Disclaimer

A A A

* My personal opinion
— Not Microsoft’s

— Not necessarily yours

 Based on my memory and public
presentations

— Left my Microsoft email at Microsoft

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 1

Outline

A A A

* The early days: software verification

* The revival: software defect detection

* So, why doesn’t everyone do it?

4

Gartner Hype Cycle

 VISIBILITY

Peak of Inflated Expectations

 VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Plateau of Productivity

TIME

Technology Trigger

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

TIME

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools

1960-70’s Research

A A A

* Program verification
— Prove program correct
— Apply mathematical reasoning to software

 Many interesting and useful results and insights
into program semantics and formal methods

* Great skepticism among practitioners and some
researchers

— DeMiillo, Lipton, Perlis, Social processes and proofs of
theorems and programs

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 3

1980-90’s

A A A

e Verification winter

— Failed to achieve goal of verifying software

— Few promising avenues of research

— Fickle funding followed other fads (FFFoF)

— A few persistent people continued working in area
* Software tools research focused elsewhere

— HW verification

— IDEs

— Program transformation and refinement

— Languages

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 4

2000+

A A A

e Suddenly, burst of software engineering
research tools

— Programming languages and formal methods
communities

e Why?
—Y2K?

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 5

My Hypothesis

i-"/.f-:1:’/3:"/}-:3&&3&&3&&3&&3&&3&&3&&3&&Efﬁféﬁfﬁféffﬁféﬁfﬁfé) B A

* Shift of emphasis from program verification to
bug detection

 Practical success stories
* (later) SAT solving

| ({ya\ N School of Computer and Communication Sciences Promise of Software Tools 6

Historical Aside

A A A

e | took sabbatical at Microsoft Research in
1997

— MSR was 4 years old and growing rapidly
— Went to see SW development in the “real world”

* Microsoft was the leading software company

— 2 years after Windows 95
— Think Google in 2005, Facebook in 2012, ...

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 7

State of MS Software Development (c. 2000)

A A A

* Not very good

— MS tools were worse than open-source Unix tools
* SLM, ed, vc
* No one used Visual Studio

— No software engineering discipline
* Total “hero” programmer culture

— Widespread arrogance
* eg Aaron Contorer

* Leaders realized they were in trouble
— Struggling to ship Windows 2K — enterprise software

— Office could barely crank out a release
* 2 months of new code in 2 year release cycle

— Exchange/Outlook barely worked (but still put Lotus Notes out of business??)

| ({ya\ N School of Computer and Communication Sciences Promise of Software Tools 8

Software Productivity Tools (SPT

A A A

| ({§i| W School of Computer and Communication Sciences Promise of Software Tools 9

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Part of Programmer Productive Tools

A A

e SPT (Jim Larus) — research
— SLAM, SDV
— Vault, Fugue (typestate)
— ESP (scalable program analysis)

 PPT (Amitabh Srivastava) — development and deployment
— PREfix
— PREfast
— FxCop

 Wolfram Schulte’s group focused on testing and model-based
software development

(il W School of Computer and Communication Sciences Promise of Software Tools 10

What We Did Right

A A A

* Great hires from many academic disciplines
— Sriram Rajamani (HW and formal methods)
— Tom Ball (program analysis)
— Manuvir Das (program analysis)
— Manual Fahndrich (programming languages)
— Rustan Leino (program verification)

* Reached out to academic community
— Funding support
— Internships
— Talk broadly about MS’s problems
— Generate excitement about area in PL and FM communities

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 11

igh 'd
Right, cont
e A
* Focus on defect detection, not verification
— Find bugs, not prove their absence

— Never could get Bill Gates to internalize the distinction

e “even the most practical man of affairs is usually in the thrall
of the ideas of some long-dead economist” — John Maynard
Keynes

* Work closely with PPT tools group and MS
developers

* Build real software and deploy it

— Tom and Sriram agonized about spending a year
working with Windows on SV

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 12

What We Did Wron

i-"/.-“-:i-:'/}i-"/.f-:i-:'f,-i-’/.-’-:5-:'/:4:"/.-’-:5-:'/:4:"/.-’-:5-:'/:4:"/.-“-:?ff;ﬁ{é?ff;ﬁf'dﬂ?ff;ﬁfé?ff;ﬁfé5-:'/:4:"/.-’-:5-:'/:4:"/.-“-:?féﬁ{é?féﬁ{é?féﬁfé?féﬁfé5-:'/:4:"/.-’-:5-:'/:4:"/.-’-:5-:'/:4:"/.-“-:?ff;ﬁ{é?ff;ﬁf'dﬂ?ff;ﬁfégéﬁfé?ﬂéﬁﬂé?ﬂéﬁﬂé?ﬂé?ﬂé?ﬂéﬁé

* Missed security entirely

— Code Red and Nimda (2001)
e Existential threat to MS

— We had done no research on buffer overflows
* Missed the big picture
— Amitabh: tools can drive process change

— Jim: tools can fundamentally improve software
— Both wrong

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 13

Fast Forward

A A A

* Hired software engineers into group
— Focused on people and process

— Nagappan and Murphy built series of models that predicted bug
density

e Built up theorem proving expertise and moved away from model
checking and program analysis

* | got frustrated and started clean-slate project with Galen Hunt
(Singularity)
— Could we build more robust and secure systems with modern
languages and tools? (Yes)

* Software tools and engineering research continues at MS and
elsewhere

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 14

Bi gest SWE Successes at MS

A A

 Windows error reporting (Watson)

* Data mining and failure prediction models
 SBV

 PREFast

. ({§i\ W School of Computer and Communication Sciences Promise of Software Tools 15

Watson

A A A

40% //—"

3.5 2004 |
20% // Vista . 3.0 m 2005 |

m 2006
Vista SP1 E 2.5

% of all Reports for Release
w
o
X
H
o

0 100 200 300 400 500 1.0 -
Bucket 0.5 -+
Figure 14. CDFs of Error Reports for the Top 0.0 -
500 Buckets for Windows Vista and Vista SP1. _\}.\6& Q&é" &&&, \"Q\»b* g&*’& @Q&” o&-\o%) \é\& ‘é,,s?
v&'\&oﬁ\ (93, 0‘6 < @Q &@ T 5
& <

Figure 15. Crashes by Driver Class Normalized
to Hardware Failures for Same Period.

Kinshumann, K., et al. (2011). Debugging in the (Very) Large: Ten Years of Implementation and Experience. CACM. 54: 111-116.
. ({§i\ W School of Computer and Communication Sciences Promise of Software Tools 16

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Failure Models

A A A

Table 4: Overall model accuracy using different software

measures

Organizational 86.2% 84.0%
Structure

Code Churn 78.6 % 79.9 %
Code Complexity 79.3% 66.0 %
Dependencies 74.4% 69.9 %
Code Coverage 83.8% 54.4%
Pre-Release Bugs 73.8% 62.9 %

The Influence of Organizational Structure on Software Quality, Nachiappan Nagappan, Brendan Murphy, Victor Basili,
International Conference on Software Engineering (ICSE 2008).

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 17

ECOLE POLYTE
FEDERALE DE

th Isn’t Evervone Using/ Tools?

A i

* Tools are not good enough

— User-engineering is more important than technical
brilliance

* Do not find right bugs (cf WER)
— Not all defects need to be fixed
 Hard to use
— Badly trained students cannot write specifications

* Fix manifestation of problem, not problem

— What is root cause of bugs?
* Missing, outdated, incorrect knowledge
* Human fallibility

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 18

How Not to Build a Software Tool

A A A

* PREFast
* Run for 2+ days on the Windows source

* Dump 50K bugs in the bug database
— False positive rate > 50%
— Heuristics prioritize “likely” bugs

* Enormously painful to developers who are busy
and are judged on bug counts

— Little connection to goal of shipping quality software

. ({§i\ W School of Computer and Communication Sciences Promise of Software Tools 19

Which Tool Has 100% of the Bugs it Finds Fixed?

A A A

* SAGE (whitebox fuzz tester for security)
— Patrice Godefroid

 Demonstrates input that cause memory error
— == potential security problem
— Cannot minimize importance of bug

* Fits developer workflow

— Input that causes error

— Can use standard debugging tools to understand
 cf traces produced by static analysis tools

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 20

Specification is Greek

A A

 Wolfram Schulte’s group initial focused on
model-driven testing

* Elegant formulation of testing

* No traction at Microsoft
— Consulting model (researchers wrote specifications)

e Success was specifying Windows interfaces for
EU (!) anti-trust settlement

* Same lack of understanding of specifications
plagued Spec# and discussions with product
groups

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 21

rove Software Development’

;’dﬂx’/fﬁfdﬂx’/fﬂ-’&x’éﬂ’&x’/fﬂ’&x’/é’/‘ fl/’ A A A

* Preventing bugs vs finding them after they occur

Continuous process improvement (six sigma, etc.)
— Understand and fix root cause of defects

* Problems are rooted in organization structure,
development process, training, discipline
— These pieces are studied in SWE community
— Have not been assembled into whole

— Tools have a role to play to enforce process and
assure quality

[({§{\ W School of Computer and Communication Sciences Promise of Software Tools 22

Would You Eat Here?

A A A

23

