
Analysing Program Analyses
A Journey in (In)Completeness

ETH Zürich

Roberto Giacobazzi

« An Informal Overview of
Abstract Interpretation »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Code

ⓒ Cousot

« An Informal Overview of
Abstract Interpretation »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

ⓒ Cousot

Analysis

Untrusted

Bug detection requires precision

Analysis

A different
viewpoint

« An Informal Overview of
Abstract Interpretation »

Patrick Cousot
Jerome C. Hunsaker Visiting Professor
Massachusetts Institute of Technology

Department of Aeronautics and Astronautics
cousot mit edu

www.mit.edu/~cousot

Course 16.399: “Abstract interpretation”
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 1 — ľ P. Cousot, 2005

What is static analysis
by abstract interpretation?

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 2 — ľ P. Cousot, 2005

Example of static analysis (input){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Example of static analysis (output){n0>=0}
n := n0;

{n0=n,n0>=0}
i := n;

{n0=i,n0=n,n0>=0}
while (i <> 0) do

{n0=n,i>=1,n0>=i}
j := 0;

{n0=n,j=0,i>=1,n0>=i}
while (j <> i) do

{n0=n,j>=0,i>=j+1,n0>=i}
j := j + 1

{n0=n,j>=1,i>=j,n0>=i}
od;

{n0=n,i=j,i>=1,n0>=i}
i := i - 1

{i+1=j,n0=n,i>=0,n0>=i+1}
od

{n0=n,i=0,n0>=0}

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 3 — ľ P. Cousot, 2005

Obfuscation

Obfuscation

Obfuscation

Security
(White-Box Crypto Assumption)

Alice

Trusted

Man At The End

Untrusted

Sa
fe

ty
 &

 S
ec

ur
ity

Low

High

Analysis Precision High

Attack

Defence

Code Debugging

Sa
fe

ty
 &

 S
ec

ur
ity

Low

High

Analysis Precision High

Attack

Defence

Code Protection

Towards Big Code

Big
Code

Di
ve

rs
ity

Dependecy

Dimension

StaticDynamic

Source

Transformed &
Documented

Mobile
Code

Executable

Perfect (virtual black-box) obfuscation is impossible

Towards Big Code

Big
Code

Di
ve

rs
ity

Dependecy

Dimension

StaticDynamic

Source

Transformed &
Documented

Mobile
Code

Executable

More and more code is mobile (e.g., malware)

Towards Big Code

Big
Code

Di
ve

rs
ity

Dependecy

Dimension

StaticDynamic

Source

Transformed &
Documented

Mobile
Code

Executable

fixed programs +
transient data

fixed (big) data +
transient programs

What does it mean being
Obscure?

How an analysis performs
on code?

Obscurity is Incompleteness

P : x := a ⇤ b

* + -

+ + -

− - +

0-

0

0+

?

Sign([[P]]) = [[P]]Sign

?

{�5, 2, 4}

{2, 4}{�4,�2}
{0}

{�4,�2, 0} . . .
. . .
.

. . .
. . .

↵ = Sign

Z}(Z)

Complete!

Obscurity is IncompletenessOBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

x = 0;

P : x = a ∗ b −→ τ(P) : if b ≤ 0 then {a =−a; b =−b};

while b ̸= 0 {x = a+ x; b = b− 1}

➪
Sign is complete for P :

✔ !P"Sign = λa,b. Sign(a ∗ b)

➪
Sign is incomplete for τ(P):

✔ !τ(P)"Sign = λa,b.

{
0 if a = 0∨ b = 0

? = ℘(Z) otherwise

➪
Is there any way to get τ(P) systematically out of P?

c⃝Giaco – Cagliari 2012 – p.30/50

+ + -

+ + Z

− Z -

? = Z

Incomplete!

GENERALIZING SIGN: DATA-OBFUSCATION
We consider variable splitting:

v ∈ Var(P) is split into ⟨v1, v2⟩ such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x),max(x)]

P :

[

v = 0;

while v < N {v ++} !P"ι = λv . [0,N]

c⃝Giaco – Rennes 2012 – p.35/63

Data Obfuscation

GENERALIZING SIGN: DATA-OBFUSCATION
We consider variable splitting:

v ∈ Var(P) is split into ⟨v1, v2⟩ such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x),max(x)]

τ(P) :

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1 = 0;

v2 = 0;

while 10 · v1 + v2 < N {

v1 = v1 + (v2 + 1)÷ 10

v2 = (v2 + 1) mod 10

};

c : v = 10 · v1 + v2

!τ(P); c"ι =

λv . 10⊙ [0, N⊖[0,9]
10]⊕ [0, 9] =

λv . [0,N]⊕ [0, 9] =

λv . [0,N+9]

Obfuscation induces errors

c⃝Giaco – Rennes 2012 – p.35/63

Data Obfuscation

Dynamic Obfuscation

Loc

N input

output

$str

$str

N N+1N N+1

[[P]]

[[P]]int

Figure 1. Relation between dynamic code generation and analysis.

negatives [64]. There are no effective general purpose sound static
analysers for self-modifying code. A huge effort was devoted in-
stead to bring static types to object-oriented dynamic languages
(e.g., see [2] for a recent account in Ruby) but with a different per-
spective: Bring into dynamic languages the benefits of static ones.
Our approach is different and complementary: We want to bring
into static analysis the possibility of handling dynamically mutat-
ing code structures. Consider the following dynamically obfuscated
PHP program P . For any natural number N , P outputs the sum in
$w of the first N numbers, i.e., P implements �N. (N

2
+ N)/2,

by building, in a string variable $str, a program as a sequence of
N while-loops (loc from 4 to 6), each one computing a number
between 1 and N .

<?php
1: $w = 0; $n=1;
2: while ($n<=N) {
3: $z = rand(2, 10);
4: $str = ’$x=0;$y=0;
5: while (’.$z.’*$x+$y+1<=’.$n.’) {
6: $x=intval((’.$z.’*$x+$y+1)/’.$z.’);
7: $y=($y+1)%’.$z.’;};
8: $w=$w+’.$z.’*$x+$y;’. $str; ++$n;};
9: eval($str.’;’); echo $w. "\n";

?>

The n-th loop in $str, with n < N , instead of counting from 1 to
n it decomposes the numbers from 1 to n into quotient and modulo
with respect to a random number $z, therefore implementing a
simple dynamic data-obfuscation [29]: w 7! hx, yi such that x =

w ÷ z, y = w mod z, and w = zx + y. As observed in [34],
this obfuscation makes interval analysis int = {[a, b] | a 
b 2 Z [{+1,�1}} increasingly imprecise as n grows. This
because the non-relational analysis of intervals of each while-loop
is unable to bridge the intervals independently obtained for $x

and $y, therefore generating at the end of the n-th while-loop in
$str for $z ⇤ $x+ $y, instead of [n, n], a sound approximation
[n, n+ 9]. Therefore the interval analysis of the output variable $w
produces the interval [(N2

+N)/2, (N

2
+19N)/2] with an error

which grows as N grows. Figure 1 shows the relation between the
loc-size of the dynamically created code in $str and the abstract
interval semantics of P .

Our Solution. The challenge is to extract a sound representation
of all possible code fragments dynamically generated and use this
representation for statically analysing programs employing reflec-
tion. We develop an abstract interpretation based model for the
analysis of imperative dynamic languages with reflection. The idea
is to consider the program, as well as its computed state, as a muta-
ble structure. This requires the design of adequate abstract domains
which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.

As semantic model we specialise the notion of phase semantics,
introduced in [20, 21] for the static extraction of code signatures
from x86 metamorphic malware, to the case of dynamic script
languages. The phase semantics is a partition of possible execution
traces of a self-modifying program into phases, each collecting the
computations not yet affecting the code structure and performed
by a particular code variant of the source program. Each phase
represents a code snapshot, while the sequence of states within a
given phase represents the behaviour of that particular snapshot.
In malware detection the extraction of properties of code changes
provides a metamorphic signature i.e., an approximation of the
properties of code evolution. In high-level dynamic programming
languages we are not interested in generating signatures but rather
to statically extract a description of all possible code mutations in
order to make the analysis insensitive to dynamic code mutation.

The analysis of code mutation is performed by abstract inter-
pretation of string operations on an abstract domain of approximate
programs. This domain is specified as the domain of (abstract) sym-
bolic finite automata equipped with operations specified as sym-
bolic transducers. Symbolic finite automata (SFA), introduced in
[23, 58], allow the specification of regular languages over an infi-
nite alphabet, such as the alphabet of instructions of a programming
language. Abstraction [22] is necessary here in order to represent,
by a single abstract symbolic finite automaton, the potentially infi-
nite dynamic behaviour of strings as built at run-time and used as
executable code.

Standard program analysis and string analysis by abstract SFA
are therefore made in parallel. Whenever reflection is invoked, the
abstract interpreter extracts an approximate program from the re-
sult of the string analysis and activates itself on the extracted code.
For code extraction we mean the synthesis of program fragments
that fit the specification generated by the abstract interpreter. For
approximate program we mean a piece of code whose semantics
contains the semantics of the code that is dynamically generated at
run-time. The result is a tower of abstract interpreters that mimics
in abstract interpretation a classical semantic model and implemen-
tation of reflection and reification as introduced in Smith [56], see
[24, 61] for details.

The static approximation of the dynamic code evolution may
of course inject false alarms in the resulting analysis due to the
presence of spurious code instructions, i.e., instructions that are not
dynamically generated by the program but are the result of its static
approximation. This is indeed precisely what happens in any suc-
cessful dynamic program obfuscation, as in the case of program P

above, where obfuscation means here making an analysis impre-
cise (cf. [34]). This phenomenon is rooted into the deep interplay
between program structures and their abstract interpretation [13],
which is precisely captured by the notion of completeness [38].
Completeness holds when the approximation of the semantics of
the program (or of some of its fragments) does not loose preci-
sion when acting on approximate data. A change in the program,
even by semantics-preserving transformations, may induce a loss
of completeness/precision in the abstract interpretation. This may
happen due to code self-modification or due to a poor approxima-
tion of code mutation, including spurious mutations which are not
computed at run-time. The possibility of increasing or reducing the
precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
code obfuscation [19, 34, 35], and in software watermarking [17].

We introduce the notion of sound and complete transduction of
a SFA. If a SFA A is the abstraction of a language L , e.g., the code
that is dynamically built by the program, then completeness holds
in transduction when the approximation of a transduction of A is
equivalent to the approximation of a transduction of L . We prove
that a similar characterisation of completeness as the one proved

Loc

N input

output

$str

$str

N N+1N N+1

[[P]]

[[P]]int

Figure 1. Relation between dynamic code generation and analysis.

negatives [64]. There are no effective general purpose sound static
analysers for self-modifying code. A huge effort was devoted in-
stead to bring static types to object-oriented dynamic languages
(e.g., see [2] for a recent account in Ruby) but with a different per-
spective: Bring into dynamic languages the benefits of static ones.
Our approach is different and complementary: We want to bring
into static analysis the possibility of handling dynamically mutat-
ing code structures. Consider the following dynamically obfuscated
PHP program P . For any natural number N , P outputs the sum in
$w of the first N numbers, i.e., P implements �N. (N

2
+ N)/2,

by building, in a string variable $str, a program as a sequence of
N while-loops (loc from 4 to 6), each one computing a number
between 1 and N .

<?php
1: $w = 0; $n=1;
2: while ($n<=N) {
3: $z = rand(2, 10);
4: $str = ’$x=0;$y=0;
5: while (’.$z.’*$x+$y+1<=’.$n.’) {
6: $x=intval((’.$z.’*$x+$y+1)/’.$z.’);
7: $y=($y+1)%’.$z.’;};
8: $w=$w+’.$z.’*$x+$y;’. $str; ++$n;};
9: eval($str.’;’); echo $w. "\n";

?>

The n-th loop in $str, with n < N , instead of counting from 1 to
n it decomposes the numbers from 1 to n into quotient and modulo
with respect to a random number $z, therefore implementing a
simple dynamic data-obfuscation [29]: w 7! hx, yi such that x =

w ÷ z, y = w mod z, and w = zx + y. As observed in [34],
this obfuscation makes interval analysis int = {[a, b] | a 
b 2 Z [{+1,�1}} increasingly imprecise as n grows. This
because the non-relational analysis of intervals of each while-loop
is unable to bridge the intervals independently obtained for $x

and $y, therefore generating at the end of the n-th while-loop in
$str for $z ⇤ $x+ $y, instead of [n, n], a sound approximation
[n, n+ 9]. Therefore the interval analysis of the output variable $w
produces the interval [(N2

+N)/2, (N

2
+19N)/2] with an error

which grows as N grows. Figure 1 shows the relation between the
loc-size of the dynamically created code in $str and the abstract
interval semantics of P .

Our Solution. The challenge is to extract a sound representation
of all possible code fragments dynamically generated and use this
representation for statically analysing programs employing reflec-
tion. We develop an abstract interpretation based model for the
analysis of imperative dynamic languages with reflection. The idea
is to consider the program, as well as its computed state, as a muta-
ble structure. This requires the design of adequate abstract domains
which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.

As semantic model we specialise the notion of phase semantics,
introduced in [20, 21] for the static extraction of code signatures
from x86 metamorphic malware, to the case of dynamic script
languages. The phase semantics is a partition of possible execution
traces of a self-modifying program into phases, each collecting the
computations not yet affecting the code structure and performed
by a particular code variant of the source program. Each phase
represents a code snapshot, while the sequence of states within a
given phase represents the behaviour of that particular snapshot.
In malware detection the extraction of properties of code changes
provides a metamorphic signature i.e., an approximation of the
properties of code evolution. In high-level dynamic programming
languages we are not interested in generating signatures but rather
to statically extract a description of all possible code mutations in
order to make the analysis insensitive to dynamic code mutation.

The analysis of code mutation is performed by abstract inter-
pretation of string operations on an abstract domain of approximate
programs. This domain is specified as the domain of (abstract) sym-
bolic finite automata equipped with operations specified as sym-
bolic transducers. Symbolic finite automata (SFA), introduced in
[23, 58], allow the specification of regular languages over an infi-
nite alphabet, such as the alphabet of instructions of a programming
language. Abstraction [22] is necessary here in order to represent,
by a single abstract symbolic finite automaton, the potentially infi-
nite dynamic behaviour of strings as built at run-time and used as
executable code.

Standard program analysis and string analysis by abstract SFA
are therefore made in parallel. Whenever reflection is invoked, the
abstract interpreter extracts an approximate program from the re-
sult of the string analysis and activates itself on the extracted code.
For code extraction we mean the synthesis of program fragments
that fit the specification generated by the abstract interpreter. For
approximate program we mean a piece of code whose semantics
contains the semantics of the code that is dynamically generated at
run-time. The result is a tower of abstract interpreters that mimics
in abstract interpretation a classical semantic model and implemen-
tation of reflection and reification as introduced in Smith [56], see
[24, 61] for details.

The static approximation of the dynamic code evolution may
of course inject false alarms in the resulting analysis due to the
presence of spurious code instructions, i.e., instructions that are not
dynamically generated by the program but are the result of its static
approximation. This is indeed precisely what happens in any suc-
cessful dynamic program obfuscation, as in the case of program P

above, where obfuscation means here making an analysis impre-
cise (cf. [34]). This phenomenon is rooted into the deep interplay
between program structures and their abstract interpretation [13],
which is precisely captured by the notion of completeness [38].
Completeness holds when the approximation of the semantics of
the program (or of some of its fragments) does not loose preci-
sion when acting on approximate data. A change in the program,
even by semantics-preserving transformations, may induce a loss
of completeness/precision in the abstract interpretation. This may
happen due to code self-modification or due to a poor approxima-
tion of code mutation, including spurious mutations which are not
computed at run-time. The possibility of increasing or reducing the
precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
code obfuscation [19, 34, 35], and in software watermarking [17].

We introduce the notion of sound and complete transduction of
a SFA. If a SFA A is the abstraction of a language L , e.g., the code
that is dynamically built by the program, then completeness holds
in transduction when the approximation of a transduction of A is
equivalent to the approximation of a transduction of L . We prove
that a similar characterisation of completeness as the one proved

Loc

N input

output

$str

$str

N N+1N N+1

[[P]]

[[P]]int

Figure 1. Relation between dynamic code generation and analysis.

negatives [64]. There are no effective general purpose sound static
analysers for self-modifying code. A huge effort was devoted in-
stead to bring static types to object-oriented dynamic languages
(e.g., see [2] for a recent account in Ruby) but with a different per-
spective: Bring into dynamic languages the benefits of static ones.
Our approach is different and complementary: We want to bring
into static analysis the possibility of handling dynamically mutat-
ing code structures. Consider the following dynamically obfuscated
PHP program P . For any natural number N , P outputs the sum in
$w of the first N numbers, i.e., P implements �N. (N

2
+ N)/2,

by building, in a string variable $str, a program as a sequence of
N while-loops (loc from 4 to 6), each one computing a number
between 1 and N .

<?php
1: $w = 0; $n=1;
2: while ($n<=N) {
3: $z = rand(2, 10);
4: $str = ’$x=0;$y=0;
5: while (’.$z.’*$x+$y+1<=’.$n.’) {
6: $x=intval((’.$z.’*$x+$y+1)/’.$z.’);
7: $y=($y+1)%’.$z.’;};
8: $w=$w+’.$z.’*$x+$y;’. $str; ++$n;};
9: eval($str.’;’); echo $w. "\n";

?>

The n-th loop in $str, with n < N , instead of counting from 1 to
n it decomposes the numbers from 1 to n into quotient and modulo
with respect to a random number $z, therefore implementing a
simple dynamic data-obfuscation [29]: w 7! hx, yi such that x =

w ÷ z, y = w mod z, and w = zx + y. As observed in [34],
this obfuscation makes interval analysis int = {[a, b] | a 
b 2 Z [{+1,�1}} increasingly imprecise as n grows. This
because the non-relational analysis of intervals of each while-loop
is unable to bridge the intervals independently obtained for $x

and $y, therefore generating at the end of the n-th while-loop in
$str for $z ⇤ $x+ $y, instead of [n, n], a sound approximation
[n, n+ 9]. Therefore the interval analysis of the output variable $w
produces the interval [(N2

+N)/2, (N

2
+19N)/2] with an error

which grows as N grows. Figure 1 shows the relation between the
loc-size of the dynamically created code in $str and the abstract
interval semantics of P .

Our Solution. The challenge is to extract a sound representation
of all possible code fragments dynamically generated and use this
representation for statically analysing programs employing reflec-
tion. We develop an abstract interpretation based model for the
analysis of imperative dynamic languages with reflection. The idea
is to consider the program, as well as its computed state, as a muta-
ble structure. This requires the design of adequate abstract domains
which combine string analysis with the intended program analysis
concerning the store variables. The first is intended to extract the
(invariant) structure of the code mutation at a given program point,
e.g., when reflection is invoked. The second instead is intended to
extract the property of the computed store concerning the variables
of interest of our analysis, as usual in abstract interpretation.

As semantic model we specialise the notion of phase semantics,
introduced in [20, 21] for the static extraction of code signatures
from x86 metamorphic malware, to the case of dynamic script
languages. The phase semantics is a partition of possible execution
traces of a self-modifying program into phases, each collecting the
computations not yet affecting the code structure and performed
by a particular code variant of the source program. Each phase
represents a code snapshot, while the sequence of states within a
given phase represents the behaviour of that particular snapshot.
In malware detection the extraction of properties of code changes
provides a metamorphic signature i.e., an approximation of the
properties of code evolution. In high-level dynamic programming
languages we are not interested in generating signatures but rather
to statically extract a description of all possible code mutations in
order to make the analysis insensitive to dynamic code mutation.

The analysis of code mutation is performed by abstract inter-
pretation of string operations on an abstract domain of approximate
programs. This domain is specified as the domain of (abstract) sym-
bolic finite automata equipped with operations specified as sym-
bolic transducers. Symbolic finite automata (SFA), introduced in
[23, 58], allow the specification of regular languages over an infi-
nite alphabet, such as the alphabet of instructions of a programming
language. Abstraction [22] is necessary here in order to represent,
by a single abstract symbolic finite automaton, the potentially infi-
nite dynamic behaviour of strings as built at run-time and used as
executable code.

Standard program analysis and string analysis by abstract SFA
are therefore made in parallel. Whenever reflection is invoked, the
abstract interpreter extracts an approximate program from the re-
sult of the string analysis and activates itself on the extracted code.
For code extraction we mean the synthesis of program fragments
that fit the specification generated by the abstract interpreter. For
approximate program we mean a piece of code whose semantics
contains the semantics of the code that is dynamically generated at
run-time. The result is a tower of abstract interpreters that mimics
in abstract interpretation a classical semantic model and implemen-
tation of reflection and reification as introduced in Smith [56], see
[24, 61] for details.

The static approximation of the dynamic code evolution may
of course inject false alarms in the resulting analysis due to the
presence of spurious code instructions, i.e., instructions that are not
dynamically generated by the program but are the result of its static
approximation. This is indeed precisely what happens in any suc-
cessful dynamic program obfuscation, as in the case of program P

above, where obfuscation means here making an analysis impre-
cise (cf. [34]). This phenomenon is rooted into the deep interplay
between program structures and their abstract interpretation [13],
which is precisely captured by the notion of completeness [38].
Completeness holds when the approximation of the semantics of
the program (or of some of its fragments) does not loose preci-
sion when acting on approximate data. A change in the program,
even by semantics-preserving transformations, may induce a loss
of completeness/precision in the abstract interpretation. This may
happen due to code self-modification or due to a poor approxima-
tion of code mutation, including spurious mutations which are not
computed at run-time. The possibility of increasing or reducing the
precision of an abstract interpretation by acting on code has been
recently investigated in the context of program analysis [36, 47],
code obfuscation [19, 34, 35], and in software watermarking [17].

We introduce the notion of sound and complete transduction of
a SFA. If a SFA A is the abstraction of a language L , e.g., the code
that is dynamically built by the program, then completeness holds
in transduction when the approximation of a transduction of A is
equivalent to the approximation of a transduction of L . We prove
that a similar characterisation of completeness as the one proved

Obscurity is Incompleteness!
The attacker is an abstract interpreter

Failing precision means failing completeness

Obfuscating is making abstract interpreters incomplete!!

OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

➪
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

➪
A program transformation τ : P → P such that !P" = !τ(P)".

➪
ρ B-complete for !·" if ρ(!P") = !P"ρ

τ obfuscates P if !P"ρ ❁ !τ(P)"ρ

!P"ρ ❁ !τ(P)"ρ ⇐⇒ ρ(!τ(P)") ❁ !τ(P)"ρ

c⃝Giaco – Cagliari 2012 – p.30/50

OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

➪
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

➪
A program transformation τ : P → P such that !P" = !τ(P)".

➪
ρ B-complete for !·" if ρ(!P") = !P"ρ

τ obfuscates P if !P"ρ ❁ !τ(P)"ρ

!P"ρ ❁ !τ(P)"ρ ⇐⇒ ρ(!τ(P)") ❁ !τ(P)"ρ

c⃝Giaco – Cagliari 2012 – p.30/50

OBSCURITY AS INCOMPLETENESS
Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

➪
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

➪
A program transformation τ : P → P such that !P" = !τ(P)".

➪
ρ B-complete for !·" if ρ(!P") = !P"ρ

τ obfuscates P if !P"ρ ❁ !τ(P)"ρ

!P"ρ ❁ !τ(P)"ρ ⇐⇒ ρ(!τ(P)") ❁ !τ(P)"ρ

c⃝Giaco – Cagliari 2012 – p.30/50

Giacobazzi SEFM 2008 (Invited)

a compiler a successful attack to P

[[P]]⇢ = ⇢([[P]]) = ⇢([[⌧(P)]]) @ [[⌧(P)]]⇢

EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c⃝Giaco – Rennes 2012 – p.36/63
Giacobazzi et al PEPM 2012

[[P]] = [[interp]](P, d)
= [[[[spec]](interp, P)]](d)

Programming style

Algorithm

How to make code obscure

↵

EXPOLITING INCOMPLETENESS

Maximize !P"ρ incompleteness!

➪
The abstraction is the specification of the attacker

✔ Profiling: Abstract memory keeping only (partial) resource usage
✔ Tracing: Abstraction of traces (e.g., by trace compression)
✔ Slicing: Abstraction of traces (relative to variables)
✔ Monitoring: Abstraction of trace semantics ([Cousot&Cousot POPL02])
✔ Decompilation: Abstracts syntactic structures (e.g., reducible loops)
✔ Disassembly: Abstracts binary structures (e.g., recursive traversal)

➪
Each abstraction is incomplete for a concrete enough trace semantics

➪
Maximize incompleteness by code transformation: Obfuscation

➪
Exploit incompleteness for hiding information: Steganography

c⃝Giaco – Rennes 2012 – p.36/63

How to make code obscure

Giacobazzi et al PEPM 2012

[[P]] = [[interp]](P, d)
= [[[[spec]](interp, P)]](d)

Programming style

AlgorithmObf↵(P)P

↵

Can we prove that:
a static analysis α of a program P

does not raise false alarms?
or equivalently

P is not obscure for α ?

Main Question

The Model
x(t)

t

Concrete Semantics
Too complex and/or undecidable

The Model
x(t)

t

Bad State No bug!

Concrete Semantics
Too complex and/or undecidable

x(t)

t

False alarms may happen with soundness

Bad State False Alarms

False Alarms

x

f

Imprecision

>

?

Soundness

f]

↵

↵

• Analyses are designed to be sound

• False alarms are due to imprecision

↵(f(x))  f

](↵(x))

• Some analyses may be complete

• Completeness may happen!

Completeness

↵(f(x)) = f

](↵(x))

x

f

>

?

f]

↵

No Imprecision

Which analysis?

↵(f(x)) = f

](↵(x))

x

f

>

?

f]

↵

f] best correct approximation

↵(f(x)) = ↵(f(�(↵(x)))

f] = ↵ � f � � def
= f↵

No Imprecision

A property of domains

is complete

h↵, �i

Standard ways to achieve
completeness in “Small Code”

Refine
Simplify

COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

IN-COMPLETENESS: η◦f ◦ρ ≥ η◦f

c⃝Giaco – London 2012 – p.19/31

Backward
Completeness

COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

COMPLETENESS: η◦f ◦ρ = η◦f

c⃝Giaco – London 2012 – p.19/31

Backward
Completeness

Approximating the input makes
no difference with abstract output

COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making ABSTRACTIONS COMPLETE: Refining input domains
[Giacobazzi et al. JACM’00]

c⃝Giaco – London 2012 – p.19/31

Backward
Making Completeness

Giacobazzi et al, JACM2000

Approximating the input makes
no difference with abstract output

COMPLETENESS

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making ABSTRACTIONS COMPLETE: Simplifying output domains
[Giacobazzi et al. JACM’00]

c⃝Giaco – London 2012 – p.19/31

Backward
Making Completeness

Giacobazzi et al, JACM2000

Approximating the input makes
no difference with abstract output

A CLASSICAL EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

➪
A simple domain of intervals

➪
sq(X) =

{
x2

∣

∣

∣ x ∈ X
}

➪
{Z, [0,+∞], [0, 10]} is Forward but
not Backward complete

c⃝Giaco – Cagliari 2012 – p.26/50

�x.g(f(x)) and f(S) =

�

f(s)
�

� s 2 S
 ✓ T . Functions

ordered point-wise give rise to a lattice, namely f, g : L�!D are
such that f v g if for any x 2 L : f(x) 

D

g(x). We denote with
t and u the lub and glb of functions. f : L�!D on complete
lattices is additive (co-additive) if for any Y ✓ L, f(_

L

Y) =

_
D

f(Y) (f(^
L

Y) = ^
D

f(Y)). A function f is continuous
when it preserves lubs’s of chains. Co-continuity is dually defined.
For a continuous function f : lfp(f) =

V

�

x
�

� x = f(x)

=

W

n2N f
n

(?) where f0
(?) = ? and fn+1

(?) = f(fn

(?)). The
gfp is dually defined for co-continuous functions.

Abstract interpretation. It is known that abstract domains can be
equivalently specified as Galois connections or closure operators
on complete lettices (cf. [5]). Let C and A be complete lattices, a
pair of monotone functions ↵ : C�!A and � : A�!C forms a
Galois connection (GC) between C and A if for every x 2 C and
y 2 A we have ↵(x) 

A

y , x 
C

�(y). ↵ (resp. �) is the left-
adjoint (resp. right-adjoint) to � (resp. ↵) and it is additive (resp.
co-additive). Given an additive (resp. co-additive) function ↵ (resp.
�) we have a GC h↵,↵+i (resp. h��, �i) by considering its right
(resp. left) adjoint ↵+

= �x.
W{y | ↵(y)  x} (resp. ��

=

�x.
V{y | x  �(y)}). An upper closure operator (or simply a

closure) on a complete lattice hC,i is an operator � : C�!C

which is monotone, idempotent, and extensive (i.e., x  �(x)).
We denote with uco(C) the set of all closure operators on the poset
L. If h↵, �i is a GC between C and A then � � ↵ 2 uco(C).
If ↵ 2 uco(C) then h↵, idi is a GC between C and ↵(C).
In this case huco(C),v,t,u,�x.C, idi forms itself a complete
lattice [23], which is isomorphic, up to representation of abstract
elements, to the set of all possible abstractions Abs(C) of C, i.e.,
Abs(C)

⇠
=

uco(C). Because of this, in the following we will
always identify an abstract domain A 2 Abs(C) with its (unique)
associated closure operator ↵ 2 uco(C) such that ↵(C) = A.
In the following we will used both Abs(C) and uco(C) in order
to distinguish respectively the use of closures as abstract domains
and as abstraction functions. Recall that the set of fix-points A of
a closure ↵ is always a Moore family, A = M(A)

def
= {^S | S ✓

A}. Therefore ^? = > 2 A. Here the bottom element is id =

�x.x, the top is �x.>
C

and for every ↵,� 2 uco(C): ↵ is more
concrete than � iff ↵ v � iff for each y 2 C. ↵(y)  �(y) iff
�(C) ✓ ↵(C), (u

i2I

↵
i

)(x) = ^
i2I

↵
i

(x); (t
i2I

↵
i

)(x) = x
iff for each i 2 I. ↵

i

(x) = x. An abstraction ↵ 2 uco(C) is
disjunctive when ↵(C) is a join-sublattice of C, which holds iff
↵ is additive (cf. [5]). Examples of abstract domains include the
abstract domain of intervals:

Int = �X ✓ Z. [min(X),max(X)]

where:

min(X) =

⇢

x 2 X if 8y 2 X. x  y
�1 otherwise

max(X) =

⇢

x 2 X if 8y 2 X. y  x
+1 otherwise

In this case Int 2 uco(}(Z)). The non-relational lift of intervals
to n-dimensions is straightforward and it is defined in terms of a
function ext : Int(}(Z))⇥[0, n�1]�!}(Zn

) defined as follows:
if I 2 Int(}(Z)) is an interval with boundaries in Z[{�1,+1}
and ~x

r

is the projection of the vector ~x 2 Zn along the affine
subspace r of Zn of dimension 1 (i.e., a line), then we define

ext(I, r)
def
=

�

~x 2 Zn

�

� ~x
r

2 I

For i 2 [0, n � 1] we denote r
i

the i-th dimension, namely the
affine subspace given by the set r

i

=

�

~x
�

� 8j 6= i. ~x
j

= 0

. In

this case Intn 2 uco(}(Zn

)) is such that:

Intn(X) =

\

�

ext(I, r
i

)

�

� X ✓ ext(I, r
i

), 0  i  n� 1

The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j

� v
i

 c. Octagons are defined by enhancing DBMs including
also constraints of the form v

j

+ v
i

 c. Let m be a matrix having
coefficients m

i,j

2 Z [{�1,+1}. Then

Octm =

�

~x 2 Zn

�

� 8i, j. ± ~x
j

± ~x
i

 m
i,j

If X 2 }(Zn

) then:

Oct(X) =

\

�

Octm
�

� X ✓ Octm

Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f]

)

(cf. [4]). f] is complete when ↵ � f = f] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with

Submission for POPL 2015 3 2014/7/17

�x.g(f(x)) and f(S) =

�

f(s)
�

� s 2 S
 ✓ T . Functions

ordered point-wise give rise to a lattice, namely f, g : L�!D are
such that f v g if for any x 2 L : f(x) 

D

g(x). We denote with
t and u the lub and glb of functions. f : L�!D on complete
lattices is additive (co-additive) if for any Y ✓ L, f(_

L

Y) =

_
D

f(Y) (f(^
L

Y) = ^
D

f(Y)). A function f is continuous
when it preserves lubs’s of chains. Co-continuity is dually defined.
For a continuous function f : lfp(f) =

V

�

x
�

� x = f(x)

=

W

n2N f
n

(?) where f0
(?) = ? and fn+1

(?) = f(fn

(?)). The
gfp is dually defined for co-continuous functions.

Abstract interpretation. It is known that abstract domains can be
equivalently specified as Galois connections or closure operators
on complete lettices (cf. [5]). Let C and A be complete lattices, a
pair of monotone functions ↵ : C�!A and � : A�!C forms a
Galois connection (GC) between C and A if for every x 2 C and
y 2 A we have ↵(x) 

A

y , x 
C

�(y). ↵ (resp. �) is the left-
adjoint (resp. right-adjoint) to � (resp. ↵) and it is additive (resp.
co-additive). Given an additive (resp. co-additive) function ↵ (resp.
�) we have a GC h↵,↵+i (resp. h��, �i) by considering its right
(resp. left) adjoint ↵+

= �x.
W{y | ↵(y)  x} (resp. ��

=

�x.
V{y | x  �(y)}). An upper closure operator (or simply a

closure) on a complete lattice hC,i is an operator � : C�!C

which is monotone, idempotent, and extensive (i.e., x  �(x)).
We denote with uco(C) the set of all closure operators on the poset
L. If h↵, �i is a GC between C and A then � � ↵ 2 uco(C).
If ↵ 2 uco(C) then h↵, idi is a GC between C and ↵(C).
In this case huco(C),v,t,u,�x.C, idi forms itself a complete
lattice [23], which is isomorphic, up to representation of abstract
elements, to the set of all possible abstractions Abs(C) of C, i.e.,
Abs(C)

⇠
=

uco(C). Because of this, in the following we will
always identify an abstract domain A 2 Abs(C) with its (unique)
associated closure operator ↵ 2 uco(C) such that ↵(C) = A.
In the following we will used both Abs(C) and uco(C) in order
to distinguish respectively the use of closures as abstract domains
and as abstraction functions. Recall that the set of fix-points A of
a closure ↵ is always a Moore family, A = M(A)

def
= {^S | S ✓

A}. Therefore ^? = > 2 A. Here the bottom element is id =

�x.x, the top is �x.>
C

and for every ↵,� 2 uco(C): ↵ is more
concrete than � iff ↵ v � iff for each y 2 C. ↵(y)  �(y) iff
�(C) ✓ ↵(C), (u

i2I

↵
i

)(x) = ^
i2I

↵
i

(x); (t
i2I

↵
i

)(x) = x
iff for each i 2 I. ↵

i

(x) = x. An abstraction ↵ 2 uco(C) is
disjunctive when ↵(C) is a join-sublattice of C, which holds iff
↵ is additive (cf. [5]). Examples of abstract domains include the
abstract domain of intervals:

Int = �X ✓ Z. [min(X),max(X)]

where:

min(X) =

⇢

x 2 X if 8y 2 X. x  y
�1 otherwise

max(X) =

⇢

x 2 X if 8y 2 X. y  x
+1 otherwise

In this case Int 2 uco(}(Z)). The non-relational lift of intervals
to n-dimensions is straightforward and it is defined in terms of a
function ext : Int(}(Z))⇥[0, n�1]�!}(Zn

) defined as follows:
if I 2 Int(}(Z)) is an interval with boundaries in Z[{�1,+1}
and ~x

r

is the projection of the vector ~x 2 Zn along the affine
subspace r of Zn of dimension 1 (i.e., a line), then we define

ext(I, r)
def
=

�

~x 2 Zn

�

� ~x
r

2 I

For i 2 [0, n � 1] we denote r
i

the i-th dimension, namely the
affine subspace given by the set r

i

=

�

~x
�

� 8j 6= i. ~x
j

= 0

. In

this case Intn 2 uco(}(Zn

)) is such that:

Intn(X) =

\

�

ext(I, r
i

)

�

� X ✓ ext(I, r
i

), 0  i  n� 1

The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j

� v
i

 c. Octagons are defined by enhancing DBMs including
also constraints of the form v

j

+ v
i

 c. Let m be a matrix having
coefficients m

i,j

2 Z [{�1,+1}. Then

Octm =

�

~x 2 Zn

�

� 8i, j. ± ~x
j

± ~x
i

 m
i,j

If X 2 }(Zn

) then:

Oct(X) =

\

�

Octm
�

� X ✓ Octm

Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f]

)

(cf. [4]). f] is complete when ↵ � f = f] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with

Submission for POPL 2015 3 2014/7/17

Same input & output abstraction = fix-point domain refinement

↵

Making Completeness

Rf (↵)

Complete

Completeness in Abstract Domains

Core

A

Shell

Giacobazzi et al, JACM2000

We want to prove completeness

Giacobazzi et al. ACM POPL 2015

Analysis of
Programs

Analysis of
AnalysesFrom to

BackwardCompleteness of ...

↵(JbKS) = JbK↵↵(S)

↵(JP KS) = JP K↵↵(S)

↵(JaKS) = JaK↵↵(S) Arithmetic expressions

Boolean expressions

Programs

Best correct approximations
for any set of stores S

Completeness Classes for α

C(↵) def
= {P program | ↵(JP K) = JP K↵}

A(↵) def
= {a arith.exp. | ↵(JaK) = JaK↵}

B(↵) def
= {b Bool.exp. | ↵(JbK) = JbK↵}

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

Infinite

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

;

……
;

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Completeness Class

Obvious!

Non
Extensional

C(↵) def
= {P program | ↵(JP K) = JP K↵}

P complete, JP K = JQK 6) Q complete

?

+ �

�x.g(f(x)) and f(S) =

�

f(s)
�

� s 2 S
 ✓ T . Functions

ordered point-wise give rise to a lattice, namely f, g : L�!D are
such that f v g if for any x 2 L : f(x) 

D

g(x). We denote with
t and u the lub and glb of functions. f : L�!D on complete
lattices is additive (co-additive) if for any Y ✓ L, f(_

L

Y) =

_
D

f(Y) (f(^
L

Y) = ^
D

f(Y)). A function f is continuous
when it preserves lubs’s of chains. Co-continuity is dually defined.
For a continuous function f : lfp(f) =

V

�

x
�

� x = f(x)

=

W

n2N f
n

(?) where f0
(?) = ? and fn+1

(?) = f(fn

(?)). The
gfp is dually defined for co-continuous functions.

Abstract interpretation. It is known that abstract domains can be
equivalently specified as Galois connections or closure operators
on complete lettices (cf. [5]). Let C and A be complete lattices, a
pair of monotone functions ↵ : C�!A and � : A�!C forms a
Galois connection (GC) between C and A if for every x 2 C and
y 2 A we have ↵(x) 

A

y , x 
C

�(y). ↵ (resp. �) is the left-
adjoint (resp. right-adjoint) to � (resp. ↵) and it is additive (resp.
co-additive). Given an additive (resp. co-additive) function ↵ (resp.
�) we have a GC h↵,↵+i (resp. h��, �i) by considering its right
(resp. left) adjoint ↵+

= �x.
W{y | ↵(y)  x} (resp. ��

=

�x.
V{y | x  �(y)}). An upper closure operator (or simply a

closure) on a complete lattice hC,i is an operator � : C�!C

which is monotone, idempotent, and extensive (i.e., x  �(x)).
We denote with uco(C) the set of all closure operators on the poset
L. If h↵, �i is a GC between C and A then � � ↵ 2 uco(C).
If ↵ 2 uco(C) then h↵, idi is a GC between C and ↵(C).
In this case huco(C),v,t,u,�x.C, idi forms itself a complete
lattice [23], which is isomorphic, up to representation of abstract
elements, to the set of all possible abstractions Abs(C) of C, i.e.,
Abs(C)

⇠
=

uco(C). Because of this, in the following we will
always identify an abstract domain A 2 Abs(C) with its (unique)
associated closure operator ↵ 2 uco(C) such that ↵(C) = A.
In the following we will used both Abs(C) and uco(C) in order
to distinguish respectively the use of closures as abstract domains
and as abstraction functions. Recall that the set of fix-points A of
a closure ↵ is always a Moore family, A = M(A)

def
= {^S | S ✓

A}. Therefore ^? = > 2 A. Here the bottom element is id =

�x.x, the top is �x.>
C

and for every ↵,� 2 uco(C): ↵ is more
concrete than � iff ↵ v � iff for each y 2 C. ↵(y)  �(y) iff
�(C) ✓ ↵(C), (u

i2I

↵
i

)(x) = ^
i2I

↵
i

(x); (t
i2I

↵
i

)(x) = x
iff for each i 2 I. ↵

i

(x) = x. An abstraction ↵ 2 uco(C) is
disjunctive when ↵(C) is a join-sublattice of C, which holds iff
↵ is additive (cf. [5]). Examples of abstract domains include the
abstract domain of intervals:

Int = �X ✓ Z. [min(X),max(X)]

where:

min(X) =

⇢

x 2 X if 8y 2 X. x  y
�1 otherwise

max(X) =

⇢

x 2 X if 8y 2 X. y  x
+1 otherwise

In this case Int 2 uco(}(Z)). The non-relational lift of intervals
to n-dimensions is straightforward and it is defined in terms of a
function ext : Int(}(Z))⇥[0, n�1]�!}(Zn

) defined as follows:
if I 2 Int(}(Z)) is an interval with boundaries in Z[{�1,+1}
and ~x

r

is the projection of the vector ~x 2 Zn along the affine
subspace r of Zn of dimension 1 (i.e., a line), then we define

ext(I, r)
def
=

�

~x 2 Zn

�

� ~x
r

2 I

For i 2 [0, n � 1] we denote r
i

the i-th dimension, namely the
affine subspace given by the set r

i

=

�

~x
�

� 8j 6= i. ~x
j

= 0

. In

this case Intn 2 uco(}(Zn

)) is such that:

Intn(X) =

\

�

ext(I, r
i

)

�

� X ✓ ext(I, r
i

), 0  i  n� 1

The Octagon abstract domain [20] generalizes the Zone abstraction
introduced for model checking timed automata in [16] and based
on Difference-Bound Matrices (DBM), i.e., constraints of the form
v
j

� v
i

 c. Octagons are defined by enhancing DBMs including
also constraints of the form v

j

+ v
i

 c. Let m be a matrix having
coefficients m

i,j

2 Z [{�1,+1}. Then

Octm =

�

~x 2 Zn

�

� 8i, j. ± ~x
j

± ~x
i

 m
i,j

If X 2 }(Zn

) then:

Oct(X) =

\

�

Octm
�

� X ✓ Octm

Intn,Oct 2 uco(}(Zn

)) and Oct v Intn. Algorithms for having
unique canonical representations of Octagons have been developed
in order to guarantee that these domains hold a GC (see [20]).

Soundness and completeness. If f : C�!C is a continuous
function and ↵ 2 uco(C) then f always has a best correct ap-
proximation in ↵(C) which is f↵

def
= ↵ � f � ↵. Any approxima-

tion f]

: ↵(C)�!↵(C) of f in ↵(C) is sound if f↵ v f]. In this
case we have the fix-point soundness ↵(lfpf)  lfp(f↵

)  lfp(f]

)

(cf. [4]). f] is complete when ↵ � f = f] � ↵ (see [5, 21]) which
holds iff ↵ � f = ↵ � f � ↵ (cf. [13]). Therefore the possibil-
ity of defining a complete approximation f] of f on some ab-
stract domain ↵ only depends on f and ↵. In this case we have
the so called Kleene fix-point transfer or fix-point completeness:
↵(lfpf) = lfp(f↵

) = lfp(f]

) [4].

The problem of making abstract domains complete has been
solved in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete sim-
plification, called complete core, of any domain, making it com-
plete, for a given continuous function f , is given as a solution
of an abstract domain equation. Let f : C�!C be continu-
ous and ↵ 2 uco(C), and consider the following basic operators
R

f

, C
f

: uco(C)�!uco(C) transforming closures (therefore ab-
stractions):

R
f

def
= �X.M(

S

y2X

max(f�1
(#y)))

C
f

def
= �X.

�

y 2 C
�

�

max(f�1
(#y)) ✓ X

The most concrete � w ↵ such that � is complete for f is
the complete core of ↵. The most abstract � is complete for
f is the complete shell of ↵. These abstract domains can be
constructively defined as a fix-point iteration on abstract do-
mains, which are respectively R

f

(↵) = gfp(�X. ↵ uR
f

(X))

and C
f

(↵) = lfp(�X. ↵ t C
f

(X)). It is worth noting that the
complete core and shell are adjoint abstract domain transformers,
i.e., they form a GC on the lattice of all abstract domains: for any
↵, ⌘ 2 uco(C): C

f

(⌘) v ↵ , ⌘ v R
f

(↵).

3. Syntax, Semantics, and Abstract Semantics
We consider a simple deterministic while-language Imp as defined
in [24]. We often view programs as both sequences of commands
and sets of commands.

C ::= skip | x := a | C ;C | if b then C |
while b do C

e ::= a | b
a ::= a + a | a � a | x 2 Var | k 2 Z
b ::= t | f | a = a | a > a | b ^ b | b _ b | ¬b

Var(s) denote the set of variables in the syntactic (command or
expression) s. ⌃ def

= Var�!}(Z) denotes the set of stores, with

Submission for POPL 2015 3 2014/7/17

P : x := y

Q : x := y + 1; x := x� 1

gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a
generic program statement. Our method follows an orthogonal pat-
tern. We are not interested in refining an abstract domain for ob-
taining completeness with respect to a given class of programs, but
rather in studying the class of programs for which a given abstrac-
tion is complete. This different starting point leads us to design a
deductive system for deriving a completeness proof for programs
on a given abstraction. This new perspective allows us to decom-
pose the problem of attaining a complete abstraction for a given
program, which becomes modular and inductive on the program’s
syntax. The ubiquity of completeness properties in static analysis is
also studied in [22], where it is argued how completeness can play
a beneficial role for designing static analyses by reasoning on the
completeness properties of their underlying abstract domains.

Provably precise static analyses usually make some assumption
on the syntactic form of the analyzed program. For instance the
precise interprocedural analysis of [21] computes, for each pro-
gram point, all the affine relations among program variables. What
the authors call “precision” is effectively our notion of complete-
ness. They achieve precision by focusing on a particular class of
programs, namely affine programs. Affine programs are such that:
(i) all guards are non-deterministic; and (ii) the right-hand side of
assignments are either affine expressions or unknown values. Sim-
ilarly, in type systems, it is customary to ignore the guards in or-
der to prove the completeness of the type inference algorithm, e.g.,
in [9]. We argued in this article that the main problem for prov-
ing completeness is the handling of assignments and of Boolean
guards.

Our research follows the lines of a recent approach by Cousot
and Cousot [5] who put forward a type system for typing the struc-
ture of an abstract interpretation. A type represents inductively the
way an abstraction has been built by composing simpler abstrac-
tions through systematic domain operations like reduced product.
It could be interesting to investigate the possibility of combining
our proof system with a structural type system for abstract inter-
pretations as in [5], with the aim of providing along a derivation in
`

A

some additional information about the used sub-domains and
their composition through domain operations.

8. Conclusion

Static analysis is, by design, incomplete. Nevertheless, experience
has shown that it can be made precise enough to be used for ver-
ification [6, 11]. We envision static analyses which in addition to
the inferred invariants also provide completeness certificates. The
completeness certificate is used to provide confidence to the anal-
ysis of alarms. As a foundational step towards this goal, we in-
troduced a theoretical framework to prove the completeness of a
static analysis. We have shown that the source of incompleteness
lies in the handling of Boolean guards and, for relational abstrac-
tions, in assignments. For nonrelational abstractions we introduced
an abstraction-independent core proof system which pushes the
completeness of the analysis to the numerical expressions and the
Boolean guards of conditionals and loops. For relational abstrac-
tions, instead, the structure of complete assignments has to be de-
rived in advance in order to obtain a sound proof system. We argued
that the designer of a static analyzer should also provide complete-
ness conditions for the Boolean guards and that these conditions

could be automatically checked by further, yet less sophisticated,
static analyses—we leave the design of such automated analyses
for future work. We studied the completeness of Boolean guards in
widely used numerical abstractions such as Intervals and Octagons.
Most known abstract domains have been indeed designed to pre-
cisely capture properties of some given programs. This is justified
by the fact that the class of completeness C(A) of any abstraction
A is always an infinite set. Therefore, deriving an abstract domain
which is complete for a specific program P provides at the same
time a domain which is complete for an infinite class of programs.

As future work, we think that proving completeness of static
analyses could be also beneficial to: (i) automatically apply abstract
code repairs [18]—if the analysis of the original and the repaired
programs can both be proven complete, then the repair is very likely
to have fixed a concrete bug; (ii) validate refactorings [8]—among
different program refactorings one may only keep the one(s) for
which she can prove it preserves the completeness of the analy-
sis; (iii) provide a better understanding of why over-approximating
analyses of arrays [7] works well in practice even without perform-
ing under-approximations, argued as necessary in [15].

Acknowledgments

Roberto Giacobazzi and Francesco Ranzato have been partially
supported by the Microsoft Research Software Engineering Inno-
vation Foundation 2013 Award (SEIF 2013).

JP KSign{y/+} = {x/+, y/+}

JQKSign{y/+} = {x/Z, y/+}

References

[1] COUSOT, P., AND COUSOT, R. Static verification of dynamic type
properties of variables. Research Report no. 25, Laboratoire IMAG,
University of Grenoble, France, 1975.

[2] COUSOT, P., AND COUSOT, R. Static determination of dynamic
properties of programs. In Proceedings of the 2nd International
Symposium on Programming (1976), Dunod, Paris, pp. 106–130.

[3] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Conference Record of the 4th ACM Symposium
on Principles of Programming Languages (POPL ’77) (1977), ACM
Press, pp. 238–252.

[4] COUSOT, P., AND COUSOT, R. Systematic design of program anal-
ysis frameworks. In Conference Record of the 6th ACM Symposium
on Principles of Programming Languages (POPL ’79) (1979), ACM
Press, pp. 269–282.

[5] COUSOT, P., AND COUSOT, R. A Galois connection calculus for ab-
stract interpretation. In Conference Record of the 41st ACM Sympo-
sium on Principles of Programming Languages (POPL ’14) (2014),
S. Jagannathan and P. Sewell, Eds., ACM Press, pp. 3–4.

[6] COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINÉ, A.,
MONNIAUX, D., AND RIVAL, X. The ASTRÉE analyzer. In Proceed-
ings of the European Symposium on Programming (ESOP ’05) (2005),
vol. 3444 of Lecture Notes in Computer Science, Springer, pp. 21–30.

[7] COUSOT, P., COUSOT, R., AND LOGOZZO, F. A parametric segmen-
tation functor for fully automatic and scalable array content analysis.
In Conference Record of the 38th ACM Symposium on Principles of
Programming Languages (POPL ’11) (2011), ACM Press, pp. 105–
118.

[8] COUSOT, P., COUSOT, R., LOGOZZO, F., AND BARNETT, M. An
abstract interpretation framework for refactoring with application to
extract methods with contracts. In Proceedings of the 27th ACM Inter.
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’12) (2012), ACM Press, pp. 213–232.

[9] DAMAS, L., AND MILNER, R. Principal type-schemes for functional
programs. In Conference Record of the 9th ACM Symposium on Prin-

Completeness Class

Well Known!

 and cannot be an index set
for partial recursive functions

C(↵) C(↵)

Non
Extensional

C(↵) def
= {P program | ↵(JP K) = JP K↵}

P complete, JP K = JQK 6) Q complete

?

+ �

[{�1
2 Zn

P : x := y

Q : x := y + 1; x := x� 1

JP KSign{y/+} = {x/+, y/+}

JQKSign{y/+} = {x/Z, y/+}

Completeness Class

Non Trivial C(↵) = All Programs , ↵ 2 {�x.x, �x.>}

C(↵) def
= {P program | ↵(JP K) = JP K↵}

For any nontrivial abstraction α
there exists an incomplete program

Completeness Class

This incomplete program is defined
similarly as into Rice Theorem's proof [1952]

Completeness Class

Non Trivial

)
↵ non trivial

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

{a}

Qabc2 Imp\

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

{a, b}

 abc(x) =

8
<

:

a if x = a

b if x = c

? otherwise

↵

a

a

A

↵(A)

bc

C(↵) = All Programs , ↵ 2 {�x.x, �x.>}

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Rice Theorem cannot be used
for proving that is undecidable C(↵)

Non
ExtensionalNon Trivial +

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Completeness Class

Hard

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

(↵ 6= id & ↵ 6= >)

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

… … … … P 2 Imp

Completeness Class

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Hard

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

↵

a

bc
a

(↵ 6= id & ↵ 6= >)

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

if [[P]](P)#|S|

'g(,P) =
s-m-n

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

g

g

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

[[P]](P)#

[[P]](P)"

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

↵([[P>]]) = [[P>]]↵

↵([[Qabc]]) 6= [[Qabc]]
↵

P>2 Imp

Qabc2 Imp

Completeness Class

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Qabc

Hard

C(↵) def
= {P program | ↵(JP K) = JP K↵}

 and are encodings of first-order
arithmetics
C(↵) C(↵)

automating the proof that
α is complete for P is impossible

Completeness is harder to prove than termination

Completeness Class
EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

(↵ 6= id & ↵ 6= >)

Corollary

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

Obfuscate

De-obfuscate

Obfuscation/De-obfuscation is compilation between completeness classes

CompleteIn-Complete

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

EXAMPLE 4.3. Consider the simple abstract domain of sign anal-
ysis Sign = {+,�, 0,Z,?} which is a straightforward abstraction
of }(Z). For programs with fixed variables, Sign naturally lifts to
an abstraction of states in ⌃. Consider the following programs P
and Q on the variables {x, a, b}:

P : x := a ⇤ b
Q : x := a ⇤ (b� 2) + a+ a

It is clear JP K = JQK but, being Sign complete for multiplication
and incomplete for addition, then L b� 2 MSign({b 7! +}) = Z
which implies thatJP KSign({a 7! +, b 7! +}) = {x, 7! +, a 7! +, b 7! +}JQKSign({a 7! +, b 7! +}) = {x, 7! Z, a 7! +, b 7! +}.
Therefore P 2 CSign but Q 62 CSign.

There is no direct correlation between the relative precision of do-
mains and the corresponding classes of completeness. In particular
a generic abstraction refinement of a complete abstraction may re-
sult in an incomplete one. This phenomenon is well known in static
program analysis and it corresponds to the fact that coarse abstrac-
tions may result complete for some programs where more precise
ones where failing. In the following we assume ⌃ be an infinite set.
When the abstraction is trivial, namely there is no abstraction or
all is abstracted into a single (top) value corresponding to the don’t
know answer, then the completeness class is the programming lan-
guage itself. Denote by }re

(⌃) the set of all recursive enumerable
subsets of ⌃. When we consider static program analyses we always
concern with recursive, namely decidable, abstractions ↵, i.e., such
that for any ⇢ 2 ⌃: ↵({⇢}) is computable and for any S 2 }re

(⌃):
⇢ 2?↵(S) is decidable.

THEOREM 4.4. If ↵ 2 uco(}(⌃)) is recursive then C
↵

= Imp iff
↵ = id or ↵ = �x. ⌃.

PROOF 1. Denote �x. ⌃ = >⌃. It is known that id and >⌃ are
both complete abstractions for any continuous function, therefore
for the semantics of any P 2 Imp. Assume that C

↵

= Imp and
↵ 6= id and ↵ 6= >⌃. Then there exists A 2 }re

(⌃) such
that A ⇢ ↵(A) 6= ⌃. By definition there exists a program P

A

and P
↵(A) on a single variable x such that JP

A

K(⌃) = A andJP
↵(A)K(⌃) = ↵(A). Consider any a 2 A, b 2 ⌃ r ↵(A), and

c 2 ↵(A) r A. The program Q
abc

associated with the following
partial recursive function

abc

: ⌃�!⌃ [{?}, with ? denoting
non-termination:

abc

(x) =

8

<

:

a if x = a
b if x = c
? otherwise

Then JQ
abc

K(x) 6= a if x 6= a, in particular if x 2 ↵(A) r A.
In this case ↵(JQ

abc

K(A)) = ↵({a}) and ↵(JQ
abc

K(↵(A)) =

↵({a, b}). Moreover, by monotonicity because b 2 ⌃r ↵(A) then
↵({a}) ✓ ↵(A) 6= ↵({a, b}). Therefore we have shown that there
exists A 2 }re

(⌃) such that:

↵(JQ
abc

K(A)) 6= ↵(JQ
abc

K(↵(A)) ✓ JQ
abc

K↵(↵(A)).

This means1 that Q
a

62 C
↵

which contradicts the hypothesis that
C

↵

= Imp.

Informally, the theorem above states that for all non trivial ab-
stractions, there exists a program for which the abstraction is in-
complete. Next theorem proves that C

↵

and its complement C
↵

,

1 Note that, for general recursive enumerable sets A and recursive ↵(A)
such that A ✓ ↵(A), the set ↵(A) r A may not be recursive enumerable.
This means that (due to c) the program Q

abc

exists but we may not have a
constructive computable way for building it.

for any non trivial abstraction ↵ 6= id and ↵ 6= �x.>, are produc-
tive sets (cf., [22]), namely they are non recursive enumerable sets
having a structure which is similar to the set of Gödel numbers of
true sentences in first order arithmetics.

THEOREM 4.5. If ↵ 2 uco(}(⌃)) is recursive and non trivial (i.e.,
↵ 6= id and ↵ 6= �x.>) then C

↵

and C
↵

are productive sets.

PROOF 2. In the following, without loss of generality, we assume
programs in Imp having a single variable ranging on N. Therefore
⌃ = N. If P is a program and S 2 }(⌃), denote by JP K(S)#n

the fact that P terminates with input S in less than n steps. Assume
an enumeration of programs H·I : Imp�!N. This induces an
enumeration of recursive enumerable sets H·I : }re

(⌃)�!N.
Consider the following property of programs representing in Imp

the halting problem of Turing machines (see [22]):

K
def
=

�

P
�

� 9n 2 N. JP K({HP I})#n

We first prove that C
↵

is productive. The proof is by many-to-one
reduction of K to C

↵

, which is denoted K �
m

C
↵

, and means
that there exists a total recursive function g : Imp�!Imp such
that: x 2 K iff g(x) 2 C

↵

.
Assume ↵ 2 uco(}(⌃)) recursive and non trivial. As in The-

orem 4.4, being ↵ non trivial, there exists A 2 }re

(⌃) such that
A ⇢ ↵(A) 6= ⌃. Consider any a 2 A, b 2 ⌃ r ↵(A), and
c 2 ↵(A) r A and the program Q

abc

as in Theorem 4.4. We
proved that Q

abc

62 C
↵

. Being ↵ recursive, there exists a program
P> 2 Imp such that JP>K(?) 2 }(⌃) and ↵(JP>K(?)) = >.
By monotonicity for any S 2 }(⌃) we have ↵(JP>K(S)) = >.
It is clear that P> 2 C

↵

. Consider the partial recursive function
 : Imp⇥ }re

(⌃)�!}re

(⌃) defined as follows:

 (P, S) =

8

<

:

JQ
abc

K(S) if JP K({HP I})#HSI
JP>K(S) otherwise

Being partial recursive is computed by a program R 2 Imp such
that JRK(P, S) = (P, S). By the s-m-n theorem, there exists a
total recursive function g : Imp ⇥ Imp�!Imp such that for any
P 2 Imp and S 2 }re

(⌃) we have Jg(R,P)K(S) = JRK(P, S) =
 (P, S). Consider P 2 Imp.

• If P 2 K there exists n 2 N such that JP K({HP I})#n.
Denote I↵

Q

abc

the set of stores for which Q
abc

is incomplete:

I↵

Q

abc

def
=

�

S 2 }re

(⌃)

�

� ↵(JQ
abc

K(S)) 6= JQ
abc

K↵(↵(S))
It is easy to see that I↵

Q

abc

is infinite. In particular, as shown in
Theorem 4.4, A 2 I↵

Q

abc

. Moreover it is easy to see that for any
x 2 ⌃ such that x 6= c we have that A [{x} 2 I↵

Q

abc

. There-
fore, because |⌃| = ! then also |I↵

Q

abc

| = !. This implies
that there exists S 2 I↵

Q

abc

such that n  HSI and there-
fore JP K({HP I})#HSI. Hence Jg(R,P)K(S) = JQ

abc

K(S)
for some S 2 I↵

Q

abc

. Therefore g(R,P) 62 C
↵

.
• If P 62 K then for any n 2 N we have that JP K({HP I}) does

not converge in less than n steps. Therefore for any S 2 }re

(⌃)

we have (P, S) = JP>K(S) and therefore Jg(R,P)K =JP>K, which implies that g(R,P) 2 C
↵

.

Because the function �P 2 Imp. g(R,P) above is total recursive,
then K �

m

C
↵

, which is equivalent to K �
m

C
↵

. This proves
that C

↵

is productive. The proof that C
↵

is productive is analogous
and can be obtained, by many-to-one reduction K �

m

C
↵

, by
considering the partial recursive function:

 0
(P, S) =

(JP>K(S) if JP K({HP I})#HSI
JQ

abc

K(S) otherwise

Submission for POPL 2015 5 2014/7/17

{Q | [[P]] =
[[Q]]}

All Programs

C↵ 6�m C↵ C↵ 6�m C↵

 non trivial↵

and

Among equivalent programs
means deciding termination

>

?

Completeness in

C(↵) def
= {P program | ↵(JP K) = JP K↵}

Corollary

�m

 Idea: provide a reasonable computable
 under-approximations of C(↵)

Can we prove that
P 2 C(↵)?

Technical Question

Intervals

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x 2 [0, 9]

Given a program P can we prove
whether an analysis of P with α will be complete?

The problem

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x 2 [0, 0]

x 2 [0, 9]

Given a program P can we prove
whether an analysis of P with α will be complete?

Completeness

The problem

Intervals

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x 2 [�1, 9]

Given a program P can we prove
whether an analysis of P with α will be complete?

The problem

Intervals

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x 2 [�1, 0]

Given a program P can we prove
whether an analysis of P with α will be complete?

x 2 [�1, 9]

Incompleteness

The problem

Intervals

Analyses ⟦P⟧α are best correct approximations

Analyses ⟦P⟧α use abstract joins not widening !!

↵(c1 t c2) =
↵(�(↵(c1)) t �(↵(c2))) =
↵(c1) t↵ ↵(c2)

Abstract joins are always complete in
Galois Connection based analyses

Recall

Complete

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

Incomplete

 Assignment to a constant is complete in Intervals:
 Both tests x>0 and x≤0 are exactly represented in Intervals and

therefore are complete:
 The decrements x-1 and x-2 are complete in Intervals
 Abstract join is always complete

x 2 [9, 9]

x 2 [1,+1], x 2 [�1, 0]

What's wrong?

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x∈[9,9]
x∈[7,9]
x∈[5,9]
x∈[3,9]
x∈[1,9]
x∈[-1,9]

Abstractly

Concretely

x=9
x=7
x=5
x=3
x=1
x=-1

The problem

The problem

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

x∈[9,9]
x∈[7,9]
x∈[5,9]
x∈[3,9]
x∈[1,9]
x∈[-1,9]

Abstractly

Concretely

x=9
x=7
x=5
x=3
x=1
x=-1

incomplete Boolean exit

Int(Jx  0KInt{�1, 1, ..., 9}) =
[�1, 0]

Int(Jx  0K{�1, 1, ..., 9}) =
[�1,�1]x 2

x 2

if (x = null)
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;

while (x > 0)
x := x� 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;

while (x > 0)
x := x� 2;

/ / query: x = �1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

?, and for any abstraction A every abstract value different from the
bottom value ?

A

will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x  0 can be
exactly represented with intervals, resp. by [1,+1) and (�1, 0];
the decrement operation x := x � 1 on intervals is precise, e.g.,
[3, 9] � [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x 2 [�1,�1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x 2 [�1, 0].
Therefore, Dec2 62 C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x  0 can be exactly represented
with Int; the decrement x := x � 2 on intervals is precise, e.g.,
[3, 9]� [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x  0 can be exactly represented with intervals,
its transfer function [[x  0]] : }(Z) ! }(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {�1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x  0]] is S then we obtain in Int:

Int([[x  0]]S) = Int({x | x  0} \ S)

= Int({�1}) = [�1,�1].

On the other hand, if the input to [[x  0]] is instead the abstraction
Int(S) then we have:

Int([[x  0]]Int(S)) = Int([[x  0]][�1, 9])

= Int([�1, 0]) = [�1, 0],

that is, the transfer function [[x  0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P 2 C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;

while (x > 0)
{x := x� 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x � 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x  0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between �1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y 2 [0,+1). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x  0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub t

A

of any abstraction A is always complete, meaning
that ↵(X [Y) = ↵(X)t

A

↵(Y) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x  0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ⇤ y are incomplete even if x + y and 2 ⇤ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k for a 2 {�1, 0, 1}
and k 2 Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to

Both tests x>0 and x≤0 are incomplete
even if they are exactly represented in Intervals!!

The problem

Core Proof System: ̀ ↵ P

`

↵

skip

[skip]

`

↵

P `

↵

Q

`

↵

P ;Q
[seq]

`

↵

C b 2 B(↵) ¬b 2 B(↵)

`

↵

if b then C
[if]

`

↵

C b 2 B(↵) ¬b 2 B(↵)

`

↵

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:

↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)
= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:

↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))
= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in

general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

Completeness No, …of course

`↵ P) P 2 C(↵)Soundness

Assignments in
Non-relational Domains

a 2 A(↵)

`↵ x := a

is sound!!!

?

>

N NN

Example in Nullness

Null
def
= {?, N, NN,>}

null 2 A(Null)

`Null x := null

(x = null) 2 B(Null) ¬(x = null) 2 B(Null)
new Int 2 A(Null)

`Null x := new Int

`Null if (x = null) then x := new Int

`Null x := null; if(x = null) then x := new Int

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting
relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For

instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static
analysis focused on Boolean guards. Let BExp(P) denote the set
of Boolean guards occurring in some program point of P and
assume that the set �

P

of Boolean guards of P which are not
complete on A, i.e., �

P

, {b 2 BExp(P) | b 62 B(A)}, consists
of A-Boolean expressions only. If 6`

A

P then the completeness
proof for P may fail along some guard b 2 �

P

. If we are able
to guarantee that this guard b is complete for any set S of possible
input stores at the program point where the guard b occurs in P then
we can safely conclude that b is complete on A for the purpose of
proving that P is complete on A. We therefore add the following
conditional meta-rule [gc] for the completeness of guards b 2 �

P

:

assume[S : ↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S)]

b 2 B(A)

[gc]

Hence, a conditional completeness proof of P in `

A

[{[gc]}

depends on the collection G

P

of all the assumptions made for the
guards b 2 �

P

. The next step consists in designing some domain-
specific—possibly statically checkable—conditions that allow to
validate all the assumptions in G

P

made in a conditional proof of
P , so as to establish an unconditional proof for P on A.

Proved!

Simple nullness analysis

We don't make analysis
We analyse analyses

What about assignments?

a 2 A(↵)

`↵ x := a

is not sound in general

But, assignment z := x+y is not complete in Oct

Expression x+y is complete in Oct

Example in Octagons

But, assignment z := x+y is not complete in Oct

Expression x+y is complete in Oct
On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any
x 2 Var , let x̄, Var r {x} and let ↵x

: }(S) ! A be defined as
↵x

(S), ↵(9
x̄

(S)). Then, A is defined to be nonrelational when:

8S 2 }(S). ↵(S) =
^

x2Var

↵x

(S).

Null, Sign and Int are examples of nonrelational abstractions, while
Oct is not nonrelational. For a nonrelational abstraction A, we
introduce the following compositional rule for assignments:

a 2 A(A)

`

A

x := a
[assignNR]

We denote by `

NR

A

the core proof system `

A

enhanced with the rule
[assignNR] and we show its soundness for deriving completeness.

Theorem 5.4. For any nonrelational abstraction A 2 Abs(}(S)),
`

NR
A

is sound, i.e., if `

A

P then P 2 C(A).

Proof. The soundness of the rules in `

A

follows by Theorem 5.1.
The soundness of [assignNR] follows from these equalities:

↵(Jx := aKS) =
= ↵x

(Jx := aKS) ^
^

y 6=x

↵y

(Jx := aKS)

= ↵(9
x̄

(Jx := aKS)) ^
^

y 6=x

↵(9
ȳ

(Jx := aKS))

⇥
by def. of variable projection and ↵Z⇤

= ↵Z
(JaKS) ^

^

y 6=x

↵(9
ȳ

(S))

⇥
by a 2 A(A) and completeness of 9

ȳ

⇤

= ↵Z
(JaK�(↵(S))) ^

^

y 6=x

↵(9
ȳ

(�(↵(S))))

⇥
by def. of variable projection and ↵Z⇤

= ↵(9
x̄

(Jx := aK�(↵(S)))) ^
^

y 6=x

↵(9
ȳ

(Jx := aK�(↵(S))))

= ↵x

(Jx := aK�(↵(S))) ^
^

y 6=x

↵y

(Jx := aK�(↵(S)))

= ↵(Jx := aK�(↵(S))).

Thus, for nonrelational abstract domains A, `NR

A

is a fully com-
positional proof system for checking completeness of programs.
Let us give a simple example of derivation in `

NR

A

.

Example 5.5. Let us consider the nonrelational abstract domain
Null for nullness analysis described in Section 1 and the simple
program

P ⌘ x := 0; if (x = 0) then x := 1

where, with a slight abuse of notation, we assume that 0 stands
for a null reference while 1 for a non-null reference. The proof
tree in Figure 6 can be derived in `

NR

Null, and this entails that the
abstract semantics of P on the abstraction Null is complete. Let us
stress that the key point in proving the completeness of P is that
the abstraction Null is complete for the Boolean guard x = 0 and
its negation ¬(x = 0).

Nevertheless, for the program Dec in Figure 2, we are still not
able to derive that `Int Dec: the rule [assignNR] allows us to derive
that the assignment x := x � 1 is complete for Int, but this is not
enough since the Boolean guard x > 0 is not complete (cf. Exam-
ple 5.2). The fact that C(A) is a productive set even for (nontrivial)
nonrelational abstractions implies that an effective complete proof
system for deriving completeness of programs cannot be defined.
The proof system `

NR

A

is indeed sound but not complete, and the
program Dec shows this incompleteness.

Relational Abstractions. As shown in Example 5.3, the com-
pleteness of an expression a does not imply that an assignment
x := a is complete for a relational abstract domain. It can be
shown that more restrictive hypotheses such as the assumption that
x 62 vars(a) and the completeness of the Boolean expression
x = a on A, would imply that x := a is complete on A (the
proof is omitted). However, this would yield a sound but far too
restrictive derivation rule. Indeed, although the syntactic condition
x 62 vars(a) can always be met for any program P simply by
replacing an assignment x := a where x 2 vars(a) with the com-
position x0

:= a;x := x0, where x0 is a fresh variable, this rule
would require the hypothesis (x = y) 2 B(A), and we observed
in Example 5.2 that the equality test is not complete even for most
known abstract domains.

Thus, for the generic case of a nonrelational abstraction A, it
can be argued that a reasonable rule for deriving the completeness
of assignments x := a from the completeness of some other arith-
metic expression and/or Boolean guard and/or command induced
by x := a simply cannot be found. Hence, a nonrelational abstrac-
tion therefore needs a specific analysis of the completeness of its
assignments. We present a significant sample of this analysis for
the case of the octagon abstraction.

Octagon Abstraction. In Example 5.3 we have shown that the
assignment z := x+ y is not complete for Oct. A similar example
can be found for x := x + y. These observations show that
any generic linear assignment x := a1 ⇤ x1 + . . . + a

n

⇤ x
n

is not complete for Oct when n � 2. The intuitive reason is
that for a relation a  x + y  b, the substitution of x with
a1 ⇤ x1 + . . . + a

n

⇤ x
n

provides a relation for more than two
variables which cannot be represented by Oct. A fortiori, this is
also true for nonlinear assignments like x := y ⇤ y.

Thus, we are left to scrutinize linear assignments of the follow-
ing shape: x := a ⇤ y + k and x := a ⇤ x + k. If a 62 {�1, 0, 1},
e.g., x := 2 ⇤ y, the following example shows that, as expected, we
do not have completeness.

Example 5.6. We follow the notation of Example 5.3 where
Var = {x, y, z}. Let us consider the assignment x := 2⇤y 2 Imp
and the set of input stores S = {(0, 2, 0), (3, 0, 4)} 2 }(S). On the
concrete side, we have that Jx := 2 ⇤ yKS = {(4, 2, 0), (0, 0, 4)}.
The abstraction of Jx := 2 ⇤ yKS in Oct is therefore as follows:

Oct(Jx := 2 ⇤ yKS) =
h0  x  4, 0  y  2, 0  z  4,

0  x+ y  6, 0  x� y  2, x+ z = 4,

� 4  x� z  4, 2  y + z  4,�4  y � z  2i.

S = {(x/2, y/1, z/0), (x/1, y/4, z/2)}

(x/2, y/3, z/5)

262

(x/2, y/3, z/5)

Example in Octagons

The problem is that Oct is relational

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

But, assignment z := x+y is not complete in Oct

Expression x+y is complete in Oct

Example in Octagons

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

`

A

skip

[skip]

`

A

P `

A

Q

`

A

P ;Q
[seq]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

if b then C
[if]

`

A

C b 2 B(A) ¬b 2 B(A)

`

A

while b do C
[while]

Figure 5. The core proof system `

A

.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

↵(JC1;C2KS) = ↵(JC2K(JC1KS))
= JC2K↵↵(JC1KS))
= JC2K↵JC1K↵↵(S)
= JC1;C2K↵↵(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

↵(Jif b then CKS) = ↵(JCKJbKS [J¬bKS)
= ↵(JCKJbKS) t ↵(J¬bKS)
= JCK↵↵(JbKS) t J¬bK↵↵(S)
= JCK↵JbK↵↵(S) t J¬bK↵↵(S)
= Jif b then CK↵↵(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

↵ � (�T.S [JCKJbKT) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵

For any T 2 }(S), we have that:
↵(S [JCKJbKT) = ↵(S) t ↵(JCKJbKT)

= ↵(S) t JCK↵↵(JbKT)
= ↵(S) t JCK↵JbK↵↵(T),

so that

↵ � (�T.S [JCKJbK) = (�X].↵(S) t JCK↵JbK↵X]

) � ↵.

Hence, by fixpoint transfer (cf. Section 2):

↵(lfp(�T.S [JCKJbKT)) = lfp(�X].↵(S) t JCK↵JbK↵X]

).

We therefore obtain:
↵(Jwhile b do CKS) = ↵(J¬bK(lfp(�T.S [JCKJbKT)))

= J¬bK↵↵(lfp(�T.S [JCKJbKT))
= J¬bK↵lfp(�X].↵(S) t JCK↵JbK↵X]

)

= Jwhile b do CK↵↵(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `

A

require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x � 1

is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 2

? B(Int) and x  0 2

? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

↵Int(Jx > 0K{0, 2, 3}) = ↵Int({2, 3}) = [2, 3]

@ Jx > 0K↵Int↵Int({0, 2, 3})

= Jx > 0K↵Int
[0, 3] = [1, 3].

Therefore, x > 0 62 B(Int). A similar counterexample may show
that x  0 62 B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

↵Oct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = ↵Oct(?) = ?Oct

@ Jx = yK↵Oct↵Oct({(x/0, y/2), (x/2, y/0)})

= Jx = yK↵Oct
h0  x  2, 0  y  2, x+ y = 2i

= hx = 1, y = 1i.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments

Assignment commands are not handled by the core proof system
`

A

. The deductive system `

A

is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x � a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/v

x

, y/v
y

, z/v
z

) simply by (v
x

, v
y

, v
z

) 2 Z3. We con-
sider the arithmetic expression x+ y 2 AExp and the abstraction
Oct. It turns out that x+y 2 A(Oct). In fact, for any nonempty set
of stores S 2 }(S), consider the constraint m  x+ y  n which
is expressed by Oct(S): this means that there exist ⇢1, ⇢2 2 S such
that m = ⇢1(x) + ⇢1(y), n = ⇢2(x) + ⇢2(y), and for any ⇢ 2 S,
m  ⇢(x) + ⇢(y)  n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ⇢ 2 Oct(S), m  ⇢(x) + ⇢(y)  n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} 2 }(S) and the
assignment z := x + y 2 Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = h1  x  2, 1  y  4, 3  z  5,

3  x+ y  5,�3  x� y  1, 5  x+ z  6,

�4  x� z  �1, 4  y + z  9,�2  y � z  �1i.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h1  x  2, 1  y  4, 0  z  2,

3  x+ y  5,�3  x� y  1, 2  x+ z  3,

� 1  x� z  2, 1  y + z  6, 1  y � z  2i.

Here (2, 3, 1) 2 Oct(S) and (2, 3, 5) 2 Jz := x+ yKOct(S) ✓

Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 62 Oct(Jz := x+ yKS)
because the relation 5  x + z  6 is not satisfied. Hence,
Oct(Jz := x+ yKS) (Oct(Jz := x+ yKOct(S)), namely z :=

x+ y 62 C(Oct).

Nonrelational Abstractions. An abstraction A
↵

2 Abs(}(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any

Assignments for Octagons

Theorem: The only complete assignments
for Oct are:

x := ±y + k
x := ± x + k

x := k

These are precisely the assignments in Oct with
computable best correct approximations [Minè 2006]

?

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

¬(x  0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Boolean guards?
Example in Intervals

…but the analysis is complete!

Incompleteness

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

¬(x  0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Boolean guards?
Example in Intervals

Conditional rules for
Boolean Guards

JbKt def
= {⇢ 2 Store | JbK⇢ = true}

For any possible set S of input stores for a guard b:

analysis focused on Boolean guards. Let BExp(P) denote the set
of Boolean guards occurring in some program point of P and
assume that the set �

P

of Boolean guards of P which are not
complete on A, i.e., �

P

, {b 2 BExp(P) | b 62 B(A)}, consists
of A-Boolean expressions only. If 6`

A

P then the completeness
proof for P may fail along some guard b 2 �

P

. If we are able
to guarantee that this guard b is complete for any set S of possible
input stores at the program point where the guard b occurs in P then
we can safely conclude that b is complete on A for the purpose of
proving that P is complete on A. We therefore add the following
conditional meta-rule [gc] for the completeness of guards b 2 �

P

:

assume[S : ↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S)]

b 2 B(A)

[gc]

Hence, a conditional completeness proof of P in `

A

[{[gc]}

depends on the collection G

P

of all the assumptions made for the
guards b 2 �

P

. The next step consists in designing some domain-
specific—possibly statically checkable—conditions that allow to
validate all the assumptions in G

P

made in a conditional proof of
P , so as to establish an unconditional proof for P on A.

6.1 Completeness of Int- and Oct-Boolean Guards

Given a set of store, we want to provide a characterization of the
completeness of Boolean expressions which are representable as
intervals or octagons. Namely, we characterize the sets of stores
S that make a Int- and Oct-Boolean expression complete, hence
providing specific conditions for the assumptions of the conditional
rule [gc] for Int and Oct.

In order to keep the notation as simple as possible, in what
follows we consider the abstractions Int and Oct on stores over two
variables (x, y), i.e., S = Z2 and Int,Oct 2 Abs(h}(Z2

),✓i).
Moreover, for any set of concrete points S 2 }(Z2

), we use
Int(S),Oct(S) 2 }(Z2

) to denote the corresponding interval and
octagon abstractions. The generalization to N > 2 variables is
conceptually simple but notationally tedious. In two variables, a
(possibly infinite) interval is a (possibly infinite) rectangle R in the
(x, y) plane. A rectangle R can be represented by its set of edges,
denoted by edges(R), which are at most four (this is the case of
finite rectangles). Similarly, an octagon O in two variables can be
represented by its edges in edges(O), which are at most eight.
Any E 2 edges(R) determines a line in the (x, y) integer plane
which is denoted by l

E

. If l is a line in the (x, y) integer plane and
S 2 }(Z2

) is any set of points then ⇡l

(S) denotes the orthogonal
projection of S onto l. Completeness of Int-Boolean guards is then
geometrically characterized as follows.

R is complete for Int in a set of stores S

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R))

Theorem 6.1. Let R be a Int-Boolean expression. Then, R is
complete for Int in a set of stores S 2 }(Z2

) if and only if the
following condition holds:

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R)). (⇤)

Proof. Since Int(S \R) ✓ Int(Int(S)\R) = Int(S)\R always
holds, let us first observe that R is not complete for Int in S when

Int(S \R) 6= Int(Int(S) \R) ,

Int(S \R) 6= Int(S) \R ,

Int(S \R) (Int(S) \R.

Moreover, it turns out that the rectangle Int(S \ R) is strictly
contained into the rectangle Int(S) \ R iff there exists an edge

E0
2 edges(Int(S) \ R) such that ⇡lE0

(Int(S \ R)) (E0
=

⇡lE0
(Int(S) \ R). The following figure helps in explaining this,

where S is given by the set of bullets, Int(S\R) is the (red) dashed
inner rectangle, and Int(S) \R is the (blue) dotted rectangle.

R
•

•

•

•

•

Since the rectangle Int(S)\R is contained in R, the last condition
Int(S \ R) (Int(S) \ R holds iff there exists an edge E 2

edges(R) such that ⇡lE
(Int(S\R)) (⇡lE

(Int(S)\R). Also, the
orthogonal projection ⇡lE onto the line l

E

satisfies the following
property: ⇡lE

(Int(S \ R)) = Int(⇡lE
(S \ R)), so that Int(S \

R) (Int(S)\R holds iff Int(⇡lE
(S\R)) (⇡lE

(Int(S)\R). It
is now easy to check that this latter condition holds iff the negation
of (⇤) holds.

Observe that in the condition (⇤) we have that ⇡lE
(Int(S)\R)

is always an interval because Int(S) \ R is always a rectangle.
Furthermore, if S is already a rectangle, namely Int(S) = S,
then condition (⇤) holds so that we have completeness. Let us also
observe that (⇤) is trivially satisfied when one of the following
conditions hold: Int(S) \ R = ? or S ✓ R or R ✓ S. Finally,
if S \ R = ? but Int(S) \ R 6= ?, then (⇤) boils down to
8E 2 edges(R).⇡lE

(Int(S) \ R) = ?, which is always false,
so that completeness does not hold.

Example 6.2. In the following pictures, the set of points S in the
(x, y) plane is given by the set of bullets. Let us first consider the
following example.

R •

•

•

• •

In this case, the rectangle R turns out to be complete for Int
in S. In fact, for any edge E 2 edges(R), the two projections
⇡lE

(Int(S) \ R) and ⇡lE
(S \ R) give the same intervals, which

are depicted with (blue and red) thick lines. Let us now consider
the following modified picture, where the rightmost point of S is
moved one step down.

R •

•

•

•

•

Here, completeness of R for Int in S is lost. In fact, for the
rightmost vertical edge E 2 edges(R), Int(⇡lE

(S \ R)) is the
(red) dashed interval which is strictly contained in the interval
⇡lE

(Int(S)\R) obtained by projecting S onto E: the gap between
these two intervals is depicted by the (blue) dotted segment.

Of course, Theorem 6.1 can be stated in general for a N -
dimensional space, with N � 1: in the general geometric formula-
tion, R is a N -dimensional hyperrectangle (also called orthotope),
S 2 }(ZN

) is any set of points in the N -dimensional space, edges
of R are replaced by the 2N facets of the hyperrectangle R and
lines determined by edges are the (N�1)-dimensional hyperplanes
determined by facets.

Furthermore, Theorem 6.1 also holds for octagons with the
same statement where the abstraction Oct replaces Int. Here, in
the 2-dimensional case, the edges of an octagon are at most eight

Conditional rule

Conditional Proofs

A proof of completeness for P in ⊢α which depends on
all the assumptions made for the Boolean guards of P

A proof of completeness for P in ⊢α which depends on
all the assumptions made for the Boolean guards of P

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x  0} = [�1, 0] uInt Int(S)]

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Conditional Proofs

How to verify these assumptions?

Completeness of guards on Int

Two variables x,y and a Boolean guard R
representable (by a rectangle) in Int, e.g. k1≤x≤k2 ⋀ y>k3

A in S can therefore be expressed by

↵(JbKt \ S) = ↵(JbKt \ ↵(S)).

Interestingly, this latter condition coincides precisely with the
weak-completeness property introduced in [14]. This is a weaker
notion of completeness for binary operators where one of the
arguments always belongs to the abstract domain. We recall
from [14] that an abstract domain A 2 Abs(}(⌃)) on the
concrete Boolean lattice2 h}(⌃),✓i is weak-complete for \ iff
A = A _ A, where for any X,Y ✓ }(⌃): X _ Y =

�

x ! y = ¬x [y
�

� x 2 X and y 2 Y

. This holds iff A is
a complete sub-boolean algebra of }(⌃).

In view of this observation we can instrument our proof sys-
tem `

↵

with a specific program analysis, or alternatively as-
sume hypothesis on the properties of the computed states, in
order to generate a proof of relative completeness for a given
program P with respect to ↵ and to its inputs states that make
its guards weak-complete. Assume that 6`

↵

P and that � =

�

b 2 ImpExp \ P
�

� b 62 E
↵

contains only boolean guards
such that JbKt 2 A. This means that the proof of completeness
for P fails along some of its Boolean guards which are expressible
in the abstract domain. This is a highly common scenario in pro-
grama analysis. Let b 2 � one of these guards. If we can guarantee
that all states S in the invariant at the program point of b in P sat-
isfy weak-completeness with respect to JbKt, then we can conclude
that b 2 E

↵

. We can therefore specify a suitable set of rules for
relative guard completeness (Gc), assuming a property on program
states making a Boolean guard complete relatively to these states:

assume[S : ↵(JbKt \ S) = JbKt \ ↵(S)]

b 2 E
↵

[Gc]

It is clear that if S ✓ ⌃, G is the collection of all the assumptions
g
e

made for e 2 � in a proof of `
↵

[Gc P , and for any
g
e

2 G the set of states reaching e from S in P satisfies g
e

, then
↵(JP K(S)) = JP K↵(↵(S)).
6.1 On the completeness of Int- and Oct-Boolean tests
Our goal here is to provide a characterization of the completeness
for the boolean expressions which are representable in the numeri-
cal abstractions Int and Oct. We characterize the sets of all concrete
states that make any boolean expression in Int and Oct complete,
providing therefore a specific formulation for assumptions in the
rules (Gc) for these abstractions.

In order to make our notation as simple as possible, in what fol-
lows we consider the numerical abstractions Int and Oct with two
variables (x, y), i.e., Int,Oct 2 Abs(}(Z2

)). The generalization
to N > 2 variables is conceptually straightforward but notation-
ally tedious. Thus, a (possibly infinite) interval in two variables is
a (possibly infinte) rectangle R in the plane. A rectangle R can
be represented by its (possibly infinite) edges in edges(R), which
are at most four (this is the case of finite rectangles). Similarly,
an octagon O in two variables can be represented by its edges in
edges(O), which are at most eight. Any E 2 edges(R) determines
a line in the integer plane (x, y) which is denoted by l

E

. For any
rectangle R 2 Int, we denote by lines(R) the set of (at most four)
lines in the plane determined by the edges in edges(R). Analogous
notation is used for octagons. Also, if l is a line in the integer plane
(x, y) and S 2 }(Z2

) is any set of points then ⇡l

(S) denotes the
orthogonal projection of S onto l.

2 The results in [14] holds for generic quantales.

THEOREM 6.1. Let R be an Int-boolean test. Then, R is complete
for Int in a set of stores S 2 }(Z2

) if and only if

Int(S) \R 6= ?)
8E 2 edges(R). E \ Int(⇡l

E

(S)) ✓ Int(⇡l

E

(S \R)). (1)

PROOF 5. Since Int(S \ R) ✓ Int(Int(S) \ R) and Int(Int(S) \
R) = Int(S) \ R always hold, let us first observe that R is not
complete for Int in S when

Int(S \R) 6= Int(Int(S) \R) ,
Int(S \R) 6= Int(S) \R ,
Int(S \R) (Int(S) \R.

Moreover, it turns out that the rectangle Int(S \ R) is strictly
contained into the rectangle Int(S) \ R iff there exists an edge
E0 2 edges(Int(S) \ R) such that ⇡l

0
E

(Int(S \ R)) (E0
=

⇡l

0
E

(Int(S) \ R). The following figure helps in explaining this,
where S is the set of bullets, Int(S \ R) is the dashed rectangle
in red, and Int(S) \R is the dotted rectangle in blue.

R

•
•

•

•
•

Since the rectangle Int(S) \ R is contained in R, the latter con-
dition holds iff there exists an edge E 2 edges(R) such that
⇡l

E

(Int(S \ R)) (⇡l

E

(Int(S) \ R). Let us also notice the fol-
lowing equalities which are derived as properties of the orthogonal
projection:

(A) ⇡l

E

(Int(S \R)) = Int(⇡l

E

(S \R));
(B) ⇡l

E

(Int(S) \ R) = ⇡l

E

(Int(S)) \ ⇡l

E

(R) = ⇡l

E

(Int(S)) \
E = Int(⇡l

E

(S)) \ E.

By (A) and (B), we have that ⇡l

E

(Int(S \R)) (⇡l

E

(Int(S)\R)

holds iff Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E. Summing up,
we have proved that R is not complete in S iff there exists E 2
edges(R) such that Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E. It is
now easy to check that this latter condition holds iff ¬(1) holds.
On the one hand, if Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E then
Int(⇡l

E

(S)) \ E 6✓ Int(⇡l

E

(S \ R)) and since Int(S) \ R ◆
Int(⇡l

E

(S)) \ E we also obtain that Int(S) \ R 6= ?. On the
other hand, the other implication is trivial. 2

EXAMPLE 6.2. In the following pictures, the set of points S is
determined by the set of bullets. It turns out that R is complete
for Int in S. In fact, for any edge E of R, the projections of S and
S \ R onto E gives rise to the same intervals, which are depicted
in thick blue.

R •
•

•
• •

On the other hand, if the rightmost point of S is placed one step
down, as depicted in the following picture, completeness of R for
Int in S is lost. In fact, for rightmost vertical edge E of R, the
projection of S \ R onto E gives rise to the blue interval which
is strictly contained in the interval determined by the projection of
S onto E: the gap between these two intervals is depicted in thick
red.

Submission for POPL 2015 8 2014/7/17

R •
• •
•

•
Of course, Theorem 6.1 can be stated in general for any N -

dimensional space, with N � 1: in the general formulation, R
in Int is an N -dimensional hyperrectangle (also called orthotope),
S 2 }(ZN

) is any set of points in the N -space, edges of R are
substitued by the 2N facets of the hyperrectangle R and lines de-
termined by edges are N � 1 dimensional hyperplanes determined
by facets.

Furthermore, Theorem 6.1 also holds for octagons in Oct with
the same statement where the abstraction Oct substitutes Int. Here,
in the 2-dimensional case, the edges of an octagon are at most eight
while the Oct abstraction of a projection onto a line boils down to
an interval abstraction.

EXAMPLE 6.3. In the following picture, the octagon O is complete
for Oct in the set of points S depicted by bullets. In the figure,
Oct(S) is depcited in dotted blue, while Oct(S \O) is depicted in
dashed red.

O

•
•
•
•
•

•

On the other hand, if the leftmost point of S is placed two steps
down, as depicted in the following picture, completeness of O for
Oct in S is lost: the gap between the two orthogonal projections
on the edge E of O is depicted in thick green, in accordance with
Theorem 6.1.

O

E

• •
•
•
•

•

6.2 Completeness of program guards
Consider a program template

P
def
= x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Fig. 2, Fig. 3, and Fig. 4. We as-
sume that: (i) R is any (finite or infinite) 2-dimensional rectangle in
Int such that its complement ¬R remains a rectangle; (ii) k

i

2 Z
and a

i

are arithmetic expressions which induce completeness for
intervals Int, namely, we suppose that Jx := a1K and Jx := a2K are
complete for Int. Let S be the set of concrete (x, y)-points dy-
namically computed by the body of the while-loop, i.e., if I =

{(k1, k2)} then S = lfp(�X.L R MI [Jx := a1; y := a2KL R MX).
Since the body of the while-loop is complete for Int, we apply The-
orem 6.1 to derive the Int-completeness of P from completeness of
the Boolean guard R for Int. Let us consider the following cases.

(A) If L R MI 6= I , namely L R MI = ?, then the while-loop is not
entered, i.e. S = ?, and the program is trivially complete. For
example:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}
In this case, completeness of R for S is obtained by Theorem 6.1
because Int(S) \ R = ?.

(B) If L R MI = I then the while-loop is entered. If S is infinite
then we have nontermination, that is, an infinite while-loop. For
example:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}
This means that S ✓ R, so that, for any edge E of R, E \
Int(⇡l

E

(S)) = Int(⇡l

E

(S)) = Int(⇡l

E

(S \ R)). Moreover,
Int(S) \ ¬R = ?. Thus, here again, this trivial form of com-
pleteness of P for Int can be inferred from Theorem 6.1.

(C) If L R MI = I and S is finite then the while-loop is entered
and we have termination. This means that S \ R 6= ? and
S \ ¬R 6= ?. For example:

P1
def
=

x := 2; y := 4;while (x > 0) do {x := x� 1; y := y � 1}
P2

def
=

x := 2; y := 4;while (x > 0) do {x := x� 1; y := y}
It turns out that:

S
P1 = {(2, 4), (1, 3), (0, 2)};

S
P2 = {(2, 4), (1, 4), (0, 4)}.

Therefore, by Theorem 6.1, we obtain that R is not complete for
S
P1 while both R and ¬R are complete for S

P2 . Hence, while
for P1 no inference on its Int completeness can be derived, for
P2 our proof system allows us to infer its completeness for Int.

(D) Let us now consider the completeness of the programs P1 and
P2 of point (C) for the Oct abstraction. In the case of the Oct
abstraction, while the completeness of P2 for Oct can obviously
be inferred again by our proof system, here we are also able to
infer the completeness of P1 for Oct. In fact, since S

P1 is an
octagon, the condition of Theorem 6.1 is clearly satisfied both
for R and ¬R, which are therefore complete for S.

7. Building abstract domains from proofs
In this section we refine an abstraction ↵ such that P 2 C

↵

. The
refinement is driven by the proof system. Assume � ✓ Imp and
� 2 uco(}(⌃)). Define

=
�

(�) =

�

P 2 Imp

�

�

� `
�

P

The set =
�

(�) represents the set of all programs which are prov-
ably complete under the hypothesis �. Of course =

�

(?) ✓ C
�

and if � ✓ �

0 then =
�

(�) ✓ =
�

(�

0
). The assumptions in � can

be systematically derived, as in Section 6, by expanding the proof
tree for the program P until its most irreducible elements, which
are always expressions e 2 ImpExp, and by collecting in � those e
such that e 62 E

�

. The following lemma is a direct consequence of
the definitions and proves that for any program P there exists the
minimal set � such that P 2 =

�

(�).

LEMMA 7.1. Let P 2 Imp and let

�

�

P

def
=

�

e 2 ImpExp

�

� e 2 P ^ e 62 E
�

[� ¬e 2 ImpExp

�

� e 2 P ^ ¬e 62 E
�

.

Then P 2 =
�

(�

�

P

) and if P 2 =
�

(�) then �

�

P

✓ �.

Next theorem proves that given the assumptions ��

P

derived in
this way for a program P and an (incomplete) abstraction �, it is
possible to derive an abstraction refinement ↵ v � such that `

↵

P
holds. The theorem relies upon the construction of the complete
shell in [13], specialized for the expressions in �

�

P

where the proof
system fails.

Submission for POPL 2015 9 2014/7/17

IncompletenessCompleteness

A in S can therefore be expressed by

↵(JbKt \ S) = ↵(JbKt \ ↵(S)).

Interestingly, this latter condition coincides precisely with the
weak-completeness property introduced in [14]. This is a weaker
notion of completeness for binary operators where one of the
arguments always belongs to the abstract domain. We recall
from [14] that an abstract domain A 2 Abs(}(⌃)) on the
concrete Boolean lattice2 h}(⌃),✓i is weak-complete for \ iff
A = A _ A, where for any X,Y ✓ }(⌃): X _ Y =

�

x ! y = ¬x [y
�

� x 2 X and y 2 Y

. This holds iff A is
a complete sub-boolean algebra of }(⌃).

In view of this observation we can instrument our proof sys-
tem `

↵

with a specific program analysis, or alternatively as-
sume hypothesis on the properties of the computed states, in
order to generate a proof of relative completeness for a given
program P with respect to ↵ and to its inputs states that make
its guards weak-complete. Assume that 6`

↵

P and that � =

�

b 2 ImpExp \ P
�

� b 62 E
↵

contains only boolean guards
such that JbKt 2 A. This means that the proof of completeness
for P fails along some of its Boolean guards which are expressible
in the abstract domain. This is a highly common scenario in pro-
grama analysis. Let b 2 � one of these guards. If we can guarantee
that all states S in the invariant at the program point of b in P sat-
isfy weak-completeness with respect to JbKt, then we can conclude
that b 2 E

↵

. We can therefore specify a suitable set of rules for
relative guard completeness (Gc), assuming a property on program
states making a Boolean guard complete relatively to these states:

assume[S : ↵(JbKt \ S) = JbKt \ ↵(S)]

b 2 E
↵

[Gc]

It is clear that if S ✓ ⌃, G is the collection of all the assumptions
g
e

made for e 2 � in a proof of `
↵

[Gc P , and for any
g
e

2 G the set of states reaching e from S in P satisfies g
e

, then
↵(JP K(S)) = JP K↵(↵(S)).
6.1 On the completeness of Int- and Oct-Boolean tests
Our goal here is to provide a characterization of the completeness
for the boolean expressions which are representable in the numeri-
cal abstractions Int and Oct. We characterize the sets of all concrete
states that make any boolean expression in Int and Oct complete,
providing therefore a specific formulation for assumptions in the
rules (Gc) for these abstractions.

In order to make our notation as simple as possible, in what fol-
lows we consider the numerical abstractions Int and Oct with two
variables (x, y), i.e., Int,Oct 2 Abs(}(Z2

)). The generalization
to N > 2 variables is conceptually straightforward but notation-
ally tedious. Thus, a (possibly infinite) interval in two variables is
a (possibly infinte) rectangle R in the plane. A rectangle R can
be represented by its (possibly infinite) edges in edges(R), which
are at most four (this is the case of finite rectangles). Similarly,
an octagon O in two variables can be represented by its edges in
edges(O), which are at most eight. Any E 2 edges(R) determines
a line in the integer plane (x, y) which is denoted by l

E

. For any
rectangle R 2 Int, we denote by lines(R) the set of (at most four)
lines in the plane determined by the edges in edges(R). Analogous
notation is used for octagons. Also, if l is a line in the integer plane
(x, y) and S 2 }(Z2

) is any set of points then ⇡l

(S) denotes the
orthogonal projection of S onto l.

2 The results in [14] holds for generic quantales.

THEOREM 6.1. Let R be an Int-boolean test. Then, R is complete
for Int in a set of stores S 2 }(Z2

) if and only if

Int(S) \R 6= ?)
8E 2 edges(R). E \ Int(⇡l

E

(S)) ✓ Int(⇡l

E

(S \R)). (1)

PROOF 5. Since Int(S \ R) ✓ Int(Int(S) \ R) and Int(Int(S) \
R) = Int(S) \ R always hold, let us first observe that R is not
complete for Int in S when

Int(S \R) 6= Int(Int(S) \R) ,
Int(S \R) 6= Int(S) \R ,
Int(S \R) (Int(S) \R.

Moreover, it turns out that the rectangle Int(S \ R) is strictly
contained into the rectangle Int(S) \ R iff there exists an edge
E0 2 edges(Int(S) \ R) such that ⇡l

0
E

(Int(S \ R)) (E0
=

⇡l

0
E

(Int(S) \ R). The following figure helps in explaining this,
where S is the set of bullets, Int(S \ R) is the dashed rectangle
in red, and Int(S) \R is the dotted rectangle in blue.

R

•
•

•

•
•

Since the rectangle Int(S) \ R is contained in R, the latter con-
dition holds iff there exists an edge E 2 edges(R) such that
⇡l

E

(Int(S \ R)) (⇡l

E

(Int(S) \ R). Let us also notice the fol-
lowing equalities which are derived as properties of the orthogonal
projection:

(A) ⇡l

E

(Int(S \R)) = Int(⇡l

E

(S \R));
(B) ⇡l

E

(Int(S) \ R) = ⇡l

E

(Int(S)) \ ⇡l

E

(R) = ⇡l

E

(Int(S)) \
E = Int(⇡l

E

(S)) \ E.

By (A) and (B), we have that ⇡l

E

(Int(S \R)) (⇡l

E

(Int(S)\R)

holds iff Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E. Summing up,
we have proved that R is not complete in S iff there exists E 2
edges(R) such that Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E. It is
now easy to check that this latter condition holds iff ¬(1) holds.
On the one hand, if Int(⇡l

E

(S \ R)) (Int(⇡l

E

(S)) \ E then
Int(⇡l

E

(S)) \ E 6✓ Int(⇡l

E

(S \ R)) and since Int(S) \ R ◆
Int(⇡l

E

(S)) \ E we also obtain that Int(S) \ R 6= ?. On the
other hand, the other implication is trivial. 2

EXAMPLE 6.2. In the following pictures, the set of points S is
determined by the set of bullets. It turns out that R is complete
for Int in S. In fact, for any edge E of R, the projections of S and
S \ R onto E gives rise to the same intervals, which are depicted
in thick blue.

R •
•

•
• •

On the other hand, if the rightmost point of S is placed one step
down, as depicted in the following picture, completeness of R for
Int in S is lost. In fact, for rightmost vertical edge E of R, the
projection of S \ R onto E gives rise to the blue interval which
is strictly contained in the interval determined by the projection of
S onto E: the gap between these two intervals is depicted in thick
red.

Submission for POPL 2015 8 2014/7/17

R •
• •
•

•
Of course, Theorem 6.1 can be stated in general for any N -

dimensional space, with N � 1: in the general formulation, R
in Int is an N -dimensional hyperrectangle (also called orthotope),
S 2 }(ZN

) is any set of points in the N -space, edges of R are
substitued by the 2N facets of the hyperrectangle R and lines de-
termined by edges are N � 1 dimensional hyperplanes determined
by facets.

Furthermore, Theorem 6.1 also holds for octagons in Oct with
the same statement where the abstraction Oct substitutes Int. Here,
in the 2-dimensional case, the edges of an octagon are at most eight
while the Oct abstraction of a projection onto a line boils down to
an interval abstraction.

EXAMPLE 6.3. In the following picture, the octagon O is complete
for Oct in the set of points S depicted by bullets. In the figure,
Oct(S) is depcited in dotted blue, while Oct(S \O) is depicted in
dashed red.

O

•
•
•
•
•

•

On the other hand, if the leftmost point of S is placed two steps
down, as depicted in the following picture, completeness of O for
Oct in S is lost: the gap between the two orthogonal projections
on the edge E of O is depicted in thick green, in accordance with
Theorem 6.1.

O

E

• •
•
•
•

•

6.2 Completeness of program guards
Consider a program template

P
def
= x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Fig. 2, Fig. 3, and Fig. 4. We as-
sume that: (i) R is any (finite or infinite) 2-dimensional rectangle in
Int such that its complement ¬R remains a rectangle; (ii) k

i

2 Z
and a

i

are arithmetic expressions which induce completeness for
intervals Int, namely, we suppose that Jx := a1K and Jx := a2K are
complete for Int. Let S be the set of concrete (x, y)-points dy-
namically computed by the body of the while-loop, i.e., if I =

{(k1, k2)} then S = lfp(�X.L R MI [Jx := a1; y := a2KL R MX).
Since the body of the while-loop is complete for Int, we apply The-
orem 6.1 to derive the Int-completeness of P from completeness of
the Boolean guard R for Int. Let us consider the following cases.

(A) If L R MI 6= I , namely L R MI = ?, then the while-loop is not
entered, i.e. S = ?, and the program is trivially complete. For
example:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}
In this case, completeness of R for S is obtained by Theorem 6.1
because Int(S) \ R = ?.

(B) If L R MI = I then the while-loop is entered. If S is infinite
then we have nontermination, that is, an infinite while-loop. For
example:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}
This means that S ✓ R, so that, for any edge E of R, E \
Int(⇡l

E

(S)) = Int(⇡l

E

(S)) = Int(⇡l

E

(S \ R)). Moreover,
Int(S) \ ¬R = ?. Thus, here again, this trivial form of com-
pleteness of P for Int can be inferred from Theorem 6.1.

(C) If L R MI = I and S is finite then the while-loop is entered
and we have termination. This means that S \ R 6= ? and
S \ ¬R 6= ?. For example:

P1
def
=

x := 2; y := 4;while (x > 0) do {x := x� 1; y := y � 1}
P2

def
=

x := 2; y := 4;while (x > 0) do {x := x� 1; y := y}
It turns out that:

S
P1 = {(2, 4), (1, 3), (0, 2)};

S
P2 = {(2, 4), (1, 4), (0, 4)}.

Therefore, by Theorem 6.1, we obtain that R is not complete for
S
P1 while both R and ¬R are complete for S

P2 . Hence, while
for P1 no inference on its Int completeness can be derived, for
P2 our proof system allows us to infer its completeness for Int.

(D) Let us now consider the completeness of the programs P1 and
P2 of point (C) for the Oct abstraction. In the case of the Oct
abstraction, while the completeness of P2 for Oct can obviously
be inferred again by our proof system, here we are also able to
infer the completeness of P1 for Oct. In fact, since S

P1 is an
octagon, the condition of Theorem 6.1 is clearly satisfied both
for R and ¬R, which are therefore complete for S.

7. Building abstract domains from proofs
In this section we refine an abstraction ↵ such that P 2 C

↵

. The
refinement is driven by the proof system. Assume � ✓ Imp and
� 2 uco(}(⌃)). Define

=
�

(�) =

�

P 2 Imp

�

�

� `
�

P

The set =
�

(�) represents the set of all programs which are prov-
ably complete under the hypothesis �. Of course =

�

(?) ✓ C
�

and if � ✓ �

0 then =
�

(�) ✓ =
�

(�

0
). The assumptions in � can

be systematically derived, as in Section 6, by expanding the proof
tree for the program P until its most irreducible elements, which
are always expressions e 2 ImpExp, and by collecting in � those e
such that e 62 E

�

. The following lemma is a direct consequence of
the definitions and proves that for any program P there exists the
minimal set � such that P 2 =

�

(�).

LEMMA 7.1. Let P 2 Imp and let

�

�

P

def
=

�

e 2 ImpExp

�

� e 2 P ^ e 62 E
�

[� ¬e 2 ImpExp

�

� e 2 P ^ ¬e 62 E
�

.

Then P 2 =
�

(�

�

P

) and if P 2 =
�

(�) then �

�

P

✓ �.

Next theorem proves that given the assumptions ��

P

derived in
this way for a program P and an (incomplete) abstraction �, it is
possible to derive an abstraction refinement ↵ v � such that `

↵

P
holds. The theorem relies upon the construction of the complete
shell in [13], specialized for the expressions in �

�

P

where the proof
system fails.

Submission for POPL 2015 9 2014/7/17

IncompletenessCompleteness

analysis focused on Boolean guards. Let BExp(P) denote the set
of Boolean guards occurring in some program point of P and
assume that the set �

P

of Boolean guards of P which are not
complete on A, i.e., �

P

, {b 2 BExp(P) | b 62 B(A)}, consists
of A-Boolean expressions only. If 6`

A

P then the completeness
proof for P may fail along some guard b 2 �

P

. If we are able
to guarantee that this guard b is complete for any set S of possible
input stores at the program point where the guard b occurs in P then
we can safely conclude that b is complete on A for the purpose of
proving that P is complete on A. We therefore add the following
conditional meta-rule [gc] for the completeness of guards b 2 �

P

:

assume[S : ↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S)]

b 2 B(A)

[gc]

Hence, a conditional completeness proof of P in `

A

[{[gc]}

depends on the collection G

P

of all the assumptions made for the
guards b 2 �

P

. The next step consists in designing some domain-
specific—possibly statically checkable—conditions that allow to
validate all the assumptions in G

P

made in a conditional proof of
P , so as to establish an unconditional proof for P on A.

6.1 Completeness of Int- and Oct-Boolean Guards

Given a set of store, we want to provide a characterization of the
completeness of Boolean expressions which are representable as
intervals or octagons. Namely, we characterize the sets of stores
S that make a Int- and Oct-Boolean expression complete, hence
providing specific conditions for the assumptions of the conditional
rule [gc] for Int and Oct.

In order to keep the notation as simple as possible, in what
follows we consider the abstractions Int and Oct on stores over two
variables (x, y), i.e., S = Z2 and Int,Oct 2 Abs(h}(Z2

),✓i).
Moreover, for any set of concrete points S 2 }(Z2

), we use
Int(S),Oct(S) 2 }(Z2

) to denote the corresponding interval and
octagon abstractions. The generalization to N > 2 variables is
conceptually simple but notationally tedious. In two variables, a
(possibly infinite) interval is a (possibly infinite) rectangle R in the
(x, y) plane. A rectangle R can be represented by its set of edges,
denoted by edges(R), which are at most four (this is the case of
finite rectangles). Similarly, an octagon O in two variables can be
represented by its edges in edges(O), which are at most eight.
Any E 2 edges(R) determines a line in the (x, y) integer plane
which is denoted by l

E

. If l is a line in the (x, y) integer plane and
S 2 }(Z2

) is any set of points then ⇡l

(S) denotes the orthogonal
projection of S onto l. Completeness of Int-Boolean guards is then
geometrically characterized as follows.

R is complete for Int in a set of stores S

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R)).

Theorem 6.1. Let R be a Int-Boolean expression. Then, R is
complete for Int in a set of stores S 2 }(Z2

) if and only if the
following condition holds:

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R)). (⇤)

Proof. Since Int(S \R) ✓ Int(Int(S)\R) = Int(S)\R always
holds, let us first observe that R is not complete for Int in S when

Int(S \R) 6= Int(Int(S) \R) ,

Int(S \R) 6= Int(S) \R ,

Int(S \R) (Int(S) \R.

Moreover, it turns out that the rectangle Int(S \ R) is strictly
contained into the rectangle Int(S) \ R iff there exists an edge

E0
2 edges(Int(S) \ R) such that ⇡lE0

(Int(S \ R)) (E0
=

⇡lE0
(Int(S) \ R). The following figure helps in explaining this,

where S is given by the set of bullets, Int(S\R) is the (red) dashed
inner rectangle, and Int(S) \R is the (blue) dotted rectangle.

R
•

•

•

•

•

Since the rectangle Int(S)\R is contained in R, the last condition
Int(S \ R) (Int(S) \ R holds iff there exists an edge E 2

edges(R) such that ⇡lE
(Int(S\R)) (⇡lE

(Int(S)\R). Also, the
orthogonal projection ⇡lE onto the line l

E

satisfies the following
property: ⇡lE

(Int(S \ R)) = Int(⇡lE
(S \ R)), so that Int(S \

R) (Int(S)\R holds iff Int(⇡lE
(S\R)) (⇡lE

(Int(S)\R). It
is now easy to check that this latter condition holds iff the negation
of (⇤) holds.

Observe that in the condition (⇤) we have that ⇡lE
(Int(S)\R)

is always an interval because Int(S) \ R is always a rectangle.
Furthermore, if S is already a rectangle, namely Int(S) = S,
then condition (⇤) holds so that we have completeness. Let us also
observe that (⇤) is trivially satisfied when one of the following
conditions hold: Int(S) \ R = ? or S ✓ R or R ✓ S. Finally,
if S \ R = ? but Int(S) \ R 6= ?, then (⇤) boils down to
8E 2 edges(R).⇡lE

(Int(S) \ R) = ?, which is always false,
so that completeness does not hold.

Example 6.2. In the following pictures, the set of points S in the
(x, y) plane is given by the set of bullets. Let us first consider the
following example.

R •

•

•

• •

In this case, the rectangle R turns out to be complete for Int
in S. In fact, for any edge E 2 edges(R), the two projections
⇡lE

(Int(S) \ R) and ⇡lE
(S \ R) give the same intervals, which

are depicted with (blue and red) thick lines. Let us now consider
the following modified picture, where the rightmost point of S is
moved one step down.

R •

•

•

•

•

Here, completeness of R for Int in S is lost. In fact, for the
rightmost vertical edge E 2 edges(R), Int(⇡lE

(S \ R)) is the
(red) dashed interval which is strictly contained in the interval
⇡lE

(Int(S)\R) obtained by projecting S onto E: the gap between
these two intervals is depicted by the (blue) dotted segment.

Of course, Theorem 6.1 can be stated in general for a N -
dimensional space, with N � 1: in the general geometric formula-
tion, R is a N -dimensional hyperrectangle (also called orthotope),
S 2 }(ZN

) is any set of points in the N -dimensional space, edges
of R are replaced by the 2N facets of the hyperrectangle R and
lines determined by edges are the (N�1)-dimensional hyperplanes
determined by facets.

Furthermore, Theorem 6.1 also holds for octagons with the
same statement where the abstraction Oct replaces Int. Here, in
the 2-dimensional case, the edges of an octagon are at most eight

analysis focused on Boolean guards. Let BExp(P) denote the set
of Boolean guards occurring in some program point of P and
assume that the set �

P

of Boolean guards of P which are not
complete on A, i.e., �

P

, {b 2 BExp(P) | b 62 B(A)}, consists
of A-Boolean expressions only. If 6`

A

P then the completeness
proof for P may fail along some guard b 2 �

P

. If we are able
to guarantee that this guard b is complete for any set S of possible
input stores at the program point where the guard b occurs in P then
we can safely conclude that b is complete on A for the purpose of
proving that P is complete on A. We therefore add the following
conditional meta-rule [gc] for the completeness of guards b 2 �

P

:

assume[S : ↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S)]

b 2 B(A)

[gc]

Hence, a conditional completeness proof of P in `

A

[{[gc]}

depends on the collection G

P

of all the assumptions made for the
guards b 2 �

P

. The next step consists in designing some domain-
specific—possibly statically checkable—conditions that allow to
validate all the assumptions in G

P

made in a conditional proof of
P , so as to establish an unconditional proof for P on A.

6.1 Completeness of Int- and Oct-Boolean Guards

Given a set of store, we want to provide a characterization of the
completeness of Boolean expressions which are representable as
intervals or octagons. Namely, we characterize the sets of stores
S that make a Int- and Oct-Boolean expression complete, hence
providing specific conditions for the assumptions of the conditional
rule [gc] for Int and Oct.

In order to keep the notation as simple as possible, in what
follows we consider the abstractions Int and Oct on stores over two
variables (x, y), i.e., S = Z2 and Int,Oct 2 Abs(h}(Z2

),✓i).
Moreover, for any set of concrete points S 2 }(Z2

), we use
Int(S),Oct(S) 2 }(Z2

) to denote the corresponding interval and
octagon abstractions. The generalization to N > 2 variables is
conceptually simple but notationally tedious. In two variables, a
(possibly infinite) interval is a (possibly infinite) rectangle R in the
(x, y) plane. A rectangle R can be represented by its set of edges,
denoted by edges(R), which are at most four (this is the case of
finite rectangles). Similarly, an octagon O in two variables can be
represented by its edges in edges(O), which are at most eight.
Any E 2 edges(R) determines a line in the (x, y) integer plane
which is denoted by l

E

. If l is a line in the (x, y) integer plane and
S 2 }(Z2

) is any set of points then ⇡l

(S) denotes the orthogonal
projection of S onto l. Completeness of Int-Boolean guards is then
geometrically characterized as follows.

R is complete for Int in a set of stores S

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R))

Theorem 6.1. Let R be a Int-Boolean expression. Then, R is
complete for Int in a set of stores S 2 }(Z2

) if and only if the
following condition holds:

8E 2 edges(R). ⇡lE
(Int(S) \R) ✓ Int(⇡lE

(S \R)). (⇤)

Proof. Since Int(S \R) ✓ Int(Int(S)\R) = Int(S)\R always
holds, let us first observe that R is not complete for Int in S when

Int(S \R) 6= Int(Int(S) \R) ,

Int(S \R) 6= Int(S) \R ,

Int(S \R) (Int(S) \R.

Moreover, it turns out that the rectangle Int(S \ R) is strictly
contained into the rectangle Int(S) \ R iff there exists an edge

E0
2 edges(Int(S) \ R) such that ⇡lE0

(Int(S \ R)) (E0
=

⇡lE0
(Int(S) \ R). The following figure helps in explaining this,

where S is given by the set of bullets, Int(S\R) is the (red) dashed
inner rectangle, and Int(S) \R is the (blue) dotted rectangle.

R
•

•

•

•

•

Since the rectangle Int(S)\R is contained in R, the last condition
Int(S \ R) (Int(S) \ R holds iff there exists an edge E 2

edges(R) such that ⇡lE
(Int(S\R)) (⇡lE

(Int(S)\R). Also, the
orthogonal projection ⇡lE onto the line l

E

satisfies the following
property: ⇡lE

(Int(S \ R)) = Int(⇡lE
(S \ R)), so that Int(S \

R) (Int(S)\R holds iff Int(⇡lE
(S\R)) (⇡lE

(Int(S)\R). It
is now easy to check that this latter condition holds iff the negation
of (⇤) holds.

Observe that in the condition (⇤) we have that ⇡lE
(Int(S)\R)

is always an interval because Int(S) \ R is always a rectangle.
Furthermore, if S is already a rectangle, namely Int(S) = S,
then condition (⇤) holds so that we have completeness. Let us also
observe that (⇤) is trivially satisfied when one of the following
conditions hold: Int(S) \ R = ? or S ✓ R or R ✓ S. Finally,
if S \ R = ? but Int(S) \ R 6= ?, then (⇤) boils down to
8E 2 edges(R).⇡lE

(Int(S) \ R) = ?, which is always false,
so that completeness does not hold.

Example 6.2. In the following pictures, the set of points S in the
(x, y) plane is given by the set of bullets. Let us first consider the
following example.

R •

•

•

• •

In this case, the rectangle R turns out to be complete for Int
in S. In fact, for any edge E 2 edges(R), the two projections
⇡lE

(Int(S) \ R) and ⇡lE
(S \ R) give the same intervals, which

are depicted with (blue and red) thick lines. Let us now consider
the following modified picture, where the rightmost point of S is
moved one step down.

R •

•

•

•

•

Here, completeness of R for Int in S is lost. In fact, for the
rightmost vertical edge E 2 edges(R), Int(⇡lE

(S \ R)) is the
(red) dashed interval which is strictly contained in the interval
⇡lE

(Int(S)\R) obtained by projecting S onto E: the gap between
these two intervals is depicted by the (blue) dotted segment.

Of course, Theorem 6.1 can be stated in general for a N -
dimensional space, with N � 1: in the general geometric formula-
tion, R is a N -dimensional hyperrectangle (also called orthotope),
S 2 }(ZN

) is any set of points in the N -dimensional space, edges
of R are replaced by the 2N facets of the hyperrectangle R and
lines determined by edges are the (N�1)-dimensional hyperplanes
determined by facets.

Furthermore, Theorem 6.1 also holds for octagons with the
same statement where the abstraction Oct replaces Int. Here, in
the 2-dimensional case, the edges of an octagon are at most eight

Theorem

Two variables x,y and a Boolean guard R
representable in Int, a rectangle, e.g. k1≤x≤k2 ⋀ y>k3

Completeness of guards on Int

IncompletenessCompleteness

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O)). (⇤)

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 2; y := 4;while (x > 0) do{x := x�1; y := y�1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a
generic program statement. Our method follows an orthogonal pat-
tern. We are not interested in refining an abstract domain for ob-
taining completeness with respect to a given class of programs, but

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O)). (⇤)

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 2; y := 4;while (x > 0) do{x := x�1; y := y�1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a
generic program statement. Our method follows an orthogonal pat-
tern. We are not interested in refining an abstract domain for ob-
taining completeness with respect to a given class of programs, but

Theorem

the abstraction in Oct of a projection onto a line boils down to an
interval abstraction. Thus, if O is a Oct-Boolean guard then O is
complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O)).

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem ?? explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure ?? discussed in Section ??, is not com-
plete for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures ??, ?? and ??. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem ?? to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem ??.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 2; y := 4;while (x > 0) do{x := x�1; y := y�1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem ??, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma ??, we have that all the assignments in P1 and P2 are com-
plete for Oct. Moreover, while `Oct P2 can obviously be inferred
as in point (C), here we are also able to infer that `Oct P1. In
fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [?], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 2; y := 4;while (x > 0) do{x := x�1; y := y�1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a

Two variables x,y and a Boolean guard O
representable in Oct, an octagon, e.g. k1≤x≤y ⋀ y>k3

Completeness of guards on Oct

Conditional Proofs of
Completeness in Int

A proof of completeness for P in ⊢α which depends on
all the assumptions made for the Boolean guards of P

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x  0} = [�1, 0] uInt Int(S)]

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Conditional Proofs of
Completeness in Int

A proof of completeness for P in ⊢α which depends on
all the assumptions made for the Boolean guards of P

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x  0} = [�1, 0] uInt Int(S)]

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

S = {9, 8, 7, ..., 0}

Conditional Proofs of
Completeness in Int

A proof of completeness for P in ⊢α which depends on
all the assumptions made for the Boolean guards of P

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Int{x 2 S | x > 0} = [1,+1] uInt Int(S)]

(x > 0) 2 B(Int)

assume[S : Int{x 2 S | x  0} = [�1, 0] uInt Int(S)]

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

S = {9, 8, 7, ..., 0}

Int((x > 0) \ S) = (x > 0) \ Int(S) Int((x  0) \ S) = (x  0) \ Int(S)

With x:=x-1; we don't have "holes" in 0 for S

Conditional Proofs of
Completeness in Oct

completecomplete

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Oct{x 2 S | x > 0} = [1,+1] uOct Oct(S)]

(x > 0) 2 B(Oct)

assume[S : Oct{x 2 S | x  0} = [�1, 0] uOct Oct(S)]

¬(x > 0) 2 B(Oct)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Conditional Proofs of
Completeness in Oct

completecomplete

Oct((x > 0) \ S) = (x > 0) \ Oct(S)

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a

S = {(3, 0), (2, 1), (1, 2), (0, 3)}

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•
•

•
•

=

•
A

•A0
•B

•B
0

= Int

⇣

•
A

•A0
•B

•B
0 ⌘

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property

complete

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Oct{x 2 S | x > 0} = [1,+1] uOct Oct(S)]

(x > 0) 2 B(Oct)

assume[S : Oct{x 2 S | x  0} = [�1, 0] uOct Oct(S)]

¬(x > 0) 2 B(Oct)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Conditional Proofs of
Completeness in Oct

completecomplete

Oct((x > 0) \ S) = (x > 0) \ Oct(S) Oct((x  0) \ S) = (x  0) \ Oct(S)

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a

S = {(3, 0), (2, 1), (1, 2), (0, 3)}

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•
•

•
•

=

•
A

•A0
•B

•B
0

= Int

⇣

•
A

•A0
•B

•B
0 ⌘

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 3; y := 0;while (x > 0) do{x := x�1; y := y+1}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•
•

•
•

=

•
A

•A0
•B

•B
0

= Int

⇣

•
A

•A0
•B

•B
0 ⌘

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property

complete complete

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Oct{x 2 S | x > 0} = [1,+1] uOct Oct(S)]

(x > 0) 2 B(Oct)

assume[S : Oct{x 2 S | x  0} = [�1, 0] uOct Oct(S)]

¬(x > 0) 2 B(Oct)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

No holes in 0

Conditional Proofs of
Completeness in Oct

completecomplete

Oct((x > 0) \ S) = (x > 0) \ Oct(S) Oct((x  0) \ S) = (x  0) \ Oct(S)

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 5; y := 0;while (x > 0) do{x := x�2; y := y+2}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•
•

•
•

=

•
A

•A0
•B

•B
0

= Int

⇣

•
A

•A0
•B

•B
0 ⌘

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property

S = {(5, 0), (3, 2), (1, 4), (�1, 6)}

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 5; y := 0;while (x > 0) do{x := x�2; y := y+2}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•

•

•

•

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-

while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

O is complete for Oct in a set of stores S

8E 2 edges(O). ⇡lE
(Oct(S) \O) ✓ Int(⇡lE

(S \O))

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S \ O) is
depicted with (red) dashed edges. Condition (⇤) holds: for exam-
ple, for the edge E 2 edges(O) in the picture ⇡lE

(Oct(S)\O) =

Int(⇡lE
(S \O)) is the (red) dashed interval.

O

•

•

•

•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O
• •

•

•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E 2 edges(O) is depicted
with a (gray) thick segment, i.e., condition (⇤) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ⌘ x  0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) \ R = hx = 0, 0  x  9i and S \ R = {(0, 9)},
and for the edge E ⌘ hx = 0i 2 edges(R), we have that
⇡lE

(Int(S) \ R) = hx = 0, 0  y  9i is not contained in
Int(⇡lE

(S \ R)) = {(0, 9)}. Instead, this incompleteness does
not arise with Oct because ⇡lE

(Oct(S) \ R) = {(0, 9)} =

Int(⇡lE
(S \R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2;while (x, y 2 R) do {x := a1; y := a2}

which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) k

i

2 Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions a

i

2 AExp are
complete for Int, i.e., a

i

2 A(Int). By assumption (i):

k1 2 A(Int)

`

NR

Int x := k1

k2 2 A(Int)

`

NR

Int y := k2

`

NR

Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 2 A(Int)

`

NR

Int x := a1

a2 2 A(Int)

`

NR

Int y := a2

`

NR

Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =

{(k1, k2)} 2 }(Z2
) is the set of input stores for the while-loop

then S is given by

S = lfp(�X.I [Jx := a1; y := a2KJRKX).

We thus have a conditional proof `

NR

Int P which depends on the
assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R \ S) = R \ Int(S)],

assume[S : Int(¬R \ S) = ¬R \ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ?, then the while-loop is not
entered, so that S = I , and R \ S = ? and ¬R \ S = S. For
example, this happens with:

x := 2; y := 4;while (x < 0) do {x := x+ 1; y := y + 1}

In this case, completeness of R and ¬R for S is a trivial case of
condition (⇤) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ✓ R
and ¬R \ S = ?. This happens, for example, with the program:

x := 2; y := 4;while (x > 0) do {x := x+ 1; y := y + 1}

Here, condition (⇤) for R and ¬R follows trivially because we have
that, respectively, S ✓ R and ¬R \ S = ?.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means that R\S 6= ? and ¬R\S 6=

?. This is the case of the following two programs:

P1 , x := 5; y := 0;while (x > 0) do{x := x�2; y := y+2}

P2 , x := 2; y := 4;while (x > 0) do {x := x�1; y := y}

Here, we have that:

S
P1 = {(2, 4), (1, 3), (0, 2)}; S

P2 = {(2, 4), (1, 4), (0, 4)}.

By condition (⇤), we obtain that R is not complete for S
P1 while

both R and ¬R are complete for S
P2 . While for P1 the assumptions

of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `

NR

Int P2.
(D) Finally, let us consider the analyses of the programs

P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set S

P1 is an octagon, i.e., Oct(S
P1) = S

P1 , the
condition (⇤) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

•

•

•

•

7. Related Work

To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-

complete incomplete

9 2 A(Int)

`Int x := 9

?

(x > 0) 2 B(Int)

?

¬(x > 0) 2 B(Int)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

9 2 A(Int)

`Int x := 9

assume[S : Oct{x 2 S | x > 0} = [1,+1] uOct Oct(S)]

(x > 0) 2 B(Oct)

assume[S : Oct{x 2 S | x  0} = [�1, 0] uOct Oct(S)]

¬(x > 0) 2 B(Oct)

x� 1 2 A(Int)

`Int x := x� 1

`Int while (x > 0) do x := x� 1

`Int x := 9; while(x > 0) do x := x� 1

Figure 7. The derivation tree proving the completeness of the program P on the abstraction Null.

On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = h0  x  3, 0  y  2, 0  z  4,

2  x+ y  3,�2  x� y  3, 0  x+ z  7,

� 1  x� z  0, 2  y + z  4,�4  y � z  2i.

We consider the store (1, 2, 2) 2 Oct(S) so that (4, 2, 2) 2

Jx := 2 ⇤ yKOct(S) ✓ Oct(Jx := 2 ⇤ yKOct(S)). However, we
have that (4, 2, 2) 62 Oct(Jx := 2 ⇤ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ⇤ yKS) (
Oct(Jx := 2 ⇤ yKOct(S)), i.e., x := 2 ⇤ y 62 C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=

a ⇤ y + k and x := a ⇤ x+ k, where a 2 {�1, 0, 1} and k 2 Z.

Proof. Consider x := a ⇤ y + k with a 2 {�1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ⇤ y + kK 2 C(Oct) iff for any octagon
oct 2 Oct:

max({T 2 }(S) | Jx := a ⇤ y + kKT ✓ oct}) 2 Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y  k. It turns out that this also
happens for a 2 {�1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a  x  b provides the relation a � k  y  b � k; for
a  x � y  b the relation a  k  b, which can be true or false
(and in this case we obtain the empty octagon); for a  x+ y  b
the relation a � k  2y  b � k, which is equivalent (integer
variables) to d(a� k)/2e  y  b(b� k)/2c; for a  x± z  b,
where z 6= y, we obtain a � k  y ± z  b � k. Thus, in
each case we obtain a variable relation of the shape ±x ± y  k,
i.e., max({T 2 }(S) | Jx := y + kKT ✓ oct}) is an octagon. A
similar analysis applies to the remaining cases x := �y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting

relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards

We argued that the main problem in proving `

A

P lies in the fact
that in general it is hard to prove that b 2 B(A) and ¬b 2 B(A)

for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `

A

. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction A
↵,�

2 Abs(}(S)) and
a Boolean predicate b 2 BExp. We use the following notation:
JbKt , {⇢ 2 S | LbM⇢ = t}. If ↵(JbKS) = JbK↵↵(S) holds for
a given S 2 }(S) then b is called complete for A in S. Since
this condition is equivalent to ↵(JbKS) = ↵(JbK�(↵(S))) and
JbKS = JbKt

\ S, we have that b is complete for A in S when
↵(JbKt

\ S) = ↵(JbKt

\ �(↵(S))).
Now, let us consider some b 2 BExp which is representable

in the abstract domain A, that is, JbKt

= �(↵(JbKt

)) holds — we
call them A-Boolean expressions. For example, x  k1 ^ y > k2
is a Int- and Oct-Boolean expression, while k  x ^ x  y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

↵(JbKt

\ �(↵(S)))= ↵(�(↵(JbKt

)) \ �(↵(S)))

= ↵(�(↵(JbKt

) ^

A

↵(S)))=↵(JbKt

) ^

A

↵(S)

so that completeness of b for A in S corresponds to require:

↵(JbKt

\ S) = ↵(JbKt

) ^

A

↵(S).

We instrument our proof system `

A

with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static

Hole
in 0

COMPLETENESS IN ABSTRACT INTERPRETATION

Cousot &
Cousot '79

Numerical Domains

Comparative Semantics

Language-Based Security

Model Checking
Types STE
Groundness & strictness

 -calculus & LogicAliasing
Bisimulation

Giacobazzi
Ranzato

Scozzari '00

Steffen '89

Mycroft '92

µ

c⃝Giaco – Cagliari 2012 – p.28/50

Completeness in Abstract Interpretation

Giacobazzi
et al

POPL’15

?
obfuscation

Analysis of
Analyses

• Proving is a really hard task!
• Only guards & bca assignments matter!
• Refined proofs can be obtained for numerical

abstractions
• With Cousot&Cousot POPL14, this is the very first

analysis of analyses
• Can failing proofs be used for (local) abstract

domain refinement ?
• Can we type analyses by precision ?
• Can we refactor code to achieve completeness ?

P 2

typical elements ⇢. If |Var(P)| = n then ⌃ is also represented as a
set of n-tuples of values, i.e., ⌃ = Vn.

The functions JaK : ⌃ �!Z and JbK : ⌃ �!{f , t} respec-
tively denote the semantics of expressions and predicates in a given
state ⇢ 2 ⌃. The function L b M : }(⌃)�!}(⌃) lifts the semantics
of predicates to sets of states S 2 }(⌃) in the natural way:L b MS def

= {⇢ 2 S | JbK⇢ = t}.
We define the reachable states denotational semantics JC K :

}(⌃)�!}(⌃) as:JskipKS def
= SJx := aKS def
= {⇢[x 7! JaK⇢] | ⇢ 2 S}JC1 ;C2 KS def
= JC2 K(JC1 KS)Jif b then C KS def

= JC KL b MS [L¬b MSJwhile b do C KS def
= L¬b M�lfp(�T. S [JC KL b MT)�.

Note that for an always non-terminating program P , for any set
of states S we have JP K = ?. In the following we will always
assume recursive enumerable sets of states in }(⌃) as arguments
of semantic functions.

The best correct denotational semantics is defined for any
generic abstraction A 2 Abs(}(⌃)) such that A = ↵(⌃). We
first define the best correct transfer function for predicates on A:L b M↵ : A�!A, such that for any S 2 A:L b M↵S = ↵(

�

⇢ 2 S
�

� JbK⇢ = t

)

The generic abstract denotational semantics JC K↵ : A�!A is
derived as the best correct approximation of the concrete semantics
by composing abstract transfer functions and by approximating
concrete disjunctions of stores through their join in the abstract
lattice A. Let S 2 A:JskipK↵S def

= SJx := aK↵S def
= ↵({⇢[x 7! JaK⇢] | ⇢ 2 S})JC1 ;C2 K↵S def
= JC2 K↵(JC1 K↵S)Jif b then C K↵S def

= L¬b M↵S t JC K↵(L b M↵S)Jwhile b do C K↵S def
= L¬b M↵�lfp(�X.↵(S) t JC K↵L b M↵X)

�

In the abstract fixpoint computation for a while-loop, standard
static analyzers replace the lub t with a widening operator r to
accelerate or force the convergence of the iterations [4]. These
analyses are not in the scope of the present paper.

4. The class of complete abstractions
Following the standard definitions in abstract interpretation (cf.
[4, 5]), an abstraction A = ↵(}(⌃)) is complete for a program
C 2 Imp when for all set of stores S 2 }(⌃):

↵(JC KS) = JC K↵↵(S).
The abstraction ↵ is complete for a Boolean test b when:

↵(L b MS) = L b M↵↵(S)).
Given a program P , checking whether the abstraction ↵ is complete
for P by computing the completeness shell or core of ↵, as intro-
duced in [13], is often too complex: the refinement indeed generates
an abstract domain which is complete for all programs involving
the syntactic objects in P and for all possible query. This makes the
complete shell/core transformations a global domain-theoretic tool
which is too strong for attacking questions conceding the behavior
of an analysis on a given program. This can be better explained by
introducing the notion of program query.

4.1 Program Queries
The goal of a static analysis/verification tool is to soundly answer
some question on the dynamic (concrete) execution of the program.
For instance, common queries to static analysis tools are: “is this
variable not-null?”, “Is this variable non-negative?”, “Does this
loop ever terminate?”. The first two are examples of safety prop-
erties, the third of a liveness property. Here, we focus on safety
properties. Given a program P , a set of initial states I ✓ ⌃, and a
predicate/query q we are interested to know whether the final states
satisfy the query, i.e., whether the following formula holds:

8⇢0 2 I, ⇢1 2 ⌃. JP K(⇢0) = ⇢1 =) JqK⇢1 = t.

or equivalently whether JP K(I) ✓ L q M(JP K(I)). However, we
cannot decide it for each possible query. Therefore, we need to
over-approximate the collecting semantics JP K with JP K↵ and to
under-approximate L q M(JP K(I)). In general the abstract domains
used for the two approximations may be different, this is for in-
stance the case when a numerical abstract domain (e.g., intervals,
Octagons) is used to infer variable bounds and an SMT solver is
used to check the absence of buffer overruns. Here we are interested
in the case where there is no under-approximation of the query, that
is we require: (i) the two abstract domains to coincide; and (ii) the
query to be exactly represented in the abstract domain. For instance
the query x � y ^ y � 0 is exactly represented with octagons but
not with intervals — the best approximation with intervals being
x � 0 ^ y � 0.

The key observation is that if the query is exactly representable
in the abstract domain and the abstract semantics for a program P

is complete, then answering the question in the abstract is the same
as answering it in the concrete, i.e., no imprecision (for the given
program) is introduced by the abstraction. This is summarized by
the following lemma, which comes straight from the definitions.

LEMMA 4.1. If q is a query and P a program such that ↵(JP K) =JP K↵ then JP K(I) ✓ L q M(JP K(I)) iff JP K↵I v L q M↵(JP K↵(I)).
4.2 Classes of Completeness
From Lemma 4.1 it follows that the abstract interpretation designer
has only to focus on the set of programs that are complete for the
property of interest expressed in an abstract domain A. The same
notion can be defined for predicates and expressions. We call these
sets the class of completeness for A:

DEFINITION 4.2 (Completeness classes). Given an abstract do-
main A 2 Abs(}(⌃)) such that A = ↵(}(⌃)), the class of all
programs for which the abstract interpretation in A is complete is:

C
↵

def
=

�

P 2 Imp

�

� ↵(JP K) = JP K↵

Similarly we can define a completeness class of all Boolean expres-
sions.

E
↵

def
=

�

q 2 ImpExp

�

� ↵(L q M) = L q M↵

.

Roughly, the class of completeness of a programming language
defines the set of all programs for which a given abstraction will
never produce false alarms. This is a property of programs with
respect to the given abstraction. It is worth noting that this property
is infinite and not extensional (cf. [22]). It is infinite because for
any abstraction ↵ which is a computable function: |C

↵

| = !.
This can be proved by a straightforward padding argument and by
observing that skip 2 C

↵

for any ↵. It is not extensional because
there exist P,Q 2 Imp such that: P is complete for ↵, JP K =JQK, and Q is not complete for ↵. This phenomenon is known
in programs analysis (e.g., see [17]) where semantics preserving
program transformations may loose precision of analyses.

Submission for POPL 2015 4 2014/7/17

?

Challenges

Thank you!

Francesco FrancescoNeilIsabellaMila

&

Obfuscation & Security Completeness

