 0.9 
P[min { d(t, t‘): t ∈ T } < 0.1] > 0.9 

•  Fuzzy: result t‘ ∈ A* is roughly correct – formalized in 
fuzzy logic 
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Reliability as an element of Dependability 

Comprehensive view dependability: 
 
•  Availability - readiness for service 
•  Reliability - continuity of correct service 
•  Safety - absence of catastrophic consequences on the 

user(s) and the environment 
•  Security - Integrity - absence of improper system 

alteration/degree of resistance to or protection from 
vulnerability 

•  Maintainability - ability for a process to undergo 
modifications and repairs 
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System and its context 
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Basic System Notion: What is a discrete system (model) 

A system has 
•  a system boundary that determines  

◊  what is part of the systems and  
◊  what lies outside (called its context) 

•  an interface (determined by the system boundary), which determines,  
◊  what ways of interaction (actions) between the system und its context 

are possible (static or syntactic interface) 
◊  which behavior the system shows from view of the context (interface 

behavior, dynamic interface, interaction view) 

•  a structure and distribution addressing internal structure, given 
◊  by its structuring in sub-systems (sub-system architecture) 
◊  by its states und state transitions (state view, state machines) 

•  quality profile 
•  the views use a data model 
•  the views may be documented by adequate models 
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System Views 

•  Operational Context View (CIB – context interface 
behavior) 
◊  Behavior of the operational context 

•  Interface View: System Interface Behavior (SIB) 
◊  Functional View: Interface Behavior 
◊  Functional features: hierarchy and feature interaction 

•  Interaction between CIB and SIB:  
◊ Observable behavior: process OBS 

•  Architectural View 
◊ Hierarchical decomposition in sub-systems 
◊  Sub-system behavior 

•  State View 
◊  State space 
◊  State transition 

Process – interaction between system 
and ist operational context  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Operational Context (CIB) 
 
 
 
 
 
 
 
 
 
 

User 
Interface 

Physical 
and 

technical 
context 

 
 
 
 
 

System under Consideration (SuC) 

External (observable)  
failure 

Context/process 
observations (OBS) 

A depandability 
view onto a system 
and its context 

No failure: 
 
CIB ∧ SIB ⇒ No_failure(OBS)  

SIB 
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Discrete systems: the modeling theory 

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I ! O) 

data stream of type T 

STREAM[T] = {IN\{0} → T*}  

valuation of channel set C 

IH[C] = {C → STREAM[T]} 

interface behaviour for syn. interface (I ! O) 

[I ! O] = {IH[I] → ℘(IH[O])} 

 

System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

See: M. Broy: A Logical Basis for Component-
Oriented Software and Systems Engineering. 
The Computer Journal: Vol. 53, No. 10, 2010, 
1758-1782  
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I O
Component interface

System interface behaviour - causality 

 (I ! O) syntactic interface with set of  
 input channels I and of output channels O 
 
 F : IH[I] → ℘( IH[O]) semantic interface for (I ! O)  
 with timing property addressing strong  causality 
 let x, z ∈ IH[I], y ∈ IH[O], t ∈ IN):  

x↓t = z↓t ⇒ {y↓t+1: y ∈ F(x)} = {y↓t+1: y ∈ F(z)} 

          x↓t        prefix of history x of length t              

A system shows a total behavior 
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Characteristics of the model 

•  Essential: interface behavior 
•  Time:  

◊  Causality – modeling time flow 
◊  System time vs. physical time 
◊  time requirements vs. execution time 

•  Interaction: sequence of steps 
◊  Context modeling – and the interaction between system and environment 

•  Non termination: Systems run without time limits 
•  Composition with the environment 

◊  Functional safety – no hazards 
◊  Security 
◊  Reliability 
◊  ... 
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Example: System interface specification 

  

 
A transmission component TMC 
 

TMC 
  in    x: T 
  out  y: T 
  x ~ y 

 
x ~ y ≡ (∀ m ∈ T: m#x = m#y) 

TMC 
x ~ y  

x:T y:T 

Specifying interface assertion 
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Verification: Proving properties about specified systems 

From the interface assertions we can prove 
 
•  Safety properties 

m#y > 0 ∧ y ∈ TMC(x) ⇒ m#x > 0  
 

•  Liveness properties 

m#x > 0 ∧ y ∈ TMC(x) ⇒ m#y > 0  
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Verification: adding causality 

From the interface assertions we can derive properties! 
Specification: 

y ∈ TMC(x) ⇒ (∀ m ∈ T: m#x = m#y) 
Strong causality: 
x↓t = z↓t ⇒ {y↓t+1: y ∈ TMC(x)} = {y↓t+1: y ∈ TMC(z)} 

From which by choosing z such that  
∀ m ∈ T: m#(z↑t) = 0 

we can deduce (note then m#x↓t  = m#z ) 
y ∈ TMC(x) ⇒ ∀ t ∈ Time, m ∈ T: m#(y↓t+1) ≤ m#(x�t) 
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Specification of Timing Properties 

  

  
TMC  
  in    x: T 
  out  y: T 
∀ t ∈ IN: ∀ m ∈ T:  
m#(y↓t+delay) ≤ m#(x↓t) ≤ m#(y↓t+delay+deadline) 

 

TMC x:T y:T Example: TMC with Timing 
Restrictions 
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Modularity: Rules of compositions for interface specs 

   
F1 
  in    x1, z21: T 
  out  y1, z12: T 
  S1 

 

   
F2 
  in    x2, z12: T 
  out  y2, z21: T 
  S2 

 

  
F1⊗F2 

x2 

y2 z12 

z21 y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

   
F1⊗F2 
  in    x1, x2: T 
  out  y1, y2: T 
 

 

   
F1⊗F2 
  in    x1, x2: T 
  out  y1, y2: T 
∃ z12, z21: S1 ∧ S2 
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Specification with Probabilities 

  

  
TMC  
  in    x: T 
  out  y: T 
∀ t ∈ IN: ∀ m ∈ T:  
P(m#(x↓t) ≤ m#(y↓t+delay+deadline)) ≥ 0.8 
 

 

TMC x:T y:T 
Example:  
TMC with Probability Restrictions 
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Discrete systems: the modeling theory - probability 

Sets  of typed channels 

 I = {x1 : T1, x2 : T2, ... } 

 O = {y1 : T’1, y2 : T’2, ... } 

syntactic interface 

(I ! O) 

data stream of type T 

STREAM[T] = {IN\{0} → T*}  

valuation of channel set C 

IH[C] = {C → STREAM[T]} 

interface behaviour for syn. interface (I ! O) 

[I ! O] = {IH[I] → PD[℘(IH[O]) ] } 

 

System x1 : T1 

y4 : T’4 

x4 : T4 

x3 : T3 x2 : T2 

x5 : T5 

y1 : T’1 

y2 : T’2 

y3 : T’3 

See: P. Neubeck: A Probabilitistic Theory of Interactive 
Systems. PH. D. Dissertation, Technische Universität 
München, Fakultät für Informatik, December 2012  

Set of all probability 
distributions over sets 
of output histories 
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Probabilistic Behavior Composition  

Probabilistic behavior  
 F: ℘(IH[I]) → (℘(IH[O]) → [0:1]) 

 
We write for X ⊆ IH[I], Y ⊆ IH[O] 

 F(X)[Y]    for   the probability  
that the output is in Y provided the input is in X 
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Probabilistic Behavior Composition  

Given probabilistic behaviors 
F1: ℘(IH[I1]) → (℘(IH[O1]) → [0:1]) 
F2: ℘(IH[I1]) → (℘(IH[O2]) → [0:1]) 
Where O1 ∩ O2 = ∅; we define 
I = I1\O2 ∪ I2\O1, O = (O1 ∪ O2)\Z,  
Z = (I1 ∩ O2) ∪ (I2 ∩ O1)   shared channels 
Composition: define 

 G: ℘(IH[I1 ∪ I2]) → (℘(IH[O1 ∪ O2]) → [0:1]) 
by 

 G(X)[Y] = F1(X|I1)[{y1: ∃ y ∈ Y: y|O1 = y1}] ×    
F2(X|I2)[{y2: ∃ y ∈ Y: y|O2 = y2}] 

  
 
 
 
 
 
 
 
 
 
 
I1 = {x1, z21}    O1 = {y1, z12} 
I2 = {x2, z12}    O2 = {y2, z21} 

x2 

y2 

z12 

z21 

y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

  
 
 
 
 
 
 
 
 
 
 

G 

x2 

y2 

z12 

z21 

y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

Assuming probabilistic 
independence  
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Probabilistic Behavior Composition  

Given G we specify F = F1⊗F2 
 F: ℘(IH[I]) → (℘(IH[O]) → [0:1]) 

by 
 

 F(X)[Y]  =  G(X’)[{y’: ∃ x’ ∈ X’: y’|O ∈ Y ∧ x’|Z = y’|Z}] 
 
where X’ = {x: x|I ∈ X} . 

  
F 

x2 

y2 z12 

z21 y1 

x1 
F1 

 
 

S1 

F2 
 
 

S2 

Technische Universität München 
Institut für Informatik 

 

Modelling Reliability & Availability 
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Quantitative Properties 

•  Many interesting properties of systems have to be 
expressed quantitatively, using metrics or measures 

•  Examples 
◊  Resource Usage 
◊  System Operation Costs 
◊ Dependability 

•  Examples for dependability metrics 
◊ Uptime, Downtime 
◊  Reliability 
◊  Point-, Interval-, Steady State Availability 
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Quantitative Specifications 

Quantitative Specifications map observations about a 
system to a numeric value (i.e. the metric): 
 
Cantor Metric:  depends on the length of the longest 
common prefix of histories. 

d: IH[C] ×  IH[C] → IR ∪ {-∞, +∞} 
d(x, x’) = glb {1/2t:  x�t = x’�t } 

 
 
Chatterjee, Henzinger, Jobastman, Singh: Measuring and 
Synthesizing Systems in Probabilistic Environments, CAV 
2010 
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Measurability 

Let D be an arbitrary set and F be a set of subsets of D. We 
call F a field of sets if 
•  ∅ ∈ F, 
•  if A is a set in F then its complement D \ A is in F, and 
•  if A and B are in F then their union A ∪ B is also in F. 
 
F is called a Borel field, if it fulfills the additional property 
that for every countable enumeration of sets A1, A2, ... ∈ F 
we get 
•  ∪ {Ai: i ∈ IN} ∈ F 
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Measurability 

A function  
µ : F → IR ∪ {-∞, +∞}  

from a Borel field F of sets to the extended real numbers IR 
∪ {-∞, +∞} is called a measure if the following properties 
holds: 
•  µ(A) ≥ 0 for all A ∈ F 
•  µ( ∪ {Ai: i ∈ IN}) = Σ {µ(Ai): i ∈ IN}  

for all pairwise disjoint sets A1, A2, ... ∈ F,   
i.e. with Ai ∩ Aj = ∅ for all i ≠ j  
(the measure µ is then called completely additive) 
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Measurability 

The set D with a measure function µ defined on a field of 
sets F is called a measure space and the sets in F are called 
measurable. 
 
Measure spaces are taken as the basis for probability theory.  
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Availability & Reliability 

Our view on Availability & Reliability:  
  
Availability & Reliability are properties 
of the (black-box) interface behavior 
of the system as observed by a user or 
external system. 
  

Both quantify the amount of 
observable failures of the system. 
 

What counts as failure needs to be 
explicitly defined! 

System 

See: M Junker, P Neubeck: A Rigorous Approach 
to Availability Modeling.  Modeling in Software 
Engineering (MISE), 2012 ICSE Workshop 
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Reliability Metrics 

Example: Reliability 
From reliability theory:  
Reliability distribution 
 

R(t) = P[lifetime of system is at least as long as t] 
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Reliability 

Given: set Y ⊆ IH[O] histories 
•  output y‘ ∈ IH[O]  is correct, iff y‘ ∈ Y  
•  system with output set Y‘ ⊆ IH[O]  is correct, iff Y‘ ⊆ Y 
 
•  Probabilistic system behavior: P: ℘(IH[O]) → [0:1] 

Correctness w.r.t Y:  P[Y] 
 
•  Reliability: expected value ER of t for distribution 

R(t) = P[{y’ ∈ IH[O]: ∃ y ∈ Y: y’�t = y�t }] 
is given by 

Σ {t.R(t): t ∈ IN}  
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Availability & Reliability Metrics 

More sophisticated concepts of correctness and reliability: 
•  with which probability is the system output correct to 

which extent over which expected interval of time 
 
Example: Availability 
•  An important metric for availability is the percentage of 

uptime.  
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System Quality Models: Quality Concerns 

1.2 Main Quality Attributes

Reliability

AppraisabilityQuality in Business

Time behavior

Functional correctness

CPU Consumption

Memory ConsumptionExecutability

Testability

Reviewability
Verifiability

Releasability

Modifiability

Analyzability

Operability

Configurability

Installability

Learnability

Maintainability

Accessibility

Security

Quality in Operation

Quality in End-Use

Functional Suitability

Usability

Q
ua

lity

Co-existence

Response time

Throughput

Error protection

Confidentiality

Integrity

Supportability

Safety

Functional appropriateness

Quality in Development 
and Evolution

Economic damage risk

Health and safety risk

Environmental harm risk

Functional completeness

Reusability

Auxiliary Quality Attributes

Performance

Portability

Adaptability

4

K. Lochmann, S. Wagner: 
A Quality Model for Software Quality. Internal report TUM 
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A novel characterization of system properties and 
requirements  

 
 Syntactic Basis Behavior 

Logical Probabilistic 
“External” 

Black  
Box 
View  

Functional 
view 

Syntactic Interface Logical interface behavior Probabilistic interface 
behavior 

“Internal” 
Glass  
Box 
View 

Architecture 
view 

Hierarchical data flow 
graph of subsystems 

Subsystems and their 
logical Interface behavior   

Subsystems and their 
probabilistic Interface 

behavior 
State view State space structure 

(Attributes) I/O 
messages 

Logical state machine 
logical state transitions  

Probabilistic state machine  
probabilistic state 

transitions 
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A novel characterization of functional requirements 
 

  Interface Architecture State   

  Functional properties               
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Functional Suitability                     
Usability                     

Reliability                     
Security                     

Safety                     
Performance           

Maintainability                     
Reusability                     

Releasability                     
Executability                     

Supportability                     
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Rich Interface Specifications 

•  In a rich interface specification we speak about several 
views 

•  Example: Add probability 
Given: 
◊  logical interface behavior for syn. interface (I ! O) 

{IH[I] → ℘(IH[O])} 
◊  probabilistic interface behavior for syn. interface (I ! O) 

{IH[I] → PD [ ℘(IH[O]) ] } 
◊  interface specification by an interface assertion q(x, y) 
◊  specify for each input history x = a probability distributions P(y|a) 

on the set of output histories 
 {y: q(a, y)} 
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Rich Specifications 

In a rich specification we specify functional and “non-
functional” properties of system functions 
•  logical interface behavior 
•  probabilistic interface behavior 
•  quality concerns 

◊ Usability 

◊  Time behavior 

◊  Reliability 

◊  Security 

◊  Safety 
◊  quality of service 
◊  ...  
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Conclusion 

•  To model, specify and verify cyber-physical systems we 
need quantitative notions of behavior and correctness 

•  These models have to to coherent extensions of existing 
theories 

•  Such models support a variety of key notions 
◊  classical functional correctness 
◊  probabilistic correctness 
◊  quality attributes 

•  We want to express specifications: 
The system produces an output that is correct to a certain 
degree over a certain time span with a certain probability  


