Combining Static Analysis and Machine
Learning for Industrial-quality
Information-flow-security Enforcement

Marco Pistoia

IBM T. J. Watson Research Center
Yorktown Heights, New York

Workshop on Software Correctness and Reliability
ETH Zurich, October 2015




Joint Work with...

e Omer Tripp
e Patrick Cousot
e Radhia Cousot

e Salvatore Guarnieri
e Aleksandr Aravkin




Part 1

MOTIVATIONS



Top Web/Mobile ._ O JASP

Open Web Application

Vulnerabilities oy Al

i i

Using
Components with

Broken

Blinformation Flow [ Access Control | |Configuration

i




Injection

) s

OO OO EOK

. AO»—A»——‘O

Ve »

AEE: 2
====nc

- -

OO

Usernamae: ’foo';drop table custid;--

Password: “

Login

Date: April 20, 2011

Target: SONY’s PlayStation
Network

Impact:

e 77 million PlayStation Network
accounts hacked

e Attackers gained access to full
names, passwords, e-mails, home
addresses, purchase history, credit
card numbers, and PSN/Qriocity
logins and passwords

e SONY i1s said to have lost millions

while the site was down for a month



Cross-site Scripting (XSS)

SEP 2014 | NEWS

Ehay Under Fire After Cross Site Scripting Attack

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR | TIMES TOPICS Subscribe to The Times | Log In | Register Now

Ehe New otk Eimes . Scarch ANYTénes com —

Wednesday, August 25, 2010

WORLD US. NY./REGION BUSINESS TE The page at http://

cityroom.blogs.nytimes.com/ says:
SEPTEMBERIS.. @ 4 SR v

| TRAVEL JOBS REALESTATE AUTOS

BROA
hock out iloveNYtheatre.com|
Cily Room SO B l =2 Search This Blog
July 26, 2010, 5:27 PM 4 Death Attributed to ANewfangled »
. . . Heat Sandbox Arrives
Gas Station Attendant Among 4 Killed in (Chedk Outthe
- " ks

@ WORDPRESS.ORG

Home Showcase Extend About Docs

WordPress is web softwar
website or blog. We like tq

and priceless at the same

5+ Add New Post

Fascinating Adventures in Theme Desic

Permalink: http://example.com/2010/07/fascinating-design/ | Edit The core software is built by

and when you're ready for mg

Upload/Insert [ B & 3 themes available to transform

% - A= can imagine. Over 25 million g

power the place on the web

B 7 4 = i=

I
1]
il

It's finally here, the theme you've all been waiting for!| join the family.

Date: September 18, 2014
Target: eBay

Impact:

e A XSS vulnerability allowed
attackers to redirect users to a
phishing page.

e The hackers had apparently
exploited the common vulnerability
to inject malicious Javascript into
several listings

e Users were taken to what appeared
to be an eBay log-in page, which
was actually hosted elsewhere and
had been designed to harvest user
log-ins for the hackers



Sensitive Data Exposure

e Date: September 2, 2014
e Target: The Home Depot

e Impact:

Customers’ credit card
information was stored
unencrypted

56 million credit cards were
compromised

$62 million estimated damage



Cross-site Request
Forgery (CSRF)

| Ihnatery  Besn ey e Date: May 19, 2014

e Target: Facebook

e Impact:

e CSREF attacks are used by hackers to gain access to
online accounts to which the victim has signed in

e Facebook disclosed that its system was vulnerable to
CSRF

e Attackers were able to impersonate other users and steal
information

e The CSRF token contained a truncated SHA-2 hash that
incorporated the account ID and current date

e A person with 3 Facebook sessions within a single day

< P would have received an identical CSRF token each
Photos Are Private | time,” Facebook engineers Chad Parry and Christophe
Van Gysel said in a statement. “Now our system
Turn privacy ON to approve follow requests. replaces the token with a new one every time it is
Your existing followers won't be affected. J requested.”

FACEBOOK FIXES INSTAGRAM CSRF VULNERABILITY TO KEEP
PRIVATE PROFILES PRIVATE




Unvalidated Redirects
and Forwards

e Date: June 1, 2006

e Target: Goldleaf Financial Solutions
e Impact:
e >300 bank home pages hacked and redirected to a malicious
300+ Bank homepages hacked and Jite in Madrid, Spatn
I‘edII'eCted! e User login information collected from unsuspecting
Summary: A little more than half of the 600 hosted bank sites were modified to redirect traffic customers
which puts the total number of Banks affected at over 300. The homepages of those banks were
modified so that they would direct all online banking traffic to a malicious site in Madrid Spain to .
collect login credentials from unsuspecting customers. ° Date' May 2 9 20 1 4
e Target: Oauth, OpenlD
e Impact:
e Attackers can use this vulnerability in both open-sot
log-in systems to steal user data and redirect user to URSES
sites
Serlous Securlty ﬂaw m OAuthS e The log-in tools OAuth and OpenID are used by many Web
OpenID discovered sites and tech titans including Google, Facebook,

Microsoft, and LinkedIn

Attackers can use the "Covert Redirect" vulnerability in both open-source log-in
systems to steal your data and redirect you to unsafe sites.



Unintended Data Leakage
PCWOI'ld e Date: January 1, 2014

Hackers claim to expose phone e Target: Snapchat
information of 4.6 million
Snapchat users e Impact:

e 4.6 million private users’
NETWORKWORLD =~

e Company had to allow phone
Snapchat says sorry for the numbers to be de-linked from
hack, with a tweak to its app mobile app

The company's mobile app now lets
users de-link their phone numbers
from their usernames




Part 2

PROGRAM ANALYSIS FOR
INFORMATION-FLOW-

SECURITY ENFORCEMENT




Existing Static-Analysis Solutions

e Type systems:
Complex, conservative, require code annotations
e (lassic slicing:

Has not been shown to scale to large applications while
maintaining sufficient accuracy

12

Precision Scalability



TAJ (PLDI 2009)

e Pointer analysis is a variant of Andersen’ s analysis
e Analysis is field sensitive

e Analysis 1s intraprocedurally flow sensitive and
interprocedurally flow insensitive (accounting for
multithreaded code)

e Custom context-sensitivity policy:

Unlimited-depth object sensitivity for Java collections (up to
recursion)

One level of call-string context for factory methods
One level of call-string context for taint APIs
One-level receiver-object context-sensitivity as default



Andromeda (FASE 2013)

e Web applications are large and complex
e Sound analyses

e If too precise, do not scale well
e If too imprecise, have too many false positives

e Unsound analyses

e Have false negatives

e Are often unstable (extra-sensitivity to program
changes)




Intuition behind Andromeda

e Taint analysis can be
treated as a demand- Q Q

driven problem OO
e This enables lazy

computation of vulnerable
information flows, instead

of eagerly computing a é é (*}
complete data-flow

solution




Publications on Andromeda

e FASE 2013 — Andromeda algorithm

e Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, Salvatore Guarnieri, “Andromeda
Accurate and Scalable Security Analysis of Web Applications”

e ISSTA 2014 — Andromeda for JavaScript and String Analysis (ACM SIGSOFT Distinguished
Paper Award)

e  Omer Tripp, Pietro Ferrara, Marco Pistoia, “Hybrid Security Analysis of Web JavaScript Code via
Dynamic Partial Evaluation”

e OOPSLA 2011 — Integration with Framework for Frameworks (F4F)

e  Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, Ryan Berg, “F4F: Taint
Analysis of Framework-based Web Applications”

e ISSTA 2011 (1) — Andromeda for JavaScript

e  Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, Ryan Berg, “Saving
the World Wide Web from Vulnerable JavaScript”

e ISSTA 2011 (2) — Andromeda as the basis for String Analysis (ACM SIGSOFT Distinguished
Paper Award)
e  Takaaki Tateishi, Marco Pistoia, Omer Tripp, ‘“Path- and Index-sensitive String Analysis based on
Monadic Second-order Logic”
e [BM Journal on Research and Development 2013 — Permission analysis for Android
applications

° Dragos Sbirlea, Michael G. Burke, Salvatore Guarnieri, Marco Pistoia, Vivek Sarkar, “Automatic Detection of Inter-
application Permission Leaks in Android Applications”



Contributions of Andromeda

e Scalable and sound demand-driven taint analysis
e Modular analysis

e Incremental analysis

e Framework and library support

e Multiple language support (Java, .NET,
JavaScript, Android)

e Inclusion in an IBM product: IBM Security
AppScan Source



Motivating Example

public class Aliasing5 extends HttpServlet {
protected void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

StringBuff new StringBuffer ("abc");

fo® (buf uf, dresp, req);

void foo(StringBuffStringBuff ServletResponse resp,

ServletRequest req) throws IOException ({

Strin req.getParameter ("name") ;

PrintWriter writer = resp.getWriter();

writer.printloString()); /* BAD */



High-level Algorithm

e Input: Web application plus supporting rules

{(Sources, Sinks, Sanitizers)}

e Build class hierarchy

e Construct CHA-based call graph with intra-
procedural type-inference optimization

e Perform data-flow analysis (explained next)

e Report any flow from a source to a sink not
intercepted by a sanitizer in the same rule



Abstract Domain

e C(Consists of triplets:

e Method where Static Single Assignment (SSA) variable 1s
defined

e SSA variable ID
e Access path

e Inputs form a lattice according to subsumption relation defined
on access paths, e.g.:
o.* 2 o.f.* 2 o.f.g
e The * symbol represents any feasible sub-path

e Array load/store semantics 1s applied to arrays, maps, session
objects, etc.



Modularity of the Analysis

e Runs on data flow (def-to-use)

e Produces and uses pre-compiled models
Format:
<method, entry> 2> <method, exit>

Example:
<m, v2.f.g> =2 <m, vl.h>



A Novel Approach to
Taint Analysis

e Start from taint sources

e Propagate taint intra-
procedurally through def-to-use

e Inter-procedurally propagate et
taint forward and record '
constraints 1n callees

e Record constraints on call sites,
recursively (allows for
polymorphism)

e Resolve aliasing by going back
to allocation sites

e In the final constraint-
propagation graph, detect paths
between sources and sinks not
intercepted by sanitizers m3(ql, q2)

ml ()

_

m2 (pl, p2, p3)




Modular Analysis

e Persist constraint edges at
library entrypoints

e Constraint edges are S
mapped to contexts '

e During analysis time, the
constraint edges specific
to a particular context are
used

ml ()

_

m2 (pl, p2, p3)

Application

e Summaries are source-,
sink- and sanitizer-
specific

Library

m3(ql, g2)




Backward Propagation

e Pushes constraints back to callers

e The constraintpl.f.g =2 p2.hinm31is

propagated to m1 and m2 (and, recursively, to
their callers)

e x1.f.g=2x2.h
e yl1.f.g=2vy2.h

// ... // ...
m3 (x1,x2) ; m3(yl,y2);
// ... // ...



Incremental Analysis

® A taint constraint 1s an edge in
the constraint-propagation
graph Bl

g
e The support graph records
how constraints were learned ;
(i.e., based on which other
I H-E EeE
constraints) e m'm

e Facts learned in a scope that
underwent change are
transitively invalidated

e Preconditions recomputed

e Fixed-point analysis
recommenced



Integration with F4F

e F4F (OOPSLA 2011) analyzes code and metadata

of frameworks and repre

sents them 1n artifacts

written 1n an XML-like language

e Andromeda translates those artifacts into legal
Java code that — from a data-flow perspective — 1s

equivalent to the origina

| framework code

e New code 1s human-reac
other analyzers

able and reusable by

e New code 1s compiled and added to the analysis

scope



Integration with Monadic Second-order
Logic String Analysis (Best Paper at
ISSTA’11)

e String analysis 1s a static analysis that, given a String
variable 1n a program, produces the grammar of the
language of all the possible values that that variable
can take at run time

e We designed and implemented a novel string analysis
based on Monadic Second-order Logic

e This analysis reduces:

False negatives, by detecting incorrect sanitizers and
validators

False positives, by detecting unknown sanitizers and
validators



Custom Sanitizers

static final String PUNCTUATION CHARS ALLOWED = " ()&+,-=._$";
static String cleanLink(String link){
return cleanLink(link, PUNCTUATION CHARS ALLOWED); }

static String cleanLink(String link,
String allowedChars) {
if (link == null) return null;
link = link.trim();
StringBuffer clean=new StringBuffer(link.length());
boolean isWord = true; boolean wasSpace = false;
for (int 1 = 0; i < link.length(); i++){
char ch = link.charAt(i);
if (Character.isWhitespace(ch) )<
it (wasSpace) continue;
wasSpace = true;

} else ! wasSpace = false: 1
if |(Character. 1sLetterOrD1g1t(ch)||
allowedChars.indexOf(ch) != -1) {

if (isWord) ch =|Character.toUpperCase(ch)
clean.append(ch); 1sWord = false;
} else { isWord = true; }

e

}

return clean.toString(); }



Experimental Results*

ANDROMEDA | TAJ

Average TPs 82% 68%

Average FPs 12% 30%

Average Unknowns 6% 2%

Response Time (s)
Change Type Altoro] Webgoat
Deletion [Addition | Deletion [ Addition

Taint-propagator statement 2 2.2 1.9 2.2
Security sink 0.5 2 1.9 2.5
Security source 2.1 2.1 1.8 32
Irrelevant statement 1.9 2 2.5 2.8
Relevant method 2.2 1.9 1.8 2.7
Irrelevant method 2.2 1.7 1.7 1.7

* More details in paper




What We Learned

e The notorious scalability barrier finally lifted
without compromising soundness

e Incremental analysis 1s a great promise for
developers

e Production summaries already generated

e Industrial-level analysis must include support for:
Frameworks

String analysis
Multiple languages



Part 3

INTEGRATION WITH
MACHINE LEARNING



Dimensions of Precision \

.SCan
Issue #1 (jsDOMXSSandOpenRedirect)
. A /Default?Openpage
if (protocol == "https://" & window.location.protocecl == "http:") |
var host = window.location.hostname;
var pathname = window.location.pathname;
| var search = window.location.search;
(2 | var url = protocol + host + pathname + search;
a location.replace(url) ;
}
: function setFormFocus ()
Flow insensitivity Path insensitivity Context insensitivity
x.f = read(); x.f=""; yl = id(x);
x.£f=""; if (b) y2 = id(read());
write(x.f); x.f = read(); write(yl);
if (!'b)

write(x.f) ;



Main Problem

e B. Johnson, Y.Song, E. Murphy-Hill, and R.

Bowdidge: Why don 't software developers use
static analysis tools to find bugs? In ICSE 2013

e Answer: Too many false positives



Aletheia (CCS 2014)

e Aletheia 1s a Machine Learning system that acts on the
output of any static security analyzer

e To evaluate Alethela, we ran a commercial static JavaScript
security checker on a set of:
e 1,700 HTML pages
e Taken from the 675 top-popular Web sites
e Which resulted 1n a total of 3,758 warnings
e C(Classified warnings: 200

e Policy preserving of true positives

e Precision improvement: %2.868 Ip . .
o p= (precision)
e Recall degradation: x1.006 tp + fp
: , /
e Policy reducing false alarms o P (recall)
o Precision improvement: x9,014 tp + fn

e Recall degradation: x2.212



The Aletheia System

e Input to Aletheia:
e Raw warnings W= {w,, ... , w;}
o Classitied warnings {(w;, b)) ..., (Wy, by)}, where

w , w;, are randomly chosen in R

l'l, o o0
b, ..., b, are Boolean values indicating whether the
corresponding warning is a true or false positive

e Aletheia outputs a classified subset of W



The Architecture of Aletheia

|
analysis raw output ~{11: x=document.location; user
y 12: y=x.search; classified
en g i ne —13: document.location=y; —

3 e ——

US?IZ |1: x=document location: cleansed 11:. xidocumer'lt.location;
classified 12: y=x.search; output 12: y=x.search; .
— 13: document.location=y; — 13: document.location=y;
feature mapping classifier
Y1 -

[length=3 ,srclineXI 1,snkline=13,...]



Feature Mapping

e Feature mapping derives simple-structured
features from the warnings

e Features are complex objects that cannot be
learned directly

e A given warning 1s abstracted as a set of
attributes:

length = 14, time = 2.5, srcline = 10,...] +— false
[length = 6, time = 1.1, srcline = 38,...] +— true
length = 18, time = 3.6, srcline = 26,...| +— false




Learning Features

lexical quantitative security
source/sink
. . |results| rule name 1:
identifiers
. 2:
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink
. . |results| rule name 1:
identifiers
o 2:
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink
. . |results| rule name 1:
identifiers
. . 2:
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink
. . |results| rule name 1:
identifiers
. 2:
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search = // swfobject.js
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK // client.html



Learning Features

lexical quantitative security
source/sink
. . [results| rule name
identifiers
source/sink line Isteps| severit
numbers P 4
source/sink time
URLs
external
objcets

. ath conditions
(mailto, Ip |

embed, etc)

l: var search =
window.location.search; // SOURCE
2: var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;
var url = search.substring(idx);
location.replace(“mailto:” + url);

// SINK



Learning Features

lexical quantitative security
source/sink
L |results|=1 rule name 1:
identifiers
e 2
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink
. . |results| rule name 1:
identifiers
R 2
source/sink line _ .
|steps|=3 severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security

source/sink

. . |results| rule name 1:

identifiers

o 2:

source/sink line .
|steps| severity

numbers

source/sink . 3:
time=2.1s 4.

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=“.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink .
L |results]| rule name 1:
identifiers
) ) 2:
source/sink line .
|steps| severity
numbers
. 3:
source/sink .
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conds|=0

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Learning Features

lexical quantitative security
source/sink Iresults| rule name= 1: var search
identifiers DOM-based XSS ~°
S 2: var idx =
source/sink line Isteps| severit
numbers P 4
: 3: var url =
source/sink time 1
URLs :
external objects
(mailto, |path conditions|
embed, etc)

location.replace(url);

window.location.search; // SOURCE

search.indexOf ( “redirect=") +
“redirect=*.length;
search.substring(idx);

// SINK



Learning Features

lexical quantitative security
source/sink 1.
. . |results| rule name :
identifiers
. 2:
source/sink line .
|steps| severity=|
numbers
. 3:
source/sink )
time 4:

URLs

external objects
(mailto,
embed, etc)

|path conditions|

var search =
window.location.search; // SOURCE

var idx =
search.indexOf ( “redirect=") +
“redirect=*.length;

var url = search.substring(idx);

location.replace(url); // SINK



Classifier

e Aletheia generates a set of candidate filters by
training different classification algorithms on the
training set

e Each of the candidate filters 1s applied to the testing
set, and the resulting classifications are reduced to a
score based on the rate of true positives, false
positives and false negatives

e The filter that achieves the highest score 1s applied to
the remaining warnings

e The user is presented with the findings surviving the
filter



Learning Algorithms

functional

clustering (or
instance based)

tree and rule
based

bayesian

neural network

Kstar

decision tree

naive bayes

SVM

OneR

bayesian network

logistic regression




Learning Algorithms

clustering (or tree and rule

unctional .
fi instance based) based

bayesian

-compute boundary in feature/derived space

« e.g. hyperplane
« geometric interpretation mistreats discrete features (like line no)



Learning Algorithms

clustering (or tree and rule

unctional .
fi instance based) based

bayesian

measure distance between incoming and labeled datapoints (again geometry)




Learning Algorithms

clustering (or tree and rule

unctional )
fi instance based) based

bayesian

-divide-and-conquer approaches:

« decision trees: maximize ‘information gain’
« rule-based methods: covering rules describing each class exclusively



Learning Algorithms

clustering (or tree and rule

unctional )
fi instance based) based

bayesian

P(X=x|C=c)P(C=¢)

P(C=c|X=x) =
P(X=x)

(C: class ; X: attributes)



Learning Algorithms

functional

clustering (or
instance based)

tree and rule
based

bayesian

so which one???




Policy

B

precision = tp / (tp + fp) [0 w |] recall =tp / (tp + fn)

discretized as
w in {0,0.33,0.5,0.66, 1}

' score = w x recall + (I-w) x precision I

such that




Evaluation

« Back to 3,758 classified warnings...
» Random sampling to simulate user classification
« Average score across |0 runs




Conclusion 1: Feasibility

Based on tolerable™ user effort,
it 1s possible to filter the
remaining warnings effectively™
w.r.t. the specified policy

We consider manual classification of up to 200 warnings as tolerable
and a filter that achieves at least 95% accuracy as effective

tp+1itn
tp+tn+fp+fn

accuracy =




/recall Dy

precision

ITier

class

User classified 200

User classified 100

]
3
3
o«

Precision [__]

do43z

200

33418N

L13INS3AVE

SIAVEINIVN

Policy

H3aNO

feuibuQ

0.8
0.6
0.4
0.2

anfeA

]
3
3
o

Precision [__]

0

doy3z

10

L13INS3IAVE

WAS

33d1aN

Policy

HV.LSH

SIAVEIAIYN

"3NO

feuibuo

0.8
0.6
0.4
0.2

anep



/recall Dy

precision

ITier

class

User classified 100

User classified 200

]
3
3
o«

Precision [__]

do43z

200

33418N

L13INS3AVE

H3aNO

anfeA

]
3
3
o

Precision [__]

0

doy3z

10

L13INS3IAVE

WAS

33d1aN

8yl

HV.LSH

SIAVEIAIYN

anep

SIAVEINIVN

Policy

Policy



/recall Dy

precision

ITier

class

User classified 200

User classified 100

Recall

Precision [__]

200

do43z

33418N

L13INS3AVE

SIAVEINIVN

HV.1SH

H3aNO

anfeA

Precision [__]

0.4
0.2

100

doy3z

L13INS3IAVE

WAS

33d1aN

8yl

HV.LSH

SIAVEIAIYN

L "3NO

anep

Policy

Policy

bias toward high recall

conservative




Value

precision/recall by
classifier

User classified 100 User classified 200
1
Precision [ Precision [
Recall Recall
0.8
0.6
o
E
©
>
— ] 0.4
0.2 |7 :
1%} i w s [ o v [} [ w i
o < w > u [} "y w w w o
> = o« %) z I S % & £ o
z 2 5 2 & § = 2 5 i
i z > o i > z N
= = = =
E _ :
Policy Policy

aggressive: | want the good stuff (high precision)q




Value

0.8

0.6

0.4

0.2

precision/recall by
classifier

User classified 100

100

KSTAR

{NAIVEBAYES

Policy

NBTREE
SVM
BAYESNET
ZEROR

Precision [__]

Value

User classified 200

200

KSTAR

Policy

NAIVEBAYES

BAYESNET

NBTREE

ZEROR

aggressive:

| want the good stuff (high precision)q




Value

user effort by policy

4000

User classified 100

3500

reviewed warnings <

3000

2500

2000

1500

1000

500

~

...........

I

precision

Without Assistance

Classified ]

Value

4000

3500

3000

2500

2000

1500

1000

500

User classified 200

~

reviewed warnings <

........

I

precision

Classified ]

Org. TP 1IN




Conclusion 2:
Learning Framework

None of the classification
algorithms 1n the Aletheia suite 1s
either optimal or near optimal
across all policies




Conclusion 3:

Diminishing Returns

Improvement 1n filter quality,
measured as policy score, diminishes

with user effort

»

ON0)

Wiy

o
bla\,
bl ola




>= Present Work

Integrated in an IBM product for static security
analysis: IBM Security AppScan Source

In the future:

« Experiment with more learning algorithms

« Integration of machine learning with static
analysis algorithm



Thank You!

pistoia@us.ibm.com




