
λ

Combining Static Analysis and Machine
Learning for Industrial-quality
Information-flow-security Enforcement

Marco Pistoia
IBM T. J. Watson Research Center

Yorktown Heights, New York

Workshop on Software Correctness and Reliability
ETH Zurich, October 2015

λ
Joint Work with…

l  Omer Tripp
l  Patrick Cousot
l  Radhia Cousot
l  Salvatore Guarnieri
l  Aleksandr Aravkin

λ

MOTIVATIONS
Part 1

λ Top Web/Mobile
Vulnerabilities

Injection

Broken
Authentication
and Session
Management

Cross-site
Scripting

Insecure Direct
Object Reference

Security
Misconfiguration

Sensitive Data
Exposure

Missing Function
Level Access

Control

Cross-site
Request
Forgery

Using
Components with

Known
Vulnerabilities

Unvalidated
Redirects and

Forwards

Information Flow Access Control Configuration
4

Unintended
Data Leakage

Broken
Cryptography

λ Injection
l  Date: April 20, 2011

l  Target: SONY’s PlayStation
Network

l  Impact:
l  77 million PlayStation Network

accounts hacked
l  Attackers gained access to full

names, passwords, e-mails, home
addresses, purchase history, credit
card numbers, and PSN/Qriocity
logins and passwords

l  SONY is said to have lost millions
while the site was down for a month

5

String query = “SELECT *
FROM users WHERE name=‘”

+ userName + “’ AND
pwd=‘” + pwd + “’”;

λ Cross-site Scripting (XSS)
l  Date: September 18, 2014

l  Target: eBay

l  Impact:
l  A XSS vulnerability allowed

attackers to redirect users to a
phishing page.

l  The hackers had apparently
exploited the common vulnerability
to inject malicious Javascript into
several listings

l  Users were taken to what appeared
to be an eBay log-in page, which
was actually hosted elsewhere and
had been designed to harvest user
log-ins for the hackers

6

λ Sensitive Data Exposure
l  Date: September 2, 2014

l  Target: The Home Depot

l  Impact:
l  Customers’ credit card

information was stored
unencrypted

l  56 million credit cards were
compromised

l  $62 million estimated damage

7

λ Cross-site Request
Forgery (CSRF)

l Date: May 19, 2014

l Target: Facebook

l  Impact:
l  CSRF attacks are used by hackers to gain access to

online accounts to which the victim has signed in

l  Facebook disclosed that its system was vulnerable to
CSRF

l  Attackers were able to impersonate other users and steal
information

l  The CSRF token contained a truncated SHA-2 hash that
incorporated the account ID and current date

l  A person with 3 Facebook sessions within a single day
would have received an identical CSRF token each
time,” Facebook engineers Chad Parry and Christophe
Van Gysel said in a statement. “Now our system
replaces the token with a new one every time it is
requested.”

8

λ Unvalidated Redirects
and Forwards

l  Date: June 1, 2006

l  Target: Goldleaf Financial Solutions

l  Impact:
l  >300 bank home pages hacked and redirected to a malicious

site in Madrid, Spain
l  User login information collected from unsuspecting

customers

l  Date: May 2, 2014

l  Target: Oauth, OpenID

l  Impact:
l  Attackers can use this vulnerability in both open-source

log-in systems to steal user data and redirect user to unsafe
sites

l  The log-in tools OAuth and OpenID are used by many Web
sites and tech titans including Google, Facebook,
Microsoft, and LinkedIn

9

λ Unintended Data Leakage
l  Date: January 1, 2014

l  Target: Snapchat

l  Impact:
l  4.6 million private users’

information exposed
l  Company had to allow phone

numbers to be de-linked from
mobile app

10

λ

PROGRAM ANALYSIS FOR
INFORMATION-FLOW-
SECURITY ENFORCEMENT

Part 2

λ

12

Existing Static-Analysis Solutions

Precision Scalability

l  Type systems:
Ø  Complex, conservative, require code annotations

l  Classic slicing:
Ø  Has not been shown to scale to large applications while

maintaining sufficient accuracy

λ
TAJ (PLDI 2009)

l  Pointer analysis is a variant of Andersen’s analysis
l  Analysis is field sensitive
l  Analysis is intraprocedurally flow sensitive and

interprocedurally flow insensitive (accounting for
multithreaded code)

l  Custom context-sensitivity policy:
l  Unlimited-depth object sensitivity for Java collections (up to

recursion)
l  One level of call-string context for factory methods
l  One level of call-string context for taint APIs
l  One-level receiver-object context-sensitivity as default

λ
Andromeda (FASE 2013)

l  Web applications are large and complex
l  Sound analyses

l  If too precise, do not scale well
l  If too imprecise, have too many false positives

l  Unsound analyses
l  Have false negatives
l  Are often unstable (extra-sensitivity to program

changes)

λ
Intuition behind Andromeda
l  Taint analysis can be

treated as a demand-
driven problem

l  This enables lazy
computation of vulnerable
information flows, instead
of eagerly computing a
complete data-flow
solution

λ Publications on Andromeda
l  FASE 2013 – Andromeda algorithm

l  Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, Salvatore Guarnieri, “Andromeda:
Accurate and Scalable Security Analysis of Web Applications”

l  ISSTA 2014 – Andromeda for JavaScript and String Analysis (ACM SIGSOFT Distinguished
Paper Award)
l  Omer Tripp, Pietro Ferrara, Marco Pistoia, “Hybrid Security Analysis of Web JavaScript Code via

Dynamic Partial Evaluation”
l  OOPSLA 2011 – Integration with Framework for Frameworks (F4F)

l  Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, Ryan Berg, “F4F: Taint
Analysis of Framework-based Web Applications”

l  ISSTA 2011 (1) – Andromeda for JavaScript
l  Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, Ryan Berg, “Saving

the World Wide Web from Vulnerable JavaScript”
l  ISSTA 2011 (2) – Andromeda as the basis for String Analysis (ACM SIGSOFT Distinguished

Paper Award)
l  Takaaki Tateishi, Marco Pistoia, Omer Tripp, “Path- and Index-sensitive String Analysis based on

Monadic Second-order Logic”
l  IBM Journal on Research and Development 2013 – Permission analysis for Android

applications

l  Dragoș Sbîrlea, Michael G. Burke, Salvatore Guarnieri, Marco Pistoia, Vivek Sarkar, “Automatic Detection of Inter-
application Permission Leaks in Android Applications”

λ
Contributions of Andromeda

l  Scalable and sound demand-driven taint analysis
l  Modular analysis
l  Incremental analysis
l  Framework and library support
l  Multiple language support (Java, .NET,

JavaScript, Android)
l  Inclusion in an IBM product: IBM Security

AppScan Source

λ
Motivating Example
public class Aliasing5 extends HttpServlet {
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 StringBuffer buf = new StringBuffer("abc");
 foo(buf, buf, resp, req);
 }

 void foo(StringBuffer buf, StringBuffer buf2, ServletResponse resp,
 ServletRequest req) throws IOException {

 String name = req.getParameter("name");
 buf.append(name);
 PrintWriter writer = resp.getWriter();
 writer.println(buf2.toString()); /* BAD */
 }
}

λ
High-level Algorithm

l  Input: Web application plus supporting rules
l  {(Sources, Sinks, Sanitizers)}

l  Build class hierarchy
l  Construct CHA-based call graph with intra-

procedural type-inference optimization
l  Perform data-flow analysis (explained next)
l  Report any flow from a source to a sink not

intercepted by a sanitizer in the same rule

λ
Abstract Domain
l  Consists of triplets:

l  Method where Static Single Assignment (SSA) variable is
defined

l  SSA variable ID
l  Access path

l  Inputs form a lattice according to subsumption relation defined
on access paths, e.g.:

 o.* ≥ o.f.* ≥ o.f.g
l  The * symbol represents any feasible sub-path
l  Array load/store semantics is applied to arrays, maps, session

objects, etc.

λ
Modularity of the Analysis

l  Runs on data flow (def-to-use)
l  Produces and uses pre-compiled models

l  Format:
 <method, entry> à <method, exit>

l  Example:
 <m, v2.f.g> à <m, v1.h>

λ A Novel Approach to
Taint Analysis
l  Start from taint sources
l  Propagate taint intra-

procedurally through def-to-use
l  Inter-procedurally propagate

taint forward and record
constraints in callees

l  Record constraints on call sites,
recursively (allows for
polymorphism)

l  Resolve aliasing by going back
to allocation sites

l  In the final constraint-
propagation graph, detect paths
between sources and sinks not
intercepted by sanitizers

m1()

m2(p1, p2, p3)

m3(q1, q2)

λ
Modular Analysis
l  Persist constraint edges at

library entrypoints
l  Constraint edges are

mapped to contexts
l  During analysis time, the

constraint edges specific
to a particular context are
used

l  Summaries are source-,
sink- and sanitizer-
specific

Library

m3(q1, q2)

Application

m1()

m2(p1, p2, p3)

λ
Backward Propagation

l  Pushes constraints back to callers
l  The constraint p1.f.g à p2.h in m3 is

propagated to m1 and m2 (and, recursively, to
their callers)
l  x1.f.g à x2.h
l  y1.f.g à y2.h

m1() m2()

m3(p1,p2)

// ...
m3(x1,x2);
// ...

// ...
m3(y1,y2);
// ...

λ
Incremental Analysis
l  A taint constraint is an edge in

the constraint-propagation
graph

l  The support graph records
how constraints were learned
(i.e., based on which other
constraints)

l  Facts learned in a scope that
underwent change are
transitively invalidated

l  Preconditions recomputed
l  Fixed-point analysis

recommenced

λ
Integration with F4F

l  F4F (OOPSLA 2011) analyzes code and metadata
of frameworks and represents them in artifacts
written in an XML-like language

l  Andromeda translates those artifacts into legal
Java code that – from a data-flow perspective – is
equivalent to the original framework code

l  New code is human-readable and reusable by
other analyzers

l  New code is compiled and added to the analysis
scope

λ

Integration with Monadic Second-order
Logic String Analysis (Best Paper at
ISSTA’11)

l  String analysis is a static analysis that, given a String
variable in a program, produces the grammar of the
language of all the possible values that that variable
can take at run time

l  We designed and implemented a novel string analysis
based on Monadic Second-order Logic

l  This analysis reduces:
l  False negatives, by detecting incorrect sanitizers and

validators
l  False positives, by detecting unknown sanitizers and

validators

λ
Custom Sanitizers

static final String PUNCTUATION_CHARS_ALLOWED = " ()&+,-=._$";
static String cleanLink(String link){
 return cleanLink(link, PUNCTUATION_CHARS_ALLOWED); }

static String cleanLink(String link,
 String allowedChars){
 if (link == null) return null;
 link = link.trim();
 StringBuffer clean=new StringBuffer(link.length());
 boolean isWord = true; boolean wasSpace = false;
 for (int i = 0; i < link.length(); i++){
 char ch = link.charAt(i);
 if (Character.isWhitespace(ch)) {
 if (wasSpace) continue;
 wasSpace = true;
 } else { wasSpace = false; }
 if (Character.isLetterOrDigit(ch)||
 allowedChars.indexOf(ch) != -1) {
 if (isWord) ch = Character.toUpperCase(ch);
 clean.append(ch); isWord = false;
 } else { isWord = true; }
 }
 return clean.toString(); }

String validation

Substring extraction

String replacement

λ
Experimental Results*

* More details in paper

λ
What We Learned

l  The notorious scalability barrier finally lifted
without compromising soundness

l  Incremental analysis is a great promise for
developers

l  Production summaries already generated
l  Industrial-level analysis must include support for:

l  Frameworks
l  String analysis
l  Multiple languages

λ

INTEGRATION WITH
MACHINE LEARNING

Part 3

λ Dimensions of Precision

Flow insensitivity

x.f = read();
x.f = "";
write(x.f);

Path insensitivity

x.f = "";
if (b)
 x.f = read();
if (!b)
 write(x.f);

Context insensitivity

y1 = id(x);
y2 = id(read());
write(y1);

λ
Main Problem

l  B. Johnson, Y.Song, E. Murphy-Hill, and R.
Bowdidge: Why don’t software developers use
static analysis tools to find bugs? In ICSE 2013

l  Answer: Too many false positives

λ Aletheia (CCS 2014)
l  Aletheia is a Machine Learning system that acts on the

output of any static security analyzer
l  To evaluate Aletheia, we ran a commercial static JavaScript

security checker on a set of:
l  1,700 HTML pages
l  Taken from the 675 top-popular Web sites
l  Which resulted in a total of 3,758 warnings
l  Classified warnings: 200

l  Policy preserving of true positives
l  Precision improvement: ×2.868
l  Recall degradation: ×1.006

l  Policy reducing false alarms
l  Precision improvement: ×9,014
l  Recall degradation: ×2.212

λ
The Aletheia System

l  Input to Aletheia:
l  Raw warnings W = {w1, … , wk}
l  Classified warnings {(wi1, bi1) … , (wik, bik)}, where

l  wi1, … , wik are randomly chosen in R
l  bi1, … , bik are Boolean values indicating whether the

corresponding warning is a true or false positive

l  Aletheia outputs a classified subset of W

λ
The Architecture of Aletheia

11: x=document.location;
12: y=x.search;
13: document.location=y;

11: x=document.location;
12: y=x.search;
13: document.location=y; 11: x=document.location;

12: y=x.search;
13: document.location=y;

analysis
engine

raw output

11: x=document.location;
12: y=x.search;
13: document.location=y; 11: x=document.location;

12: y=x.search;
13: document.location=y;

11: x=document.location;
12: y=x.search;
13: document.location=y;

user
classified

11: x=document.location;
12: y=x.search;
13: document.location=y; 11: x=document.location;

12: y=x.search;
13: document.location=y;

11: x=document.location;
12: y=x.search;
13: document.location=y;

11: x=document.location;
12: y=x.search;
13: document.location=y;

feature mapping

[length=3,srcline=11,snkline=13,…]

11: x=document.location;
12: y=x.search;
13: document.location=y; 11: x=document.location;

12: y=x.search;
13: document.location=y;

[…]

cleansed
output

11: x=document.location;
12: y=x.search;
13: document.location=y;

classifier

11: x=document.location;
12: y=x.search;
13: document.location=y;

user
classified

λ
Feature Mapping

l  Feature mapping derives simple-structured
features from the warnings

l  Features are complex objects that cannot be
learned directly

l  A given warning is abstracted as a set of
attributes:

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers! |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers! |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs! time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search = // swfobject.js
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK // client.html

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs time

external
objcets
(mailto,
embed, etc) !

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(“mailto:” + url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results|=1! rule name

source/sink line
numbers |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps|=3! severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs time=2.1s!

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conds|=0!

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results|

rule name=!
DOM-based XSS !

source/sink line
numbers |steps| severity

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ

lexical! quantitative ! security !

source/sink
identifiers |results| rule name

source/sink line
numbers |steps| severity=1!

source/sink
URLs time

external objects
(mailto,
embed, etc)

|path conditions|

1: var search =
window.location.search; // SOURCE

2: var idx =
search.indexOf(“redirect=”) +
“redirect=“.length;

3: var url = search.substring(idx);
4: location.replace(url); // SINK

Learning Features

λ
Classifier

l  Aletheia generates a set of candidate filters by
training different classification algorithms on the
training set

l  Each of the candidate filters is applied to the testing
set, and the resulting classifications are reduced to a
score based on the rate of true positives, false
positives and false negatives

l  The filter that achieves the highest score is applied to
the remaining warnings

l  The user is presented with the findings surviving the
filter

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

Learning Algorithms

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

compute boundary in feature/derived space

  e.g. hyperplane
  geometric interpretation mistreats discrete features (like line no)

Learning Algorithms

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

measure distance between incoming and labeled datapoints (again geometry)

Learning Algorithms

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

divide-and-conquer approaches:

  decision trees: maximize ‘information gain’
  rule-based methods: covering rules describing each class exclusively

Learning Algorithms

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

P(X=x|C=c)P(C=c)
P(C=c|X=x) = ————————

P(X=x)

(C: class ; X: attributes)

Learning Algorithms

λ

functional!
clustering (or
instance based)!

tree and rule
based! bayesian!

neural network Kstar decision tree naive bayes

SVM OneR bayesian network

logistic regression

so which one???

Learning Algorithms

λ

precision = tp / (tp + fp)! recall = tp / (tp + fn)![0 1]w!

score = w x recall + (1-w) x precision!

w in {0,0.33,0.5,0.66,1}
such that !

discretized as!

Policy

λ Evaluation

  Back to 3,758 classified warnings…
  Random sampling to simulate user classification
  Average score across 10 runs

λ Conclusion 1: Feasibility
Based on tolerable* user effort,

it is possible to filter the
remaining warnings effectively*

w.r.t. the specified policy

We consider manual classification of up to 200 warnings as tolerable
and a filter that achieves at least 95% accuracy as effective

λ
precision/recall by
classifier

100 200

λ
precision/recall by
classifier

100 200

λ
precision/recall by
classifier

100 200

conservative: bias toward high recall!

λ
precision/recall by
classifier

100 200

aggressive: I want the good stuff (high precision)!!

λ
precision/recall by
classifier

100 200

aggressive: I want the good stuff (high precision)!!

λ user effort by policy

reviewed warnings ~4,000

~
15

0

~
30

0

~
1,

00
0

100 200
reviewed warnings ~4,000

~
15

0 ~
2,

00
0

precision recall precision recall

λ Conclusion 2:
Learning Framework

None of the classification
algorithms in the Aletheia suite is

either optimal or near optimal
across all policies

λ Conclusion 3:
Diminishing Returns

Improvement in filter quality,
measured as policy score, diminishes

with user effort

λ >= Present Work

Integrated in an IBM product for static security
analysis: IBM Security AppScan Source

In the future:
  Experiment with more learning algorithms
  Integration of machine learning with static

analysis algorithm

λ

Thank You!

pistoia@us.ibm.com

