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X10: Place-centric, Asynchronous Computing 

§ Language for at-scale computing 
being developed at IBM Research 
(since 2004). Funded by DARPA, 
IBM. 

§ Focused on High Performance 
Computing, and (since 2010) 
scale-out analytics  

§ Compiles to C++ 
§ Compiles to Java, interoperates 

§ Linux, AIX, MacOS, Cygwin, Blue 
Gene / x86, x86_64, PowerPC, 
GPUs, modern interconnects 

§ Eclipse based IDE, with remote 
execution support 

Java-like productivity, MPI-like performance at scale 
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Asychrony 

•  async S 

Locality 

•  at (P) S 

Atomicity 

•  when (c) S 

Order 

•  finish S 

•  clocks 

Global data-
structures 

points, regions, 
distributions, 
arrays 

X10 and the APGAS model  

q  Five basic constructs 
Ø async S – run S as a separate activity  
Ø at (P) S – switch to place P to run S. 

Ø finish S – execute S, wait for termination 
Ø when (c) S – execute S when c, atomically 

Ø clocked async, clocked finish support 
barriers 
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APGAS Idioms 

Remote procedure call 
v = at(p) evalThere(arg1, arg2);!

 

 
Active message 
at(p) async runThere(arg1, arg2);!
 

 
 
Divide-and-conquer parallelism 
def fib(n:Long):Long {  
  if(n < 2) return n;  
  val f1:Long;  
  val f2:Long;  
  finish {  
    async f1 = fib(n-1);  
    f2 = fib(n-2);  
  }  
  return f1 + f2;  
}!

!

SPMD 
finish for(p in Place.places()) {  
  at(p) async runEverywhere();  
} 
 
Atomic remote update 
at(ref) async atomic ref() += v;!

 
 
Computation/communication overlap 
val acc = new Accumulator();  
while(cond) {  
  finish {  
    val v = acc.currentValue();  
    at(ref) async ref() = v;  
    acc.updateValue();  
  }  
}!

!
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Some additional constructs -- Clocks 

APGAS barriers 
§  synchronize dynamic sets of tasks 
 
x10.lang.Clock!
§  anonymous or named 
§  task instantiating the clock is 

registered with the clock 
§  spawned tasks can be registered 

with a clock at creation time 
§  tasks can deregister from the clock 
§  tasks can use multiple clocks 
§  split-phase clocks 

§  clock.resume(), clock.advance() 
§  compatible with distribution 

// anonymous clock!
clocked finish { !
  for(1..4) clocked async {!

    Console.OUT.println("Phase 1");!
    Clock.advanceAll();!
    Console.OUT.println("Phase 2");!
  }!
}!
// named clock!

finish {!
  val c = Clock.make();!
  for(1..4) async clocked(c) {!
    Console.OUT.println("Phase 3");!
    c.advance();!
    Console.OUT.println("Phase 4");!

  }!
  c.drop();!
}!
!
! 7 
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Some additional constructs -- Collecting Finish 
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public class CollectPi {!

  public static def main(args:Rail[String]) {!

    val N = Long.parse(args(0)), P = Long.parse(args(1));!

    val result = finish(Reducible.SumReducer[Double]()) {!

      for(1..P) async {!

        val myRand = new Random();!

        var myResult:Double = 0;!

        for (1..(N/P)) {!

          val x = myRand.nextDouble();!

          val y = myRand.nextDouble();!

          if (x*x + y*y <= 1) myResult++;!

        }!

        offer myResult;!

      }};!

    val pi = 4*result/N;!

    Console.OUT.println("The value of pi is " + pi);!

  }}!
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Key Semantic Properties 

§  “Hard hat” object initialization – 
no escape of “this” during 
construction (ECOOP ‘12) 

§ Precise syntactic characterization 
of Happens Before relationship for 
polyhedral programs (PPoPP ‘13) 

– Allows precise statement-specific, 
instance-specific analysis of races 

§ And the clean design that permits 
Resilience to be “just added in”… 

§ Programs with multiple places, 
(collecting) finish, async, 
atomic, at, clocks are deadlock-
free. (Concur ‘05) 

– Only when is not permitted 

§  Determinacy for “clocked final” 
programs. 

§   (And C10 …) 

§ Formal operational semantics, 
plus equational theory (ECOOP 
‘14) 

9 
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Key Applications 

§ Global Matrix Library 
–  Distributed, partitioned 

implementation of operations 
on sparse/dense matrices / 
vectors 

§ Global Load Balancing 
Library (PPoPP ’11, PPAA 
‘14) 

§ Scalegraph – X10 graph 
library (scalegraph.org) 

§ M3R -- Main Memory Map 
Reduce (VLDB’12) 

– Open source M3RLite (~200 lines) 
– Open source BSP engine (~300 

lines) 

§ X10 in IBM products 
– M3R 
– X10 for in-memory scale-out 

analytics  
–  “…introducing rich time modeling, reasoning 

and analytics to detect and respond to 
intricate patterns and trends; innovative 
global analytics to extract valuable insights 
over populations of business entities in real-
time;…” 

10 
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M3R Performance: Mahout KMeans on Power8+GPU 

With M3R, the real computation becomes the 
dominant cost enabling GPU acceleration of 
KMeans mapper to yield 10.5x speedup 
 

66% 

10.5x 

Execu&on	
  Environment	
   	
  	
  
K-­‐Means	
  

Parameters	
  
Host:	
  Power8	
  (8286-­‐42A)	
   N:	
  9.6M	
  
OS:	
  Ubuntu	
  14.04	
   D:	
  2	
  

GPU:	
  K40m	
   K:	
  64	
  
Hadoop:	
  1.0.3	
   Mappers:	
  12	
  

HDFS:	
  in	
  RAM	
   Reducers:	
  1	
  
M3R:	
  2.5.0.1	
   	
  	
   	
  	
   	
  	
  

GPU implementation & experimental evaluation by Keith Campbell, HAL Lab 
Demo at NVIDIA GPU Tech. Conf. March, 2014 
Article: http://www.enterprisetech.com/2014/03/31/ibm-juices-hadoop-java-tesla-gpus/ 
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Resiliency Spectrum 
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MPI 
Existing X10 
(fast) 

Hadoop 
Checkpoint & Restart 

X10-FT 
(slow) 

Resilient X10 (fast) 

Non-resilient / manual Transparent fault tolerance 

Node failure is a reality on commodity clusters 
•  Hardware failure 
•  Memory errors, leaks, race conditions (including in the kernel) 
•  Evictions 
•  Evidence: Popularity of Hadoop 

Ignoring failures causes serial 
MTBF aggregation: 
24 hour run, 1000 nodes, 
6 month node MTBF 
=> under 1% success rate 

Transparent checkpointing 
causes significant overhead. 

Failure awareness 
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Resilient X10 Overview 
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Provide helpful semantics: 
•  Failure reporting 
•  Continuing execution on unaffected nodes 
•  Preservation of synchronization: HBI principle (described later) 

Application-level failure recovery, use domain knowledge 
•  If the computation is approximate: trade accuracy for reliability (e.g. Rinard, ICS06) 
•  If the computation is repeatable: replay it 
•  If lost data is unmodified: reload it 
•  If data is mutated: checkpoint it 
•  Libraries can hide, abstract, or expose faults (e.g. containment domains) 
•  Can capture common patterns (e.g. map reduce) via application frameworks 
 
No changes to the language, substantial changes to the runtime implementation 
•  Use exceptions to report failure 
•  Existing exception semantics give strong synchronization guarantees 
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X10 Language Overview (Distributed Features) 
§  Scales to 1000s of nodes 

§  Asynchronous PGAS (APGAS) 
– Heap partitioned into ‘places’ 
– Can only dereference locally 

§  Explicit communication 

§  Implicit object graph serialization 

Resilient X10 Review 

Heap object ‘Place’ ‘Activity’ ‘GlobalRef’ 

class MyClass {   
    public static def main(args:Rail[String]):void {   
        val c = GlobalRef(new Cell[Long](0));   
        finish {   
            for (p in Place.places()) {   
                 async {   
                     at (p) {   
                        val v = ...; // non-trivial work   
                        at (Place.FIRST_PLACE) {   
                            val cell = c();   
                            atomic { cell(cell() + v); }   
        }   }   }   }   }      
        // Runs after remote activities terminate   
        Console.OUT.println(“Cumulative value: "+c()());   
    }   
}!

 

0 1 2 3 

Cell[Int] object 

Main activity at (p) { … } 

at (Place.FIRST_PLACE) 

val x = ...;  
val y = ...;  
at (p) {  
    val tmp = x + y;  
} 
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Resilient X10 (Language design) 

Immediate Consequences: 

§  The heap at that place is lost 

§  The activities are lost 

§  Any at in progress immediately terminates with x10.lang.DeadPlaceException 

    (Very similar to java.lang.VirtualMachineError) 

15 

0 1 2 

Sometimes, an arbitrary place may disappear. 

Lasting Consequences: 

Place will never come back alive. 

Can no-longer at (dead_place) {…} – get DeadPlaceException thrown. 

GlobalRef[T] to objects at that place may still be dangling… 

But type system requires use of at to access that state. 

Code can test if a given Place value is dead, get list of alive places, etc. 
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Resilient X10 Simple Example 

class MyClass {  
    public static def main(args:Rail[String]):void {  
        val c = GlobalRef[Cell[Int]](new Cell[Int](0));  
        finish {  
            for (p in Place.places()) {  
                async {  
                    try {  
                        at (p) {  
                            val v = ...; // non-trivial work  
                            at (Place.FIRST_PLACE) {  
                                val cell = c();  
                                atomic { cell(cell() + v); }  // cell() += v !

                            }!

                        }!

                    } catch (e:DeadPlaceException) {  
                        Console.OUT.println(e.place+” died.”);  
                    }  
        }   }   }!

        // Runs after remote activities terminate  
        Console.OUT.println(“Cumulative value: "+c()());  
    }  
} !
16 

Revision of earlier example for failure-reporting X10: 
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Happens Before Invariance (HBI) Principle 

Failure of a place should not alter 
the happens before relationship. 

17 

finish 

activity 

finish 

activity 

Place 0 Place 1 

val gr = GlobalRef(new Cell[Int](0));  
try {  
    finish at (Place(1)) async {  
        finish at (Place(0)) async {  
            gr()(10); // A  
        }  
    }!

} catch (e:MultipleExceptions) { }  
gr()(3); // B  
assert gr()() != 10;  
!

A happens before B, even if place 1 dies. 

Without this property, avoiding race conditions would be very hard. 

But guaranteeing it is non-trivial, requires more runtime machinery. 

Waits-for 
graph 

Implied 
synchronization 

orphan 
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HBI – Subtleties 
Relationship between at / finish and orphans 

Orphaned activities are adopted by the next enclosing synchronization point. 

  
at (Place(1)) { finish async S } Q   // S happens before Q!

finish { at (Place(1)) { async finish async S } Q  }  // S concurrent with Q!

!

Exceptions 

Adoption does not propagate exceptions: 
at (Place(1)) {!

    try {!

        finish at (Place(0)) async { throw e; }!

    } catch (e:Exception) { }!

}!

// e should never appear here!

18 
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TX10
object id global object id

exception

error propagation !
and handling

Semantics of (Resilient) X10  [ECOOP 2014] 
S.Crafa, D.Cunningham, V.Saraswat, A.Shinnar, O.Tardieu

Values v ::= o | o$p | E | DPE

Expressions e ::= v | x | e.f | {f :e, . . . , f :e} | globalref e | valof e

Statements s ::= skip; | throw v | valx = e s | e.f = e; | {s t}

at(p)valx = e in s | async s | finish s | try s catch t

at(p) s | async s | finishµ s

Configurations k ::= hs, gi | g

Local heap h ::= ; | h · [o 7! (f̃i : ṽi)]Global heap g ::= ; | g · [p 7! h]
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Semantics of (Resilient) X10
✤ Small-step transition system, mechanised in Coq!

✤ non in ChemicalAM style (better fits the centralised view of the distributed 
program)

hs, gi E⌦�!p hs0, g0i | g0hs, gi E⇥�!p hs0, g0i | g0hs, gi �!p hs0, g0i | g0

Async failures arise in parallel threads!
and are caught by the inner finish waiting for their termination!

finish {async throw E  async s2}

Synch failures lead to the failure of any sync continuation!
leaving async (remote) running code free to terminate!

{async at(p)s1  throw E  s2}

Proved  

in Coq

Proved  

in Coq
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Semantics of (Resilient) X10
✤ Small-step transition system, mechanised in Coq!

✤ non in ChemicalAM style (better fits the centralised view of the distributed 
program)

hs, gi E⌦�!p hs0, g0i | g0hs, gi E⇥�!p hs0, g0i | g0hs, gi �!p hs0, g0i | g0

Proved  

in Coq Absence of stuck states !

(the proof can be run, yielding an interpreter for TX10)
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Semantics of Resilient X10

smoothly scales to node failure, with!
✤ global heap is a partial map: dom(g) collects non failed places!
✤ executing a statement at failed place results in a DPE!
✤ place shift at failed place results in a DPE!
✤ remote exceptions flow back at the remaining finish masked as DPE 

p 2 dom(g)

hs, gi �!p hs, g \ {(p, g(p)}i

(Place Failure)
p /2 dom(g)

hskip, gi
DPE⌦
���!p g

hat(p) s, gi
DPE⌦
���!q g

hasync s, gi
DPE⌦
���!p g

contextual rules !
modified accordingly
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Semantics of Resilient X10
✤ Happens Before Invariance!

✤ failure of place q does not alter the happens before relationship 
between statement instances at places other than q

at(0) { at(p) finish at(q) async s1 s2}

at(0) finish { at(p){at(q) async s1} s2}

s2 runs at 0 after s1 

s2 runs at 0 in parallel with s1 

same behaviour!p fails while s1 !
is running at q



© 2009 IBM Corporation 24 

Semantics of Resilient X10
✤ Happens Before Invariance!

✤ failure of place q does not alter the happens before relationship 
between statement instances at places other than q

at(0) { at(p) finish at(q) async s1 s2}

at(0) finish { at(p){at(q) async s1} s2}

throws v

flows at place 0 while s2 is running

 flows at place 0 discarding s1DPE⌦

v⇥
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Conclusions 

Resilient X10 

§  A novel point in the design space 

§  Avoid sacrificing performance 

§  Re-use exception semantics 

§  HBI principle ensures that transitive synchronization is preserved after node failure 

§  Ensure no surprises for the programmer 

Implemented, tested at scale, released (X10 2.4.1) 

§  Implemented ‘finish’ 3 ways, microbenchmarked 

§  Implemented 3 apps that handle failure in different ways 
– K-Means (decimation) 
– Sparse Matrix * Dense Vector (reload & replay) 
– Stencil (checkpointing) 

§  Apps are extended from non-resilient versions to handle DeadPlaceException 

§  Performance close to existing X10, but resilient to a few node failures 

25 

MPI 
Existing X10 
(fast) 

Hadoop 
Checkpoint & Restart 

X10-FT 
(slow) 

Resilient X10 (fast) 

Non-resilient / manual Transparent fault tolerance Failure awareness 
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Questions? 

26 

Questions? 
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Special treatment of place 0 

§  Activities are rooted at the ‘main’ activity at place zero. 

§  If place zero dies, everything dies. 

§  The programmer can assume place 0 is immortal. 

§  MTBF of n-node system = MTBF of 1-node system 

§  Having an immortal place 0 is good for programmer productivity 
– Can orchestrate at place 0 (e.g. deal work) 
– Can do (trivial) reductions at place 0 
– Divide & conquer expressed naturally 
– Can do final result processing / user interface 

§  However… 
– Must ensure use of place 0 does not become a bottleneck, at scale 

 

27 

A 

A A 

A A 
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Papers 

§ More applications! 

§  “Elastic” X10 
– Expand into new hardware 
– Allow new hardware to replace failed hardware 

§ Tolerate failure of place 0 
– Checkpoint the heap at place 0?  Slow place 0, use only for orchestration 
– Or, just don’t have a rooted activity model 
 

28 

Future Work 

§ PPoPP 2014 “Resilient X10: Efficient failure-Aware Programming” 

§ ECOOP 2014 “Semantics of (Resilient) X10” 
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Implementation: X10 Architectural Overview 

§  async { … } 

§  finish { … } 

§  at (p) { … } 

29 

X10 application 

§  at (p) async { … } 

§  here 

§  launching processes 

§  OS threads 

§  Serialization 

Runtime stack: 
Key: 
Java 

X10 runtime 

C++ runtime 
Java runtime 
JNI wrapper 

X10RT (network layer) 

… MPI PAMI 
Sockets 

C++ 
X10 
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Implementing Resilient X10 (X10RT) 

Focus on sockets backend 

§  We have complete control 

§  Handle TCP timeouts / connection resets gracefully 

§  Communicate failures up the stack 

§  Abort on timeout during start-up phase 

 

Changes to X10RT API: 

Simple c++ code to send an asynchronous message and wait for a reply (via X10RT API): 

30 

x10rt_send_msg(p, msgid, buf); 
while (!got_reply) { 
    x10rt_probe(); 
} 

int num_dead = x10rt_ndead(); 
x10rt_send_msg(p, msgid, buf); 
while (!got_reply) { 
    int now_dead = x10rt_ndead(); 
    if (now_dead != num_dead) { 
        num_dead = now_dead; 
        // account for failure 
        break; 
    } 
    x10rt_probe(); 
} 

becomes 
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Implementing Resilient X10 (Finish Counters Abstraction) 
The implementation reduces ‘at’ to a special case of ‘finish’. 

Abstractly, finish is a set of counters 

Simplified illustration: 

31 

finish { 
    ... 
} 
 
 
 
 
 
async { 
    ... 
} 

0 1 0 0 

0 0 0 1 

2 0 0 0 

0 0 0 0 

2 8 3 4 

transit live val v = new FinishCounters(); 
    ... 
f.wait(); // may throw MultipleExceptions 
 
 
 
 
 
f.begin(...); (); // may communicate 
    ... 
f.end(...) // may communicate 

to 
place 

from place place 

Counters are used to 

§  Wait for termination 

§  Throw DeadPlaceException 
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3 Possible Finish Implementations 

Finish counters need to survive failure of place holding FinishCounters object… 

 

§  Store all finish state at place zero. 
– Simple 
– Makes use of ‘immortal’ place zero. 
– No problem: If finishes are logically at place zero in the code. 
– Otherwise: Bottle neck at place zero. 

§  Store all finish state in ZooKeeper 
– From Hadoop project 
– External paxos group of processes 
– Lightweight resilient store 
– Still too much overhead (details in paper) 

§  Distributed resilient finish. 
– Finish state is replicated at one other node. 
– Execution aborted if both nodes die. 
– Best all round performance 
– No bottle neck at place zero 

32 
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Finish Micro-benchmark results 

33 
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Application – K-Means (Lloyd’s algorithm) 
Resilient X10 Review 

Machine learning / analytics kernel. 
Given N (a large number) of points in 4d space (dimensionality arbitrary) 
Find the k clusters in 4d space that approximate points’ distribution 

^ N=11, k=2 
• Each cluster’s position is iteratively refined by averaging the position of the set of points for 
whom that cluster is the closest. 
• Very dense computational kernel (assuming large N). 
• Embarrassingly parallel, easy to distribute. 
• Points data can be larger than single node RAM. 
• Points can be split across nodes, partial averages computed at each node and aggregated at 
place 0. 
• Refined clusters then broadcast to all places for next iteration. 
 
Resiliency is achieved via decimation 
• The algorithm will still converge to an approximate result if only most of the points are used. 
• If a place dies, we simply proceed without its data and resources. 
• Error bounds on this technique explored in Rinard06 

Performance is within 90% of non-resilient X10 
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Application – Iterative Sparse Matrix * Dense Vector 
Resilient X10 Review 

Kernel found in a number of algorithms, e.g. GNMF, Page Rank, … 
An N*N sparse (0.1%) matrix, G, multiplied by a 1xN dense vector V 
Resulting vector used as V in the next iteration. 
Matrix block size is 1000x1000, matrix is double precision 
 
G distributed into row blocks.  Every place starts with entire V, computes fragment of V’. 
Every place communicates fragments of V to place 0 to be aggregated. 
New V broadcast from place 0 for next iteration (G is never modified). 
 
Code is memory-bound, amount of actual computation quite low 
Problem is the size of the data – does not fit in node. 
G is loaded at application start, kept in RAM between iterations. 
 
Resiliency is achieved by replaying lost work: 
• Place death triggers other places to take over lost work assignment. 
• Places load the extra G blocks they need from disk upon failure 
 
100x faster than Hadoop 
Resilient X10 ~ same speed as existing X10 

G V V’ = 
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Application – Heat Transfer  
Resilient X10 Review 

Demonstration of a 2D stencil algorithm with simple kernel 
An N*N grid of doubles 
Stencil function is a simple average of 4 nearest neighbors 
 
Each iteration updates the entire grid. 
Dense computational benchmark 
Distributed by spatial partitioning of the grid. 
Communication of partition outline areas required, each iteration. 
 
Resiliency implemented via checkpointing. 
Failure triggers a reassignment of work, and global replay from previous checkpoint. 
Checkpoints stored in an in-memory resilient store, implemented in X10 
 
Performance can be controlled by checkpoint frequency. 
If no checkpoints, performance is the same as existing X10 
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Equational theory for (Resilient) X10

equivalent configurations when hs, gi ⇠= ht, gi

✤ transition steps are weakly bi-simulated!

✤ under any modification of the shared heap by current activities 
(object field update, object creation, place failure)

hs, gi R ht, gi whenever

1. `isSync s i↵ `isSync t

2. 8p,8� environment move

if hs,�(g)i ��!p hs0, g0i then 9t0. ht, �(g)i �=)p ht0, g0i

with hs0, g0i R ht0, g0i and viceversa

Bisimulation whose Bisimilarity is a congruence

models the update of g:
dom(�(g)) = dom(g) and

8p2dom(g) dom(g(p)) ✓ dom(�(g)(p))
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R

Equational theory for (Resilient) X10

{{s t} u} ⇠= {s {t u}}

` isAsync s try {s t} catchu ⇠= {try s catchu try t catchu}

at(p){s t} ⇠= {at(p)s at(p)t}

at(p)at(q)s ⇠= at(q)s

async at(p)s ⇠= at(p) async s

finish {s t} ⇠= finish s finish t

finish {s async t} ⇠= finish {s t}

finish at(p) s ⇠= at(p) finish s

if s throws a sync exc. 
and home is failed, 
then l.h.s. throws a 
masked DPEx  while 
r.h.s. re-throws vx 
since synch exc are 
not masked by DPE

R

R

R
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�=✏, v⇥ h{s t}, gi ��!p h{s0 t}, g0i | ht, g0i

� = v⌦ h{s t}, gi ��!p hs0, g0i | g0

hs, gi ��!p hs0, g0i | g0

` isAsync t hs, gi ��!p hs0, g0i | g0

h{t s}, gi ��!p h{t s0}, g0i | ht, g0i

(Par Left)

(Par Right)

(v0, g0) = copy(v, q, g)

hat(q)valx = v in s, gi �!
p

hat(q){s[v
0
/

x

] skip}, g0i

(Place Shift)

hs, gi ��!q hs0, g0i | g0

hat(q) s, gi ��!p hat(q) s0, g0i | g0

(At)
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hasync s, gi �!p hasync s, gi

(Spawn)

hs, gi ��!p hs0, g0i | g0

� = ✏ hasync s, gi ��!p hasync s0, g0i | g0

�=v⇥, v⌦ hasync s, gi
v⇥

��!p hasync s0, g0i | g0

(Async)

hs, gi ��!p hs0, g0i

hfinishµ s, gi �!p hfinishµ[� s0, g0i

(Finish)

hfinishµ s, gi �0
�!p g0

hs, gi ��!p g0 �0 = E⌦ if �[µ6=; else ✏

(End Finish)
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(Exception)

hs, gi ��!p hs0, g0i | g0
(Try)

(Skip)

�=✏, v⇥ htry s catch t, gi ��!p htry s0 catch t, g0i | g0

�=v⌦ htry s catch t, gi �!p h{s0 t}, g0i | ht, g0i

hthrow v, gi v⌦�!p g

hskip, gi �!p g Plus rules for expression evaluation


