Disclaimer
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* My personal opinion
— Not Microsoft’s

— Not necessarily yours

 Based on my memory and public
presentations

— Left my Microsoft email at Microsoft
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Outline
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* The early days: software verification

* The revival: software defect detection

* So, why doesn’t everyone do it?
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1960-70’s Research
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* Program verification
— Prove program correct
— Apply mathematical reasoning to software

 Many interesting and useful results and insights
into program semantics and formal methods

* Great skepticism among practitioners and some
researchers

— DeMiillo, Lipton, Perlis, Social processes and proofs of
theorems and programs
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1980-90’s
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e Verification winter

— Failed to achieve goal of verifying software

— Few promising avenues of research

— Fickle funding followed other fads (FFFoF)

— A few persistent people continued working in area
* Software tools research focused elsewhere

— HW verification

— IDEs

— Program transformation and refinement

— Languages
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2000+
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e Suddenly, burst of software engineering
research tools

— Programming languages and formal methods
communities

e Why?
—Y2K?
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My Hypothesis
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* Shift of emphasis from program verification to
bug detection

 Practical success stories
* (later) SAT solving
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Historical Aside
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e | took sabbatical at Microsoft Research in
1997

— MSR was 4 years old and growing rapidly
— Went to see SW development in the “real world”

* Microsoft was the leading software company

— 2 years after Windows 95
— Think Google in 2005, Facebook in 2012, ...
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State of MS Software Development (c. 2000)
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* Not very good

— MS tools were worse than open-source Unix tools
* SLM, ed, vc
* No one used Visual Studio

— No software engineering discipline
* Total “hero” programmer culture

— Widespread arrogance
* eg Aaron Contorer

* Leaders realized they were in trouble
— Struggling to ship Windows 2K — enterprise software

— Office could barely crank out a release
* 2 months of new code in 2 year release cycle

— Exchange/Outlook barely worked (but still put Lotus Notes out of business??)
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Software Productivity Tools (SPT
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Part of Programmer Productive Tools
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e SPT (Jim Larus) — research
— SLAM, SDV
— Vault, Fugue (typestate)
— ESP (scalable program analysis)

 PPT (Amitabh Srivastava) — development and deployment
— PREfix
— PREfast
— FxCop

 Wolfram Schulte’s group focused on testing and model-based
software development
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What We Did Right
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* Great hires from many academic disciplines
— Sriram Rajamani (HW and formal methods)
— Tom Ball (program analysis)
— Manuvir Das (program analysis)
— Manual Fahndrich (programming languages)
— Rustan Leino (program verification)

* Reached out to academic community
— Funding support
— Internships
— Talk broadly about MS’s problems
— Generate excitement about area in PL and FM communities

[ ({§{\ W School of Computer and Communication Sciences Promise of Software Tools 11



igh 'd
Right, cont
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* Focus on defect detection, not verification
— Find bugs, not prove their absence

— Never could get Bill Gates to internalize the distinction

e “even the most practical man of affairs is usually in the thrall
of the ideas of some long-dead economist” — John Maynard
Keynes

* Work closely with PPT tools group and MS
developers

* Build real software and deploy it

— Tom and Sriram agonized about spending a year
working with Windows on SV
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What We Did Wron
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* Missed security entirely

— Code Red and Nimda (2001)
e Existential threat to MS

— We had done no research on buffer overflows
* Missed the big picture
— Amitabh: tools can drive process change

— Jim: tools can fundamentally improve software
— Both wrong

[ ({§{\ W School of Computer and Communication Sciences Promise of Software Tools 13



Fast Forward
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* Hired software engineers into group
— Focused on people and process

— Nagappan and Murphy built series of models that predicted bug
density

e Built up theorem proving expertise and moved away from model
checking and program analysis

* | got frustrated and started clean-slate project with Galen Hunt
(Singularity)
— Could we build more robust and secure systems with modern
languages and tools? (Yes)

* Software tools and engineering research continues at MS and
elsewhere
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Bi gest SWE Successes at MS
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 Windows error reporting (Watson)

* Data mining and failure prediction models
 SBV

 PREFast
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Watson
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Figure 15. Crashes by Driver Class Normalized
to Hardware Failures for Same Period.

Kinshumann, K., et al. (2011). Debugging in the (Very) Large: Ten Years of Implementation and Experience. CACM. 54: 111-116.
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Failure Models
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Table 4: Overall model accuracy using different software

measures

Organizational 86.2% 84.0%
Structure

Code Churn 78.6 % 79.9 %
Code Complexity 79.3% 66.0 %
Dependencies 74.4% 69.9 %
Code Coverage 83.8% 54.4%
Pre-Release Bugs 73.8% 62.9 %

The Influence of Organizational Structure on Software Quality, Nachiappan Nagappan, Brendan Murphy, Victor Basili,
International Conference on Software Engineering (ICSE 2008).
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th Isn’t Evervone Using/ Tools?
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* Tools are not good enough

— User-engineering is more important than technical
brilliance

* Do not find right bugs (cf WER)
— Not all defects need to be fixed
 Hard to use
— Badly trained students cannot write specifications

* Fix manifestation of problem, not problem

— What is root cause of bugs?
* Missing, outdated, incorrect knowledge
* Human fallibility
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How Not to Build a Software Tool

A A A

* PREFast
* Run for 2+ days on the Windows source

* Dump 50K bugs in the bug database
— False positive rate > 50%
— Heuristics prioritize “likely” bugs

* Enormously painful to developers who are busy
and are judged on bug counts

— Little connection to goal of shipping quality software
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Which Tool Has 100% of the Bugs it Finds Fixed?
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* SAGE (whitebox fuzz tester for security)
— Patrice Godefroid

 Demonstrates input that cause memory error
— == potential security problem
— Cannot minimize importance of bug

* Fits developer workflow

— Input that causes error

— Can use standard debugging tools to understand
 cf traces produced by static analysis tools
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Specification is Greek
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 Wolfram Schulte’s group initial focused on
model-driven testing

* Elegant formulation of testing

* No traction at Microsoft
— Consulting model (researchers wrote specifications)

e Success was specifying Windows interfaces for
EU (!) anti-trust settlement

* Same lack of understanding of specifications
plagued Spec# and discussions with product
groups
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rove Software Development’
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* Preventing bugs vs finding them after they occur

Continuous process improvement (six sigma, etc.)
— Understand and fix root cause of defects

* Problems are rooted in organization structure,
development process, training, discipline
— These pieces are studied in SWE community
— Have not been assembled into whole

— Tools have a role to play to enforce process and
assure quality
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Would You Eat Here?

A A A

23



