
Program Analysis for JavaScript
– Challenges and Techniques

Anders Møller
Center for Advanced Software Analysis

Aarhus University

Joint work with
Esben Andreasen, Simon Holm Jensen, Peter A. Jonsson, Magnus Madsen, and Peter Thiemann

JavaScript

2

JavaScript needs program analysis

• Testing is still the only technique programmers
have for finding errors in their code

• Program analysis can (in principle) be used for

– bug detection (e.g. "x.p in line 7 always yields undefined")

– code completion

– optimization

3

JavaScript is a dynamic language

• Object-based, properties created on demand

• Prototype-based inheritance

• First-class functions, closures

• Runtime types, coercions

• ···

4

NO STATIC TYPE CHECKING
NO STATIC CLASS HIERARCHIES

Type Analysis for JavaScript

The goal:
Catch type-related errors using

program analysis

• Support the full language

• Aim for soundness

5

Statically detecting type-related errors
in JavaScript programs

6

Likely programming errors

1. invoking a non-function value (e.g. undefined) as a function

2. reading an absent variable

3. accessing a property of null or undefined

4. reading an absent property of an object

5. writing to variables or object properties that are never read

6. calling a function object both as a function and as a
constructor, or passing function parameters with varying types

7. calling a built-in function with an invalid number of
parameters, or with a parameter of an unexpected type

etc.

7

Which way to go?

8

The TAJS approach

• Dataflow analysis (abstract interpretation)
using the monotone framework
[Kam & Ullman ’77]

• The recipe:
1. construct a control flow graph for each function

in the program to be analyzed

2. define an appropriate dataflow lattice
(abstraction of data)

3. define transfer functions
(abstraction of operations)

9

[Jensen, Møller, and Thiemann, SAS’09]

The dataflow lattice (simplified!)

10

• The analysis maintains an abstract state for
each program point N and call context C:

N ⨯ C → State

• Each abstract state provides an abstract value
for each abstract object L and property name P:

State = L ⨯ P → Value

• Each abstract value describes pointers and
primitive values:

Value = 𝒫(L) ⨯ Bool ⨯ Str ⨯ Num ...

• Details refined through trial-and-error...

Transfer functions, example

A dynamic property read: x[y]
1. Coerce x to objects

2. Coerce y to strings

3. Descend the object prototype chains
to find the relevant properties

4. Join the property values

11

A tiny example...

12

function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

does y have a setName method at this program point?

An abstract state
(as produced by TAJS)

13

JavaScript web applications

• Modeling JavaScript code is not enough…

• The environment of the JavaScript code:

–the ECMAScript standard library

–the browser API

–the HTML DOM

–the event mechanism

14

around 250 abstract objects
with 500 properties
and 200 functions…

[Jensen, Madsen, and Møller, ESEC/FSE’11]

Eval in JavaScript

• eval(S)
– parse the string S as JavaScript code, then execute it

• Challenging for JavaScript static analysis

– the string is dynamically generated

– the generated code may have side-effects

– and JavaScript has poor encapsulation mechanisms

15

Eval is evil

• ... but most uses of eval are not very complex

• So let’s transform eval calls into other code!

• How can we soundly make such transformations
if we cannot analyze code with eval?

16

Which came first?

Analysis or transformation

17

Whenever TAJS detects new dataflow to eval,
the eval transformer is triggered

[Jensen, Jonsson, and Møller, ISSTA’12]

An example

18

The dataflow analysis propagates dataflow
until the fixpoint is reached

– iteration 1: y is "foo", i is 0
eval(y + "(" + i + ")") foo(0)

(the dataflow analysis can now proceed into foo)

– iteration 2: y is "foo", i is AnyNumber
eval(y + "(" + i + ")") foo(i)

– …

var y = "foo"
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

(would not work if i could be any string)

Ingredients in a static analyzer
for JavaScript applications

We need to model

the language semantics

the standard library (incl. eval)

the browser API (the HTML DOM, the event system, etc.)

19

Mission complete?

20

21

22

Why use jQuery (or other libraries)?

23

 Patches browser incompatibilities

 CSS3-based DOM navigation

 Event handling

 AJAX (client-server communication)

 UI widgets and animations

 1000s of plugins available

An appetizer

24

var checkedValue;

var elements = document.getElementsByTagName('input');

for (var n = 0; n < elements.length; n++) {

if (elements[n].name == 'someRadioGroup' &&

elements[n].checked) {

checkedValue = elements[n].value;

}

}

Which code fragment do you prefer?

var checkedValue = $('[name="someRadioGroup"]:checked').val();

Investigating the beast

25

lines executed
when the library
initializes itself
after loading

[Schäfer, Sridharan, Dolby, Tip. Dynamic Determinacy Analysis, PLDI'13]

Experimental results for jQuery with WALA:

– can analyze a JavaScript program
that loads jQuery and does nothing else

– no success on jQuery 1.3 and beyond

The WALA approach:

1) dynamic analysis to infer determinate expressions
that always have the same value in any execution
(but for a specific calling context)

2) exploit this information in context-sensitive pointer analysis
26

A dynamic property read: x[y]
– if x may evaluate to the global object

– and y may evaluate to a unknown string

– then x[y] may yield
eval, document, Array, Math, ...

27

Example of
imprecision that explodes

consequence

jQuery: sweet on the outside,
bitter on the inside

A representative example from the library initialization code:

which could have been written like this:

28

jQuery.each("ajaxStart ajaxStop ... ajaxSend".split(" "),

function(i, o) {

jQuery.fn[o] = function(f) {

return this.on(o, f);

};

});

jQuery.fn.ajaxStart = function(f) { return this.on("ajaxStart", f); };

jQuery.fn.ajaxStop = function(f) { return this.on("ajaxStop", f); };

...

jQuery.fn.ajaxSend = function(f) { return this.on("ajaxSend", f); };

29

each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

... // (some lines omitted to make the example fit on one slide)

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

Lots of
• overloading
• reflection
• callbacks

Our recent results, by improving TAJS

• TAJS can now analyze (in reasonable time)

– the load-only program for 11 of 12 versions of jQuery

– 27 of 71 small examples from a jQuery tutorial

• Very good precision for type analysis and call graphs

• Analysis time: 1-24 seconds (average: 6.5 seconds)

30[Andreasen and Møller, OOPSLA’14]

TAJS analysis design

• Whole-program, flow-sensitive dataflow analysis

• Constant propagation

• Heap modeling using allocation site abstraction

• Object sensitivity (a kind of context sensitivity)

• Branch pruning (eliminate dataflow along infeasible branches)

• Parameter sensitivity

• Loop specialization

• Context-sensitive heap abstraction

31[Andreasen and Møller, OOPSLA’14]

32

each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

...

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

with parameter
sensitivity, these
become constants

branch pruning logically
eliminates several branches

constant propagation...

specializing on i effectively
unrolls the loop

context-sensitive heap abstraction keeps the
ajaxStart, ajaxStop, etc. functions separate

The technical side...
• The analysis maintains an abstract state for

each program point N and call context C:
N ⨯ C → State

• Old TAJS:
C = 𝒫(L) (object sensitivity)
L = N (L: abstract memory locations)

• New TAJS:
C = 𝒫(L) ⨯ (A ⇀ Value) ⨯ (B ⇀ Value)
L = N ⨯ C

33
context-sensitive heap abstraction

parameter sensitivity
(A: selected parameters)

loop specialization
(B: selected local variables)

Conclusion
• JavaScript programmers need better tools!

• Static program analysis can detect type-related errors,
find dead code, build call graphs, etc.

– dataflow analysis to model the ECMAScript standard

– model of the standard library, browser API, and HTML DOM

– rewrite calls to eval during analysis

– handle complex libraries by boosting analysis precision

• Progress, but far from a full solution…

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://cs.au.dk/CASA

34

http://cs.au.dk/CASA

