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JavaScript
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JavaScript needs program analysis

• Testing is still the only technique programmers 
have for finding errors in their code

• Program analysis can (in principle) be used for

– bug detection (e.g. "x.p in line 7 always yields undefined")

– code completion

– optimization
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JavaScript is a dynamic language

• Object-based, properties created on demand

• Prototype-based inheritance

• First-class functions, closures

• Runtime types, coercions

• ···
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NO STATIC TYPE CHECKING 
NO STATIC CLASS HIERARCHIES



Type Analysis for JavaScript

The goal:
Catch type-related errors using

program analysis

• Support the full language

• Aim for soundness

5



Statically detecting type-related errors 
in JavaScript programs
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Likely programming errors

1. invoking a non-function value (e.g. undefined) as a function

2. reading an absent variable

3. accessing a property of null or undefined

4. reading an absent property of an object

5. writing to variables or object properties that are never read

6. calling a function object both as a function and as a 
constructor, or passing function parameters with varying types

7. calling a built-in function with an invalid number of 
parameters, or with a parameter of an unexpected type

etc.
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Which way to go?
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The TAJS approach

• Dataflow analysis (abstract interpretation)
using the monotone framework   
[Kam & Ullman ’77]

• The recipe:
1. construct a control flow graph for each function 

in the program to be analyzed

2. define an appropriate dataflow lattice
(abstraction of data)

3. define transfer functions
(abstraction of operations)
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[Jensen, Møller, and Thiemann, SAS’09]



The dataflow lattice (simplified!)
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• The analysis maintains an abstract state for 
each program point N and call context C:

N ⨯ C → State

• Each abstract state provides an abstract value 
for each abstract object L and property name P:

State = L ⨯ P → Value

• Each abstract value describes pointers and 
primitive values:

Value = 𝒫(L) ⨯ Bool ⨯ Str ⨯ Num ...

• Details refined through trial-and-error...



Transfer functions, example

A dynamic property read:   x[y]
1. Coerce x to objects

2. Coerce y to strings 

3. Descend the object prototype chains 
to find the relevant properties

4. Join the property values
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A tiny example...
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function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

does y have a setName method at this program point?



An abstract state 
(as produced by TAJS)
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JavaScript web applications

• Modeling JavaScript code is not enough…

• The environment of the JavaScript code:

–the ECMAScript standard library

–the browser API

–the HTML DOM

–the event mechanism
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around 250 abstract objects
with 500 properties 
and 200 functions…

[Jensen, Madsen, and Møller, ESEC/FSE’11]



Eval in JavaScript

• eval(S)
– parse the string S as JavaScript code, then execute it

• Challenging for JavaScript static analysis

– the string is dynamically generated

– the generated code may have side-effects

– and JavaScript has poor encapsulation mechanisms
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Eval is evil

• ... but most uses of eval are not very complex

• So let’s transform eval calls into other code!

• How can we soundly make such transformations 
if we cannot analyze code with eval?
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Which came first?

Analysis or transformation
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Whenever TAJS detects new dataflow to eval,
the eval transformer is triggered

[Jensen, Jonsson, and Møller, ISSTA’12]



An example
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The dataflow analysis propagates dataflow 
until the fixpoint is reached

– iteration 1:   y is "foo",  i is 0
eval(y + "(" + i + ")")   foo(0)

(the dataflow analysis can now proceed into foo)

– iteration 2:   y is "foo",  i is AnyNumber
eval(y + "(" + i + ")")  foo(i)

– …

var y = "foo"
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

(would not work if i could be any string)



Ingredients in a static analyzer 
for JavaScript applications

We need to model

the language semantics

the standard library (incl. eval)

the browser API (the HTML DOM, the event system, etc.)
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Mission complete?
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Why use jQuery (or other libraries)?
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 Patches browser incompatibilities

 CSS3-based DOM navigation

 Event handling

 AJAX (client-server communication)

 UI widgets and animations

 1000s of plugins available



An appetizer
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var checkedValue;

var elements = document.getElementsByTagName('input');

for (var n = 0; n < elements.length; n++) {

if (elements[n].name == 'someRadioGroup' &&

elements[n].checked) {

checkedValue = elements[n].value;

}

}

Which code fragment do you prefer?

var checkedValue = $('[name="someRadioGroup"]:checked').val();



Investigating the beast
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lines executed 
when the library 
initializes itself 
after loading



[Schäfer, Sridharan, Dolby, Tip. Dynamic Determinacy Analysis, PLDI'13]

Experimental results for jQuery with WALA:

– can analyze a JavaScript program 
that loads jQuery and does nothing else

– no success on jQuery 1.3 and beyond 

The WALA approach:

1) dynamic analysis to infer determinate expressions 
that always have the same value in any execution 
(but for a specific calling context)

2) exploit this information in context-sensitive pointer analysis 
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A dynamic property read:   x[y]
– if x may evaluate to the global object

– and y may evaluate to a unknown string

– then x[y] may yield 
eval, document, Array, Math, ...
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Example of 
imprecision that explodes

consequence



jQuery: sweet on the outside, 
bitter on the inside

A representative example from the library initialization code:

which could have been written like this:
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jQuery.each("ajaxStart ajaxStop ... ajaxSend".split(" "),

function(i, o) {

jQuery.fn[o] = function(f) {

return this.on(o, f);

};

});

jQuery.fn.ajaxStart = function(f) { return this.on("ajaxStart", f); };

jQuery.fn.ajaxStop = function(f) { return this.on("ajaxStop", f); };

...

jQuery.fn.ajaxSend = function(f) { return this.on("ajaxSend", f); };
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each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

... // (some lines omitted to make the example fit on one slide)

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

Lots of
• overloading
• reflection
• callbacks



Our recent results, by improving TAJS

• TAJS can now analyze (in reasonable time)

– the load-only program for 11 of 12 versions of jQuery

– 27 of 71 small examples from a jQuery tutorial

• Very good precision for type analysis and call graphs 

• Analysis time: 1-24 seconds (average: 6.5 seconds)

30[Andreasen and Møller, OOPSLA’14]



TAJS analysis design

• Whole-program, flow-sensitive dataflow analysis

• Constant propagation

• Heap modeling using allocation site abstraction

• Object sensitivity (a kind of context sensitivity)

• Branch pruning (eliminate dataflow along infeasible branches)

• Parameter sensitivity

• Loop specialization

• Context-sensitive heap abstraction

31[Andreasen and Møller, OOPSLA’14]



32

each: function (obj, callback, args) {

var name, i = 0, length = obj.length,

isObj = length === undefined || jQuery.isFunction(obj);

if (args) {

...

} else {

if (isObj) {

for (name in obj) {

if (callback.call(obj[name], name, obj[name]) === false) {

break;

}

}

} else {

for (; i < length ;) {

if (callback.call(obj[i], i, obj[i++]) === false) {

break;

}

}

}

}

return obj;

}

with parameter 
sensitivity, these
become constants

branch pruning logically
eliminates several branches

constant  propagation...

specializing on i effectively
unrolls the loop

context-sensitive heap abstraction keeps the 
ajaxStart, ajaxStop, etc. functions separate 



The technical side...
• The analysis maintains an abstract state for 

each program point N and call context C:
N ⨯ C → State

• Old TAJS:
C = 𝒫(L) (object sensitivity)
L = N (L: abstract memory locations)

• New TAJS:
C = 𝒫(L) ⨯ (A ⇀ Value) ⨯ (B ⇀ Value)
L = N ⨯ C
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context-sensitive heap abstraction

parameter sensitivity
(A: selected parameters)

loop specialization
(B: selected local variables)



Conclusion
• JavaScript programmers need better tools!

• Static program analysis can detect type-related errors,
find dead code, build call graphs, etc.

– dataflow analysis to model the ECMAScript standard 

– model of the standard library, browser API, and HTML DOM

– rewrite calls to eval during analysis

– handle complex libraries by boosting analysis precision

• Progress, but far from a full solution… 

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://cs.au.dk/CASA
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