
© 2009 IBM Corporation

Resilient X10
Efficient failure-aware programming

PPoPP 2014 “Resilient X10: Efficient failure-Aware Programming”
ECOOP 2014 “Semantics of (Resilient) X10”
http://x10-lang.org

Dave Cunningham (now Google), Dave Grove, Ben Herta, Arun Iyengar , Kiyokuni Kawachiya, Hiroki Murata, Vijay
Saraswat , Mikio Takeuchi, Olivier Tardieu, Joshua Milthorpe (ANU, IBM) Sara Salem Houda (ANU), Silvia Crafa (U Padua)

Funded in part by AFOSR

© 2009 IBM Corporation 2

© 2009 IBM Corporation 3

© 2009 IBM Corporation
4

X10: Place-centric, Asynchronous Computing

§ Language for at-scale computing
being developed at IBM Research
(since 2004). Funded by DARPA,
IBM.

§ Focused on High Performance
Computing, and (since 2010)
scale-out analytics

§ Compiles to C++
§ Compiles to Java, interoperates

§ Linux, AIX, MacOS, Cygwin, Blue
Gene / x86, x86_64, PowerPC,
GPUs, modern interconnects

§ Eclipse based IDE, with remote
execution support

Java-like productivity, MPI-like performance at scale

X10
Sourc

e

Parsing /
Type Check

AST Optimizations
AST Lowering X10 AST

X10 AST

C++ Code
Generation

Java Code
Generation

C++ Source Java Source

C++ Compiler Java Compiler XRC XRJ XRX

Native Code Bytecode

X10RT

X10 Compiler Front-End

C++
Back-End

Java
Back-End

Java VMs Native Env
JNI Native X10 Managed X10

© 2009 IBM Corporation

Asychrony

•  async S

Locality

•  at (P) S

Atomicity

•  when (c) S

Order

•  finish S

•  clocks

Global data-
structures

points, regions,
distributions,
arrays

X10 and the APGAS model

q  Five basic constructs
Ø async S – run S as a separate activity
Ø at (P) S – switch to place P to run S.

Ø finish S – execute S, wait for termination
Ø when (c) S – execute S when c, atomically

Ø clocked async, clocked finish support
barriers

© 2009 IBM Corporation

APGAS Idioms

Remote procedure call
v = at(p) evalThere(arg1, arg2);!

Active message
at(p) async runThere(arg1, arg2);!

Divide-and-conquer parallelism
def fib(n:Long):Long {  
 if(n < 2) return n;  
 val f1:Long;  
 val f2:Long;  
 finish {  
 async f1 = fib(n-1);  
 f2 = fib(n-2);  
 }  
 return f1 + f2;  
}!

!

SPMD
finish for(p in Place.places()) {  
 at(p) async runEverywhere();  
}

Atomic remote update
at(ref) async atomic ref() += v;!

Computation/communication overlap
val acc = new Accumulator();  
while(cond) {  
 finish {  
 val v = acc.currentValue();  
 at(ref) async ref() = v;  
 acc.updateValue();  
 }  
}!

!

6

Some additional constructs -- Clocks

APGAS barriers
§  synchronize dynamic sets of tasks

x10.lang.Clock!
§  anonymous or named
§  task instantiating the clock is

registered with the clock
§  spawned tasks can be registered

with a clock at creation time
§  tasks can deregister from the clock
§  tasks can use multiple clocks
§  split-phase clocks

§  clock.resume(), clock.advance()
§  compatible with distribution

// anonymous clock!
clocked finish { !
 for(1..4) clocked async {!

 Console.OUT.println("Phase 1");!
 Clock.advanceAll();!
 Console.OUT.println("Phase 2");!
 }!
}!
// named clock!

finish {!
 val c = Clock.make();!
 for(1..4) async clocked(c) {!
 Console.OUT.println("Phase 3");!
 c.advance();!
 Console.OUT.println("Phase 4");!

 }!
 c.drop();!
}!
!
! 7

© 2009 IBM Corporation

Some additional constructs -- Collecting Finish

8

public class CollectPi {!

 public static def main(args:Rail[String]) {!

 val N = Long.parse(args(0)), P = Long.parse(args(1));!

 val result = finish(Reducible.SumReducer[Double]()) {!

 for(1..P) async {!

 val myRand = new Random();!

 var myResult:Double = 0;!

 for (1..(N/P)) {!

 val x = myRand.nextDouble();!

 val y = myRand.nextDouble();!

 if (x*x + y*y <= 1) myResult++;!

 }!

 offer myResult;!

 }};!

 val pi = 4*result/N;!

 Console.OUT.println("The value of pi is " + pi);!

 }}!

© 2009 IBM Corporation

Key Semantic Properties

§  “Hard hat” object initialization –
no escape of “this” during
construction (ECOOP ‘12)

§ Precise syntactic characterization
of Happens Before relationship for
polyhedral programs (PPoPP ‘13)

– Allows precise statement-specific,
instance-specific analysis of races

§ And the clean design that permits
Resilience to be “just added in”…

§ Programs with multiple places,
(collecting) finish, async,
atomic, at, clocks are deadlock-
free. (Concur ‘05)

– Only when is not permitted

§  Determinacy for “clocked final”
programs.

§  (And C10 …)

§ Formal operational semantics,
plus equational theory (ECOOP
‘14)

9

© 2009 IBM Corporation

Key Applications

§ Global Matrix Library
–  Distributed, partitioned

implementation of operations
on sparse/dense matrices /
vectors

§ Global Load Balancing
Library (PPoPP ’11, PPAA
‘14)

§ Scalegraph – X10 graph
library (scalegraph.org)

§ M3R -- Main Memory Map
Reduce (VLDB’12)

– Open source M3RLite (~200 lines)
– Open source BSP engine (~300

lines)

§ X10 in IBM products
– M3R
– X10 for in-memory scale-out

analytics
–  “…introducing rich time modeling, reasoning

and analytics to detect and respond to
intricate patterns and trends; innovative
global analytics to extract valuable insights
over populations of business entities in real-
time;…”

10

© 2009 IBM Corporation

M3R Performance: Mahout KMeans on Power8+GPU

With M3R, the real computation becomes the
dominant cost enabling GPU acceleration of
KMeans mapper to yield 10.5x speedup

66%

10.5x

Execu&on	
 Environment	
 	
 	

K-­‐Means	

Parameters	

Host:	
 Power8	
 (8286-­‐42A)	
 N:	
 9.6M	

OS:	
 Ubuntu	
 14.04	
 D:	
 2	

GPU:	
 K40m	
 K:	
 64	

Hadoop:	
 1.0.3	
 Mappers:	
 12	

HDFS:	
 in	
 RAM	
 Reducers:	
 1	

M3R:	
 2.5.0.1	
 	
 	
 	
 	
 	
 	

GPU implementation & experimental evaluation by Keith Campbell, HAL Lab
Demo at NVIDIA GPU Tech. Conf. March, 2014
Article: http://www.enterprisetech.com/2014/03/31/ibm-juices-hadoop-java-tesla-gpus/

3x

0
10
20
30
40
50
60
70
80

Hadoop M3R

S
ec

on
ds

Steady State Single Iteration Time

CPU GPU
0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

Iterations

Mahout KMeans Performance

Hadoop CPU

Hadoop GPU

M3R CPU

M3R GPU

66%

10.5x

© 2009 IBM Corporation

Resiliency Spectrum

12

MPI
Existing X10
(fast)

Hadoop
Checkpoint & Restart

X10-FT
(slow)

Resilient X10 (fast)

Non-resilient / manual Transparent fault tolerance

Node failure is a reality on commodity clusters
•  Hardware failure
•  Memory errors, leaks, race conditions (including in the kernel)
•  Evictions
•  Evidence: Popularity of Hadoop

Ignoring failures causes serial
MTBF aggregation:
24 hour run, 1000 nodes,
6 month node MTBF
=> under 1% success rate

Transparent checkpointing
causes significant overhead.

Failure awareness

© 2009 IBM Corporation

Resilient X10 Overview

13

Provide helpful semantics:
•  Failure reporting
•  Continuing execution on unaffected nodes
•  Preservation of synchronization: HBI principle (described later)

Application-level failure recovery, use domain knowledge
•  If the computation is approximate: trade accuracy for reliability (e.g. Rinard, ICS06)
•  If the computation is repeatable: replay it
•  If lost data is unmodified: reload it
•  If data is mutated: checkpoint it
•  Libraries can hide, abstract, or expose faults (e.g. containment domains)
•  Can capture common patterns (e.g. map reduce) via application frameworks

No changes to the language, substantial changes to the runtime implementation
•  Use exceptions to report failure
•  Existing exception semantics give strong synchronization guarantees

© 2009 IBM Corporation 14

X10 Language Overview (Distributed Features)
§  Scales to 1000s of nodes

§  Asynchronous PGAS (APGAS)
– Heap partitioned into ‘places’
– Can only dereference locally

§  Explicit communication

§  Implicit object graph serialization

Resilient X10 Review

Heap object ‘Place’ ‘Activity’ ‘GlobalRef’

class MyClass {  
 public static def main(args:Rail[String]):void {  
 val c = GlobalRef(new Cell[Long](0));  
 finish {  
 for (p in Place.places()) {  
 async {  
 at (p) {  
 val v = ...; // non-trivial work  
 at (Place.FIRST_PLACE) {  
 val cell = c();  
 atomic { cell(cell() + v); }  
 } } } } }  
 // Runs after remote activities terminate  
 Console.OUT.println(“Cumulative value: "+c()());  
 }  
}!

0 1 2 3

Cell[Int] object

Main activity at (p) { … }

at (Place.FIRST_PLACE)

val x = ...;
val y = ...;
at (p) {
 val tmp = x + y;
}

© 2009 IBM Corporation

Resilient X10 (Language design)

Immediate Consequences:

§  The heap at that place is lost

§  The activities are lost

§  Any at in progress immediately terminates with x10.lang.DeadPlaceException

 (Very similar to java.lang.VirtualMachineError)

15

0 1 2

Sometimes, an arbitrary place may disappear.

Lasting Consequences:

Place will never come back alive.

Can no-longer at (dead_place) {…} – get DeadPlaceException thrown.

GlobalRef[T] to objects at that place may still be dangling…

But type system requires use of at to access that state.

Code can test if a given Place value is dead, get list of alive places, etc.

© 2009 IBM Corporation

Resilient X10 Simple Example

class MyClass {  
 public static def main(args:Rail[String]):void {  
 val c = GlobalRef[Cell[Int]](new Cell[Int](0));  
 finish {  
 for (p in Place.places()) {  
 async {  
 try {  
 at (p) {  
 val v = ...; // non-trivial work  
 at (Place.FIRST_PLACE) {  
 val cell = c();  
 atomic { cell(cell() + v); } // cell() += v !

 }!

 }!

 } catch (e:DeadPlaceException) {  
 Console.OUT.println(e.place+” died.”);  
 }  
 } } }!

 // Runs after remote activities terminate  
 Console.OUT.println(“Cumulative value: "+c()());  
 }  
} !
16

Revision of earlier example for failure-reporting X10:

© 2009 IBM Corporation

Happens Before Invariance (HBI) Principle

Failure of a place should not alter
the happens before relationship.

17

finish

activity

finish

activity

Place 0 Place 1

val gr = GlobalRef(new Cell[Int](0));  
try {  
 finish at (Place(1)) async {  
 finish at (Place(0)) async {  
 gr()(10); // A  
 }  
 }!

} catch (e:MultipleExceptions) { }  
gr()(3); // B  
assert gr()() != 10;  
!

A happens before B, even if place 1 dies.

Without this property, avoiding race conditions would be very hard.

But guaranteeing it is non-trivial, requires more runtime machinery.

Waits-for
graph

Implied
synchronization

orphan

© 2009 IBM Corporation

HBI – Subtleties
Relationship between at / finish and orphans

Orphaned activities are adopted by the next enclosing synchronization point.

at (Place(1)) { finish async S } Q // S happens before Q!

finish { at (Place(1)) { async finish async S } Q } // S concurrent with Q!

!

Exceptions

Adoption does not propagate exceptions:
at (Place(1)) {!

 try {!

 finish at (Place(0)) async { throw e; }!

 } catch (e:Exception) { }!

}!

// e should never appear here!

18

© 2009 IBM Corporation 19

TX10
object id global object id

exception

error propagation !
and handling

Semantics of (Resilient) X10 [ECOOP 2014]
S.Crafa, D.Cunningham, V.Saraswat, A.Shinnar, O.Tardieu

Values v ::= o | o$p | E | DPE

Expressions e ::= v | x | e.f | {f :e, . . . , f :e} | globalref e | valof e

Statements s ::= skip; | throw v | valx = e s | e.f = e; | {s t}

at(p)valx = e in s | async s | finish s | try s catch t

at(p) s | async s | finishµ s

Configurations k ::= hs, gi | g

Local heap h ::= ; | h · [o 7! (f̃i : ṽi)]Global heap g ::= ; | g · [p 7! h]

© 2009 IBM Corporation 20

Semantics of (Resilient) X10
✤ Small-step transition system, mechanised in Coq!

✤ non in ChemicalAM style (better fits the centralised view of the distributed
program)

hs, gi E⌦�!p hs0, g0i | g0hs, gi E⇥�!p hs0, g0i | g0hs, gi �!p hs0, g0i | g0

Async failures arise in parallel threads!
and are caught by the inner finish waiting for their termination!

finish {async throw E async s2}

Synch failures lead to the failure of any sync continuation!
leaving async (remote) running code free to terminate!

{async at(p)s1 throw E s2}

Proved

in Coq

Proved

in Coq

© 2009 IBM Corporation 21

Semantics of (Resilient) X10
✤ Small-step transition system, mechanised in Coq!

✤ non in ChemicalAM style (better fits the centralised view of the distributed
program)

hs, gi E⌦�!p hs0, g0i | g0hs, gi E⇥�!p hs0, g0i | g0hs, gi �!p hs0, g0i | g0

Proved

in Coq Absence of stuck states !

(the proof can be run, yielding an interpreter for TX10)

© 2009 IBM Corporation 22

Semantics of Resilient X10

smoothly scales to node failure, with!
✤ global heap is a partial map: dom(g) collects non failed places!
✤ executing a statement at failed place results in a DPE!
✤ place shift at failed place results in a DPE!
✤ remote exceptions flow back at the remaining finish masked as DPE

p 2 dom(g)

hs, gi �!p hs, g \ {(p, g(p)}i

(Place Failure)
p /2 dom(g)

hskip, gi
DPE⌦
���!p g

hat(p) s, gi
DPE⌦
���!q g

hasync s, gi
DPE⌦
���!p g

contextual rules !
modified accordingly

© 2009 IBM Corporation 23

Semantics of Resilient X10
✤ Happens Before Invariance!

✤ failure of place q does not alter the happens before relationship
between statement instances at places other than q

at(0) { at(p) finish at(q) async s1 s2}

at(0) finish { at(p){at(q) async s1} s2}

s2 runs at 0 after s1

s2 runs at 0 in parallel with s1

same behaviour!p fails while s1 !
is running at q

© 2009 IBM Corporation 24

Semantics of Resilient X10
✤ Happens Before Invariance!

✤ failure of place q does not alter the happens before relationship
between statement instances at places other than q

at(0) { at(p) finish at(q) async s1 s2}

at(0) finish { at(p){at(q) async s1} s2}

throws v

flows at place 0 while s2 is running

 flows at place 0 discarding s1DPE⌦

v⇥

© 2009 IBM Corporation

Conclusions

Resilient X10

§  A novel point in the design space

§  Avoid sacrificing performance

§  Re-use exception semantics

§  HBI principle ensures that transitive synchronization is preserved after node failure

§  Ensure no surprises for the programmer

Implemented, tested at scale, released (X10 2.4.1)

§  Implemented ‘finish’ 3 ways, microbenchmarked

§  Implemented 3 apps that handle failure in different ways
– K-Means (decimation)
– Sparse Matrix * Dense Vector (reload & replay)
– Stencil (checkpointing)

§  Apps are extended from non-resilient versions to handle DeadPlaceException

§  Performance close to existing X10, but resilient to a few node failures

25

MPI
Existing X10
(fast)

Hadoop
Checkpoint & Restart

X10-FT
(slow)

Resilient X10 (fast)

Non-resilient / manual Transparent fault tolerance Failure awareness

© 2009 IBM Corporation

Questions?

26

Questions?

© 2009 IBM Corporation

Special treatment of place 0

§  Activities are rooted at the ‘main’ activity at place zero.

§  If place zero dies, everything dies.

§  The programmer can assume place 0 is immortal.

§  MTBF of n-node system = MTBF of 1-node system

§  Having an immortal place 0 is good for programmer productivity
– Can orchestrate at place 0 (e.g. deal work)
– Can do (trivial) reductions at place 0
– Divide & conquer expressed naturally
– Can do final result processing / user interface

§  However…
– Must ensure use of place 0 does not become a bottleneck, at scale

27

A

A A

A A

© 2009 IBM Corporation

Papers

§ More applications!

§  “Elastic” X10
– Expand into new hardware
– Allow new hardware to replace failed hardware

§ Tolerate failure of place 0
– Checkpoint the heap at place 0? Slow place 0, use only for orchestration
– Or, just don’t have a rooted activity model

28

Future Work

§ PPoPP 2014 “Resilient X10: Efficient failure-Aware Programming”

§ ECOOP 2014 “Semantics of (Resilient) X10”

© 2009 IBM Corporation

Implementation: X10 Architectural Overview

§  async { … }

§  finish { … }

§  at (p) { … }

29

X10 application

§  at (p) async { … }

§  here

§  launching processes

§  OS threads

§  Serialization

Runtime stack:
Key:
Java

X10 runtime

C++ runtime
Java runtime
JNI wrapper

X10RT (network layer)

… MPI PAMI
Sockets

C++
X10

© 2009 IBM Corporation

Implementing Resilient X10 (X10RT)

Focus on sockets backend

§  We have complete control

§  Handle TCP timeouts / connection resets gracefully

§  Communicate failures up the stack

§  Abort on timeout during start-up phase

Changes to X10RT API:

Simple c++ code to send an asynchronous message and wait for a reply (via X10RT API):

30

x10rt_send_msg(p, msgid, buf);
while (!got_reply) {
 x10rt_probe();
}

int num_dead = x10rt_ndead();
x10rt_send_msg(p, msgid, buf);
while (!got_reply) {
 int now_dead = x10rt_ndead();
 if (now_dead != num_dead) {
 num_dead = now_dead;
 // account for failure
 break;
 }
 x10rt_probe();
}

becomes

© 2009 IBM Corporation

Implementing Resilient X10 (Finish Counters Abstraction)
The implementation reduces ‘at’ to a special case of ‘finish’.

Abstractly, finish is a set of counters

Simplified illustration:

31

finish {
 ...
}

async {
 ...
}

0 1 0 0

0 0 0 1

2 0 0 0

0 0 0 0

2 8 3 4

transit live val v = new FinishCounters();
 ...
f.wait(); // may throw MultipleExceptions

f.begin(...); (); // may communicate
 ...
f.end(...) // may communicate

to
place

from place place

Counters are used to

§  Wait for termination

§  Throw DeadPlaceException

© 2009 IBM Corporation

3 Possible Finish Implementations

Finish counters need to survive failure of place holding FinishCounters object…

§  Store all finish state at place zero.
– Simple
– Makes use of ‘immortal’ place zero.
– No problem: If finishes are logically at place zero in the code.
– Otherwise: Bottle neck at place zero.

§  Store all finish state in ZooKeeper
– From Hadoop project
– External paxos group of processes
– Lightweight resilient store
– Still too much overhead (details in paper)

§  Distributed resilient finish.
– Finish state is replicated at one other node.
– Execution aborted if both nodes die.
– Best all round performance
– No bottle neck at place zero

32

© 2009 IBM Corporation

Finish Micro-benchmark results

33

© 2009 IBM Corporation

Application – K-Means (Lloyd’s algorithm)
Resilient X10 Review

Machine learning / analytics kernel.
Given N (a large number) of points in 4d space (dimensionality arbitrary)
Find the k clusters in 4d space that approximate points’ distribution

^ N=11, k=2
• Each cluster’s position is iteratively refined by averaging the position of the set of points for
whom that cluster is the closest.
• Very dense computational kernel (assuming large N).
• Embarrassingly parallel, easy to distribute.
• Points data can be larger than single node RAM.
• Points can be split across nodes, partial averages computed at each node and aggregated at
place 0.
• Refined clusters then broadcast to all places for next iteration.

Resiliency is achieved via decimation
• The algorithm will still converge to an approximate result if only most of the points are used.
• If a place dies, we simply proceed without its data and resources.
• Error bounds on this technique explored in Rinard06

Performance is within 90% of non-resilient X10

© 2009 IBM Corporation

Application – Iterative Sparse Matrix * Dense Vector
Resilient X10 Review

Kernel found in a number of algorithms, e.g. GNMF, Page Rank, …
An N*N sparse (0.1%) matrix, G, multiplied by a 1xN dense vector V
Resulting vector used as V in the next iteration.
Matrix block size is 1000x1000, matrix is double precision

G distributed into row blocks. Every place starts with entire V, computes fragment of V’.
Every place communicates fragments of V to place 0 to be aggregated.
New V broadcast from place 0 for next iteration (G is never modified).

Code is memory-bound, amount of actual computation quite low
Problem is the size of the data – does not fit in node.
G is loaded at application start, kept in RAM between iterations.

Resiliency is achieved by replaying lost work:
• Place death triggers other places to take over lost work assignment.
• Places load the extra G blocks they need from disk upon failure

100x faster than Hadoop
Resilient X10 ~ same speed as existing X10

G V V’ =

© 2009 IBM Corporation

Application – Heat Transfer
Resilient X10 Review

Demonstration of a 2D stencil algorithm with simple kernel
An N*N grid of doubles
Stencil function is a simple average of 4 nearest neighbors

Each iteration updates the entire grid.
Dense computational benchmark
Distributed by spatial partitioning of the grid.
Communication of partition outline areas required, each iteration.

Resiliency implemented via checkpointing.
Failure triggers a reassignment of work, and global replay from previous checkpoint.
Checkpoints stored in an in-memory resilient store, implemented in X10

Performance can be controlled by checkpoint frequency.
If no checkpoints, performance is the same as existing X10

© 2009 IBM Corporation 37

Equational theory for (Resilient) X10

equivalent configurations when hs, gi ⇠= ht, gi

✤ transition steps are weakly bi-simulated!

✤ under any modification of the shared heap by current activities
(object field update, object creation, place failure)

hs, gi R ht, gi whenever

1. `isSync s i↵ `isSync t

2. 8p,8� environment move

if hs,�(g)i ��!p hs0, g0i then 9t0. ht, �(g)i �=)p ht0, g0i

with hs0, g0i R ht0, g0i and viceversa

Bisimulation whose Bisimilarity is a congruence

models the update of g:
dom(�(g)) = dom(g) and

8p2dom(g) dom(g(p)) ✓ dom(�(g)(p))

© 2009 IBM Corporation 38

R

Equational theory for (Resilient) X10

{{s t} u} ⇠= {s {t u}}

` isAsync s try {s t} catchu ⇠= {try s catchu try t catchu}

at(p){s t} ⇠= {at(p)s at(p)t}

at(p)at(q)s ⇠= at(q)s

async at(p)s ⇠= at(p) async s

finish {s t} ⇠= finish s finish t

finish {s async t} ⇠= finish {s t}

finish at(p) s ⇠= at(p) finish s

if s throws a sync exc.
and home is failed,
then l.h.s. throws a
masked DPEx while
r.h.s. re-throws vx
since synch exc are
not masked by DPE

R

R

R

© 2009 IBM Corporation 39

�=✏, v⇥ h{s t}, gi ��!p h{s0 t}, g0i | ht, g0i

� = v⌦ h{s t}, gi ��!p hs0, g0i | g0

hs, gi ��!p hs0, g0i | g0

` isAsync t hs, gi ��!p hs0, g0i | g0

h{t s}, gi ��!p h{t s0}, g0i | ht, g0i

(Par Left)

(Par Right)

(v0, g0) = copy(v, q, g)

hat(q)valx = v in s, gi �!
p

hat(q){s[v
0
/

x

] skip}, g0i

(Place Shift)

hs, gi ��!q hs0, g0i | g0

hat(q) s, gi ��!p hat(q) s0, g0i | g0

(At)

© 2009 IBM Corporation 40

hasync s, gi �!p hasync s, gi

(Spawn)

hs, gi ��!p hs0, g0i | g0

� = ✏ hasync s, gi ��!p hasync s0, g0i | g0

�=v⇥, v⌦ hasync s, gi
v⇥

��!p hasync s0, g0i | g0

(Async)

hs, gi ��!p hs0, g0i

hfinishµ s, gi �!p hfinishµ[� s0, g0i

(Finish)

hfinishµ s, gi �0
�!p g0

hs, gi ��!p g0 �0 = E⌦ if �[µ6=; else ✏

(End Finish)

© 2009 IBM Corporation 41

(Exception)

hs, gi ��!p hs0, g0i | g0
(Try)

(Skip)

�=✏, v⇥ htry s catch t, gi ��!p htry s0 catch t, g0i | g0

�=v⌦ htry s catch t, gi �!p h{s0 t}, g0i | ht, g0i

hthrow v, gi v⌦�!p g

hskip, gi �!p g Plus rules for expression evaluation

