Walls, Gates, and Guards

Thomas Gross
ETH Zurich

Joint work with A. Barresi (xorlab) and M. Payer (Purdue)

Laboratory for
e o Software
Z uric h Technology

In case you want to leave ...

= “Safe” languages, and verification and analysis tools, allow
us to build software systems that are shielded from attack

= Like a walled city — can’t get in
* Programs written in “unsafe” languages are plentiful

* These languages are useful — like gates in a wall

* You may not know you are using one

= Until tools easily handle such languages we should use the
abundance of computing cycles to protect systems

" Guards and standing armies made cities secure and functioning

= Dynamic control-flow integrity is a promising technique to
detect attacks that exploit memory errors

Memory-safe languages

= Automatic memory management

= All address arithmetic hidden from user

= No buffer overflows, out-of-bounds array accesses, arbitrary type
conversions, ...

= Restrict memory space that can be accessed by user
program

= Either by language design or by static code analysis

= Hope: a weapon against memory errors

= Memory error: any corruption of memory

Memory errors & vulnerabilities

Come in various forms ...

= Allow attackers to corrupt memory in a more or less
controllable way

* Problem: modification of arbitrary memory location

= Worst case: attackers gain right to execute arbitrary code

= Exist in programs written in “unsafe”
languages that do not enforce memory safety

Safe languages

= Just use a memory-safe language ?

Safe languages

= Just use a memory-safe language ?

= Popular memory-safe languages based on a virtual
machine (VM)

= “Language VM”, e.g., JVM
= Provides framework for access control
= Provides environment for multi-tier compilation (performance)

Safe languages

= Just use a memory-safe language ?

= Popular memory-safe languages based on a virtual
machine (VM)

= But “language VM”

= May be implemented in an unsafe language
= May use or provide interface to unsafe libraries

= Memory errors are still an issue

Attacking safe language VMs

= Example: Java VM

= (CVE-2013-1491
= Target: OraclelavaSE7/6/5

= Memory error in OpenType fonts handling within native layer of JRE

= Leveraged to arbitrary code execution
= Completely bypassed state-of-the-art defenses
(DEP & ASLR — later more)

Demonstrated at Pwn20wn at CanSecWest 2013 by Joshua Drake (on Windows 8 + Java SE 7 Update 17)
http://www.accuvant.com/blog/pwn2own-2013-java-7-se-memory-corruption
https://media.blackhat.com/bh-ad-11/Drake/bh-ad-11-Drake-Exploiting_Java_Memory_ Corruption-WP.pdf

Memory errors still an issue

= Language VMs for “safe” languages implemented in
“unsafe” language
= “Unsafe” languages like C/C++ are still very popular

= Prediction: C/C++ will be with us for a long time
= Yes, there are alternatives sometimes

" Yes, the list of alternatives is growing ... for some situations

= So we should take a look

http://www.langpop.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Memory errors

= Old problem: modification of arbitrary memory location

= Memory errors can lead to serious security vulnerabilities

= Worst case: attackers gain arbitrary code execution capabilities

Common vulnerabilities and exposures (CVE)

High Severity Medium Severity Low Severity
40
36.29 %
35
31.39 %
30 28.89 %
25
% of total)
CVEs 20 19.84 %
15
10 8.05 %
5
275 % 3.34 %
0 01%]] 0%
% 3 IS) Q 2 IS
S g & S g & 8
& O S & O S & O O
& X -9 & % -9 & % -9
$ & F $ & 8 $ &
& A & g & &
S S S

Total CVEs, with ,Insufficient Information“ excluded: 25'298, time span: 1.1.2009 — 26.8.2014
https://cve_ mitre_org/ Memory Errors: CWE-119, CWE-399 ,use after free”, CWE-189 in High / XSS + CSRF: CWE-79, CWE-352 / SQL Injection: CWE-89

Modern software stack

Jzivzl
Agoliezition,
SENANES

VBB IOWSEN; JaVvarvivi

Cllap)i=silele
Application Sierl o

Elorzifles & el

OPErAUNGRSYSEn

Software Stack

Hardware

Modern software stack

- GlEnEsine Jave

- . Aogollezitor]
Application Sierl o 2 Libraries

Weo Srowss o Java W

Elorzifles & el :ﬁ.

Software Stack

OPErAUNGRSYSEn *

Hardware

4 Potentially prone to memory errors & corruption

Java VM written in C/C++

Java Application Process

Java
Agoliezition,

Jeivzzl AR & Elorziries

EXEcUtoRERNGME=N N NEE

Javanvivi

Software Stack

Llorzifles

OPErANGRSYStEn

Safe languages (VM based)

= Attacker may exploit memory errors
" |ntheVM

= |n unsafe libraries used by VM or application

Java VM written in C/C++

Java Application Process

Java
Agoliezition,

Jeivzzl AR & Elorziries

EXEcUtoRERNGME=N N NEE

g Javanvivi
Elorziries &

Software Stack

OPENALNGISYSIERIN W

Hardware

¥

Potentially prone to memory errors & corruption

“Unsafe” languages

= Allow low-level access to memory
= Typed pointers & pointer arithmetic

= No automatic bounds checking or index checking

= Weakly enforce typing

= (Cast (almost) anything to pointers

= Explicit memory management
= Like malloc() & free() in C

Types of memory errors

= Spatial error

*ptr >

ANV AORIECT

start—»>

De-reference pointer that is out
of bounds

Read or Write operation

= Temporal error

*ptr »

De-reference pointer to freed

memory

Read operation

Exploiting memory errors

= Spatial error

*ptr ->
Attacker Supplied Data
Overwrites/Reads Data/Pointers

ANV VAOR]ECT

start—»>

Overwrite data or pointers

Used or de-referenced later

= Temporal error

*ptr->

Make application allocate
memory in the freed area

Used as old type

Attackers use memory errors to

= QOverwrite data or pointers

= Function pointers, sensitive data, index values, etc.

= Mislead information

= E.g., corrupt a length field

= Construct attacker primitives

= Write primitive (write any value to arbitrary address)

= Read primitive (read from any address)

Attack types

= Code corruption attack
= Control-flow hijack attack
= Data-only attack

* |nformation leak

Attack model according to: ,sok: eternal war in memory“ laszlo szekeres, mathias payer, tao wei, dawn song
Http://www.Cs.Berkeley.Edu/~dawnsong/papers/oakland13-sok-cr.Pdf

Attack types

= Code corruption attack
= Control-flow hijack attack
= Data-only attack

» |nformation leak

Attack model according to: ,sok: eternal war in memory“ laszlo szekeres, mathias payer, tao wei, dawn song
Http://www.Cs.Berkeley.Edu/~dawnsong/papers/oakland13-sok-cr.Pdf

Control-flow hijack attacks

= Most powerful attack

= Hijack control-flow

= To attacker-supplied arbitrary machine code

= To existing code (code-reuse attack)

= Corrupt code pointers

= Return addresses, function pointers, vtable entries, exception
handlers, jmp_bufs

Control-flow hijack attacks

= Most ISAs support
indirect branch instructions

= E.g., x86 “ret”, indirect “jmp*“, indirect “call”

= fptris a value

: fptr:
In memory Oxafe08044 =>| U.jU3530)

at Oxafe08044
* branch *fptr 0x08056b30 [COUE

Control-flow hijack attacks

= fptris a value in memory at Oxafe08044
= branch *fptr

fptr:
= fptr was corrupted Oxafe08044 - Corrupted
by an attacker
0le)e]

vieje]-

St

= Attacker goal: hijack control-flow to injected machine code
or to “evil functions”

Control-flow hijack to injected code

OxFfffffff

STACK:

rlezie)

Ux054a4'504 Oxe0fa4404

code
call *0xe0fa4404 ekl

func: 0x084a4504 |

0x00000000

Indirect call to func()

Oxffffffff

Attacker

& OxIessts —

rlezie)
Oxfffc8408

Oxe0fad4404

code
call *Oxe0fad4404 +— %eip

fu nc. 0x084a4504

0x00000000

Hijacked indirect call

State of the art defenses

= Non-executable data
= NX bit

= Data Execution Prevention (DEP)

= OS support

Non-eXecutable data (NX)

OxFfFfffff

= Make data regions
non-executable
(by default)

m‘ data
Heap

= Changing protection
flags or allocating rwx
memory still possible
(on most systems)

Code
call/jmp/ret

= Required for JITs <code from

0x00000000

NX / DEP

= Binary images need to provide separate sections/segments
that can be mapped exclusively as rw- OR r-x

= Linker support required

= Self-modifying code not allowed

= Compiler support required

= |f code is generated just-in-time, explicit rwx allocation required

Bypassing NX / DEP

OxFfffffff

= Only use existing code

STACKE e

- data

" Code-reuse attack B
= ret2libc, ret2bin, ret2* attacks

= Return-oriented programming (ROP) Heap Code 8
aata

= Jump/Call-oriented programming

= Use code-reuse technique to Gode
change protection flags

= Alllocate or make
memory executable

= mprotect/VirtualProtect 0x00000000

= mmap/VirtualAlloc

Return-oriented programming (ROP)
Sebp

= Use available code snippets ending
with ret instruction

address gadget4
address gadget3
dummy value
address
address gadget2
value
address gadget1
dummy ebp

= Called gadgets or ROP chain

Stack

= E.g., write primitive

esp -+

POPYoEUXs 1

rets buf{1024]

POPIY0E XS 2

POPIYoEXE
fet;

Code

MOVAY/oedXaN/0eaXy)5
MoOVISOX0Ns6aX%s
Iet;

Return-oriented programming

= Very powerful!

= Turing complete although not required

"= Need to be in control of memory $esp is pointing to

= Or make %esp point to area under control

= Also possible with ymp or call gadgets

= Complicated to keep control and dispatch to the next gadget
= Generalization: Gadget-Oriented Programming

Addresses in memory

= To hijack control-flow or to corrupt memory an attacker
needs to know where things are in memory
= Addresses of data or pointers to corrupt
= Addresses of injected code (shellcode)

= Addresses of gadgets

= Sometimes it's enough to know the rough location but most
of the time attackers need the exact location

= Corrupting only least significant bytes i.e. an offset might work in
some special cases (but not in general)

ASLR

= Today most operating systems implement Address Space
Layout Randomization (ASLR)

= What can be randomized?

= OS: Stack, heap and memory mapping base addresses
= OS, compiler, linker: Exectuables and libraries

= Position-independent or relocatable code

Bypassing ASLR

= Low entropy

= Brute-force addresses
(multiple attempts required)

= Memory leaks (information disclosure)

= Leak addresses to derive base addresses
= E.g., run-time address pointing into a library
= Construct and enforce a leak by memory corruption

= Application and vulnerability specific attacks

Memory leak

¢l |U,2]0,¢! STACK

4096

addressishelicode Ux0erad60?

? | address mgroisei()
Uy 29 |
OUfl 2] HEeap
Ahv&klﬁ’S" r
|
(‘,o)e'g
ESHEIICOU e 0x0efad4604 libc data
static
offset { HeJe
0x0ebb088 mprotect:
0x0dfff000
libc base]

vuinExecutable

mprotect = leaked pointer — static offset

| 0x0ebb0880}=|0x0efa4604 - Dx003f3d84

Generic defense: DEP & ASLR

= DEP: Data Execution Protection

= ASLR: Address Space Layout Randomization

= Exploitation becomes harder for all vulnerability classes & attack
techniques

= Together quite effective

= |f implemented correctly and used continuously

= But DEP and ASLR not enough

Compile-time protection

= Usually require source code changes (annotations) and/or recompilation
of the application

= To add run-time checks

= Stack canaries / Cookies

= Pointer obfuscation

= /GS (buffer security check)

= [SAFESEH (link-time, provide list of valid handlers)

= SEHOP (run-time, walk down SEH chain to final handler before
dispatching / integrity check)

= Virtual Table Verification (VTV) & vtguard

= Control-Flow Guard (new in Visual Studio 2015)

Stack canary / cookie

void vulnFunc() {
<copy canary>
char buf[1024];
read(STDIN, buf, 2048);

<verify canary>

copy canary

STACKIGCANANY,

%ebp —

Y%esp—>

Stack during vulnFunc()

NG ISICCHETEITIE

returnraddress
Sayvedien;
STACK canany;

ouil vz

Stack canary / cookie

void vulnFunc() {
<copy canary>
char buf[1024];
read(STDIN, buf, 2048);

<verify canary>

Stackecanary,

COpy canary
%esp —>

verify canary

%ebp —

%esp —>

Stack during vulnFunc()

rriziinl() sicle jreine

returniaddress
Savedienp
StaCkecanarny,

OUi[24|

Stack at function exit
overwritten frame

overwritten retaddr
overwritten ebp
overwritten canary

bUF[1024]

rw-

Stack canary / cookie

= Detects linear buffer overflows on stack

= At function exit

= Corruption of local stack not detected

= Only if canary / cookie value is overwritten

= |ncurs runtime overhead

= Effectiveness relies on secret

= Leaking, predicting, guessing or brute-forcing might work in special
cases

DEP & ASLR

= DEP & ASLR are not enough

= A determined attacker will use code-reuse techniques and
memory leaks to bypass DEP & ASLR

= And application specific bypasses/properties

More defenses

= DEP and ASLR based on memory model

= Prevent/complicate attacker access to memory

= Programs execute instructions

* More involved than use of memory

= Goal: protect program execution

Attacker model

= Let's assume a powerful attacker

= Can arbitrarily corrupt data and pointers

= Can read entire address space of a process

= Only restriction on attacker:
= No data execution and no code corruption (NX/DEP/W*~X)

Question

= Can we still prevent arbitrary code execution and code-reuse
attacks?

Observations

= Attacker needs to hijack control-flow

= To injected or existing code

= VM/runtime system must ensure that control-flow stays
on the intended legitimate path

= As allowed by compiler resp. control-flow graph (CFG)

Control-flow integrity (CFl)

= Construct a control-flow graph (CFG)

= Should be as strict as possible

= Ensure that control-flow stays within CFG

Control-flow integrity (CFl)

= QOriginal publication in 2005

= “Control-Flow Integrity — Principles, Implementations, and
Applications”

= M. Abadi, M. Budiu, U. Erlingsson, J. Ligatti

= CCS'05 (ACM Trans. on Information and System Security (TISSEC) 13(1) Oct
2009)

= Many CFl implementations were proposed during recent
years

= Compiler-based

= Binary-only (static rewriting)

Control-flow integrity (CFl)

= Construct a control-flow graph (CFG)

= Should be as strict as possible

= Ensure that control-flow stays within CFG

= If no path within the CFG can be misused by an attacker then
the CFl policy can be considered secure

Control-Flow Integrity (CFl)

e

o

O Basic block

—" Direct branch
Indirect branch

Hijacked control-flow

T

Tet

*e
..

O Basic block

—" Direct branch
Indirect branch

Control-Flow Integrity (CFl)

an ?;
"
s
*
4
¢

O Basic block

—" Direct branch
Indirect branch

Control-Flow Integrity (CFl)

P

o’

O Basic block

—" Direct branch
Indirect branch under CFl

Control-Flow Integrity (CFl)

s g
Mp‘ %
’f
"
L 4
L4
.'
W
&
L]

§

[]

y

n
5

s
f"’

(
*
*
.
.
L]

a
L
.
LS
-
o| ‘__‘-

O Basic block

—" Direct branch
Indirect branch under CFl

Control-Flow Integrity (CFl)

s g
My‘ %
’f
"
L 4
L4
.'
W

&

L]
§
[]

= L4
*
*
.

'0
.
[40,
a
. r) — ’0’
v r +%
k 4
L 4
+
v L

i

\/JQ@JQJ\J

O Basic block

—" Direct branch
Indirect branch under CFl

Control-flow integrity (CFl)

= Drawbacks of proposed solutions

= Too permissive CFG due to over-approximation
= Need to recompile

= No support for shared libraries

= Most solutions shown to be ineffective

= “Hardened” exploits still worked under CFI

Control-flow integrity (CFl)

= Static CFl not enough: Dynamic approach necessary
= Dynamic CFl

Lockdown — dynamic CFlI

= Enforces a strict CFl policy for binaries
= Supports shared libraries & dynamic loading

= Constructs and enforces CFG at runtime

= Using static and dynamic information

Lockdown — dynamic CFI

c

Lockdown = -

o £

E ©

o O

Loads 10

ELF s Vo

DSOs _5

i E -E

@ S

o €

Q O

< QO

User

Kernel SystemiCaliinterface

read only readable + executable

CFT: Control-Flow Transfer, ICF: Indirect Control-Flow,
ELF: Executable and Linkable Format, DSO: Dynamic Shared Object

Lockdown — design

= Dynamic binary translation to instrument code with
additional CFT checks

= Basically a user-space VM
= Ensures no untranslated code is ever executed

= A trusted loader loads ELF dynamic shared objects (DSOs)
and provides symbol information for CFG construction

Mathias Payer, Tobias Hartmann, Thomas R. Gross: ,Safe Loading - A Foundation for Secure Execution of
Untrusted Programs® IEEE Symposium on Security and Privacy 2012: 18-32

Lockdown — design

= Separation of domains achieved by

= Separate memory areas
= Randomization of locations
= Trampolines

= |nformation leak prevention

= Stronger guarantees achieved by marking Lockdown areas as
read-only during code-cache execution

Lockdown — attacker model

= Like in general CFl Attacker Model

= Can arbitrarily corrupt data and pointers in application domain

= Can read entire address space of application domain

= Only restriction on attacker
= No data execution and no code corruption (NX/DEP/W*~X)

Lockdown — High-Level CFI policy

= call policy
= Allow calls to imported & exported symbols

= Allow calls to local symbols

*= jmp policy
= Allow local jumps within symbol boundaries

= Allow jumps to local symbols

= ret policy

= Shadow stack (allows reauthentication)

Lockdown — CFl policy for calls

/bin/<exec> /lib/libc.s0.6 /lib/lib*

exported imported exported imported exported imported
ifunc*

: _dr
LAY

mprotect

funcB

[symbol table of ELF DSO = allowed control flow transfer
[textsectionofDSO v > illegal control flow transfer

Lockdown — CFI policy for returns

* |nstrument calls and returns

= Return address pushed to a shadow stack

= Upon return: return address is compared to value on shadow stack

= Resynchronization possible

= |f values don't match raise exception

Lockdown — CFI policy for returns

= call instrumented such that

= Return address is pushed onto the
shadow stack and the application stack

= Control-flow is transferred to callee

Stack at call

%ebp —

czlller giele

KETEIE!

%esp —>

Shadow Stack

returnradare:

returnradare:

returniadare:

top —

Lockdown — CFI policy for returns

= call instrumented such that

= Return address is pushed onto the
shadow stack and the application stack

= Control-flow is transferred to callee

%ebp —

Y%esp—>

Stack after call

celllar srzie fralrr e

eturnaduressio:

SAVEU e

loezl] vers

top —

Shadow Stack

et audresSSsio

LeturnaudresSsH

return addrass

returniaddress

Lockdown — CFI policy for returns

= ret instrumented such that

= Return address on the application stack
is compared to value on shadow stack

= |f values differ, try to resynchronize else raise exception

Stack at ret Shadow Stack

%ebp —

eturnacadressio
LeturnaudresSsH

eturniadaressio

%esp —>

SEVEUIEN)

loez] vars

Lockdown — challenges

= Detection of callbacks & function pointers

= No information regarding types at runtime

= |f stripped, no extended symbol information

= Coarser-grained CFG

= Control-flow transfers do not always adhere to the rules
presented

= QOverhead of CFT checks

Lockdown — implementation

= Heuristics for function pointer detection

" Eg,“leal imm32 (%ebx), $%$e*x”
= E.g., relocation entries like R_386_ RELATIVE

= Special handling of control-flow specifics
= E.g., PLT inlining

= E.g., whitelisting of runtime support CFT

= Several inlined performance optimizations

Preliminary performance evaluation

= SPEC CPU2006
= 29 programs

= Total 27 benchmarks

= 2 benchmarks missing

= Tool chain problems

Lockdown — good and bad performance

Benchmark BT overhead Lockdown overhead

Intel Core i7 CPU 920@2.67 GHz with 12GiB Ubuntu Linux 12.04.4 LTS 32-bit
x86 / gcc 4.6.3

= Avg overhead Lockdown: 19.09%

= QOverhead binary translation alone: 14.64

= Most benchmarks overhead below 20%
= Only 5 benchmarks over 45%

Under Submission

Lockdown — security evaluation

= Unfortunately most static CFl solutions were shown to be
ineffective

= (D)AIR bad in measuring CFI security effectiveness
= LibreOffice has 56'417'429 bytes of executable memory

= 99% (D)AIR allows 1% of the bytes as attacker targets
= 564'174 potential targets

= Attacker normally just needs a handful of gadgets to mount a
successful code-reuse attack

Dynamic CFlI

= Key idea: use binary translator to rewrite program on the fly

= Practical solution

= Works for arbitrary x86 binaries

= No source code needed

= Binary translator adds overhead

" Less than 15% for many programs

Dynamic CFlI

= Key idea: use binary translator to rewrite program on the fly

= Practical solution

= Works for arbitrary x86 binaries

= No source code needed

= Binary translator adds overhead

" Less than 15% for many programs

= Binary translator with dynamic CFl guards against (some)
attacks

= No complete protection

Lockdown — dynamic CFI

c

Lockdown = -

o £

E ©

o O

Loads 10

ELF s Vo

DSOs _5

i E -E

@ S

o €

Q O

< QO

User

Kernel SystemiCaliinterface

read only readable + executable

CFT: Control-Flow Transfer, ICF: Indirect Control-Flow,
ELF: Executable and Linkable Format, DSO: Dynamic Shared Object

Thanks to

= Antonio Barresi

= Now at xorlab

= Mathias Ganz

= Now at xorlab

= Mathias Payer

= Now at Purdue

Concluding remarks

= Control-flow integrity protects program execution paths
= Static CFl elegant but not practical
= Dynamic CFl offers chance to block wide avenue

= More work needed
= |mplementation

= Evaluation models

= Spend cycles on guarding execution of programs

= No (user) program should run on bare hardware

= A layer of indirection adds overhead — but protects

Thank you for your attention

Laboratory for
e o Software
Z uric h Technology

