Proof Spaces

Andreas Podelski

Azadeh Farzan Zachary Kincaid Matthias Heizmann Jochen Hoenicke global int len; // length of array
global int array(len) : tasks; // array of tasks
global int next; // position of next available task block
global lock m; // lock protecting next

thread T:

local int : c; // position of current task local int : end; // position of last task in acquired block // acquire block of tasks lock(m);1 $\mathbf{2}$ $if(next + 10 \le len)$ $\{ c := next; next := next + 10; end := next; \}$ 3 4 else 5 $\{ c := next; next := next + 10; end := len; \}$ 6 unlock(m);// perform block of tasks while (c < end): 7 tasks[c] := 0; // mark task c as started8 // work on the task c . . . tasks[c] := 1; // mark task c as finished9 assert(tasks[c] == 1); // no other thread has started task c1011 c := c + 1;

global int len; // length of array **global** int array(len) : tasks; // array of tasks **global** int next; // position of next available task block **global** lock m; // lock protecting next thread T: local int : c; // position of current task local int : end; // position of last task in acquired block // acquire block of tasks lock(m);1 $\mathbf{2}$ $if(next + 10 \le len)$ $\{ c := next; next := next + 10; end := next; \}$ 3 else 4 $\{ c := next; next := next + 10; end := len; \}$ 56 unlock(m);// perform block of tasks while (c < end): 7 tasks[c] := 0; // mark task c as started8 // work on the task c . . . tasks[c] := 1; // mark task c as finished9 assert(tasks[c] == 1); // no other thread has started task c1011 c := c + 1;

thread T:

threads $1, 2, \ldots, 35$ have acquired block of tasks have not yet started working

proof spaces

- new paradigm for automatic verification
- sequential/concurrent/parametrized programs
- automata

automated verification

termination	Buchi automata
recursion	nested word automata
concurrency	alternating finite automata
parametrized	predicate automata
proofs that count	Petri net \subseteq counting automaton

Ultimate Automizer

simplify task for program verification:

Don't give a proof. Show that a proof exists.

automata: existence of accepting run

inclusion check: show that, for every word in the given set, an accepting run *exists*

simplify task for program verification:

Show that, for every program execution, a proof exists.

proof spaces

• automata from unsatisfiability proofs

proof spaces

no execution violates assertion = no execution reaches error location

automaton

alphabet: {statements}

(p != 0) (p != 0) (n >= 0) (p==0)

(p != 0)

(p==0)

automaton constructed from unsatisfiability proof

accepts all traces with the same unsatisfiability proof

does a proof exist for every trace ?

(n >= 0)

automaton constructed from unsatisfiability proof

accepts all traces with the same unsatisfiability proof

? ⊆

does a proof exist for every trace ?

automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)

proof spaces

- automata from unsatisfiability proofs
- proof spaces

Hoare triples proving infeasibility :

$$\{ true \} x := 0 \{ x \ge 0 \} \{ x \ge 0 \} y := 0 \{ x \ge 0 \} \{ x \ge 0 \} x + + \{ x \ge 0 \} \{ x \ge 0 \} x = -1 \{ false \}$$

infeasibility \Leftrightarrow pre/postcondition pair (true, false)

inference rule for sequencing

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

generated from finite basis of Hoare triples "{pre} stmt {post}"

proof of sample trace:

$$\{ true \} x := 0 \{ x \ge 0 \} \{ x \ge 0 \} y := 0 \{ x \ge 0 \} \{ x \ge 0 \} x + + \{ x \ge 0 \} \{ x \ge 0 \} x = -1 \{ false \}$$

finite basis of Hoare triples "{pre} stmt {post}"

can be obtained from proofs of sample traces

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

finite basis of Hoare triples "{pre} stmt {post}" \mapsto automaton

sequencing of Hoare triples in basis \mapsto run of automaton

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rule of sequencing

generated from finite basis of Hoare triples "{pre} stmt {post}"

paradigm:

- construct proof space
- check proof space

inference rule for sequencing

inference rule for parallelism

"interference freedom"

inference rule for unbounded number of threads

"symmetry"

global int len; // length of array
global int array(len) : tasks; // array of tasks
global int next; // position of next available task block
global lock m; // lock protecting next

thread T:

local int : c; // position of current task local int : end; // position of last task in acquired block // acquire block of tasks lock(m);1 $\mathbf{2}$ $if(next + 10 \le len)$ $\{ c := next; next := next + 10; end := next; \}$ 3 4 else 5 $\{ c := next; next := next + 10; end := len; \}$ 6 unlock(m);// perform block of tasks while (c < end): 7 tasks[c] := 0; // mark task c as started8 // work on the task c . . . tasks[c] := 1; // mark task c as finished9 assert(tasks[c] == 1); // no other thread has started task c1011 c := c + 1;

global int len; // length of array **global** int array(len) : tasks; // array of tasks **global** int next; // position of next available task block **global** lock m; // lock protecting next thread T: local int : c; // position of current task local int : end; // position of last task in acquired block // acquire block of tasks lock(m);1 $\mathbf{2}$ $if(next + 10 \le len)$ $\{ c := next; next := next + 10; end := next; \}$ 3 else 4 $\{ c := next; next := next + 10; end := len; \}$ 56 unlock(m);// perform block of tasks while (c < end): 7 tasks[c] := 0; // mark task c as started8 // work on the task c . . . tasks[c] := 1; // mark task c as finished9 assert(tasks[c] == 1); // no other thread has started task c1011 c := c + 1;

thread T:

threads $1, 2, \ldots, 35$ have acquired block of tasks have not yet started working

 $\{\texttt{true}\}\ \pi\ \{\texttt{end}(2) \le \texttt{c}(9)\}$

for given trace π (fixed set of threads), proof can be computed automatically by SMT solver

$\{true\}$		$\{\texttt{end}($
lock(m)	:2	assum
$\{true\}$		$\{c(2)$
assume(next + 10 <= len)	:2	tasks
$\{true\}$		$\{c(2)$
c := next	:2	tasks
$\{true\}$		$\{\texttt{task}$
next := next + 10	:2	\wedge end
$\{true\}$		assum
end := next	:2	$\{\texttt{task}$
$\{\texttt{end}(2) \leq \texttt{next}\}$		\wedge end
unlock(m);	:2	tasks
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{\texttt{task}$
lock(m)	:9	asume
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{fals$
assume(next + 10 <= len)	:9	
$\{\texttt{end}(2) \leq \texttt{next}\}$		
c := next	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
next := next + 10	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
end := next	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
unlock(m)	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		

 $() \mathbf{T} \cdot \mathbf{I} \cdot \mathbf{I$

 $\{\texttt{true}\}\ \pi\ \{\texttt{end}(2) \le \texttt{c}(9)\}$

for given trace π (fixed set of threads), proof can be computed automatically by SMT solver

$\{true\}$		$\{\texttt{end}($
lock(m)	:2	assum
$\{true\}$		${c(2)}$
assume(next + 10 <= len)	:2	tasks
$\{true\}$		$\{c(2)$
c := next	:2	tasks
$\{true\}$		$\{\texttt{task}$
next := next + 10	:2	\wedge end
$\{true\}$		assum
end := next	:2	$\{\texttt{task}$
$\{\texttt{end}(2) \leq \texttt{next}\}$		\wedge end
unlock(m);	:2	tasks
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{\texttt{task}$
lock(m)	:9	asume
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{fals$
assume(next + 10 <= len)	:9	
$\{\texttt{end}(2) \leq \texttt{next}\}$		
c := next	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
next := next + 10	:9	
$\{\operatorname{end}(2) \leq \operatorname{c}(9)\}$		
end := next	:9	
$\{end(2) < c(9)\}$		
unlock(m)	:9	
$\{end(2) < c(9)\}$		
() = ()		

 $() \mathbf{T} \cdot \mathbf{I} \cdot \mathbf{I$

```
{true} \pi {end(2) \leq c(9)}
```

for given trace π (fixed set of threads), proof can be assembled automatically from a basis of atomic Hoare triples

$\{true\}$		$\{end($
lock(m)	:2	assum
$\{true\}$		${c(2)}$
assume(next + 10 <= len)	:2	tasks
$\{true\}$		$\{c(2)$
c := next	:2	tasks
$\{true\}$		$\{\texttt{task}$
next := next + 10	:2	\wedge end
$\{true\}$		assum
end := next	:2	$\{\texttt{task}$
$\{\texttt{end}(2) \leq \texttt{next}\}$		\wedge end
unlock(m);	:2	tasks
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{\texttt{task}$
lock(m)	:9	asume
$\{\texttt{end}(2) \leq \texttt{next}\}$		$\{fals$
assume(next + 10 <= len)	:9	
$\{\texttt{end}(2) \leq \texttt{next}\}$		
c := next	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
next := next + 10	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
end := next	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		
unlock(m)	:9	
$\{\texttt{end}(2) \leq \texttt{c}(9)\}$		

 $() \mathbf{T} \cdot \mathbf{I} \cdot \mathbf{I$

basis for Thread Pooling

$$\begin{array}{ll} \{ \operatorname{end}(1) \leq \operatorname{next} \} & \{ true \} & \{ \operatorname{len} \leq \operatorname{next} \} \\ \langle \mathsf{c} := \operatorname{next} : 2 \rangle & \langle \operatorname{assume}(\operatorname{next} + 10 > \operatorname{len}) : 1 \rangle & \langle \operatorname{end} := \operatorname{len} : 1 \rangle \\ \{ \operatorname{end}(1) \leq \mathsf{c}(2) \} & \{ \operatorname{len} \leq \operatorname{next} \} & \{ \operatorname{end}(1) \leq \operatorname{next} \} \end{array}$$

inference by symmetry

 $\{true\}$ lock(m) :2 $\{true\}$ assume(next + 10 <= len) :2 $\{true\}$:2 c := next $\{true\}$ next := next + 10:2 $\{true\}$ end := next :2 $\{ end(2) \leq next \}$ unlock(m); :2 $\{ end(2) \leq next \}$

 $\{\operatorname{end}(2) \leq \mathsf{c}(2)\}$ assume(c < $\{c(2) < end(2)\}$ tasks[c] := ${c(2) < end(2)}$ tasks[c] := $\{tasks[c(2)]\}$ \wedge end(2) \leq c assume(c < $\{ tasks[c(2)] \}$ \wedge end(2) \leq c tasks[c] := $\{ tasks[c(2)] \}$ asume(tasks {false}

basis for Thread Pooling

$$\begin{array}{ll} \{ \operatorname{end}(1) \leq \operatorname{next} \} & \{ \operatorname{true} \} & \{ \operatorname{len} \leq \operatorname{next} \} \\ \langle \operatorname{c} := \operatorname{next} : 2 \rangle & \langle \operatorname{assume}(\operatorname{next} + 10 > \operatorname{len}) : 1 \rangle & \langle \operatorname{end} := \operatorname{len} : 1 \rangle \\ \{ \operatorname{end}(1) \leq \operatorname{c}(2) \} & \{ \operatorname{len} \leq \operatorname{next} \} & \{ \operatorname{end}(1) \leq \operatorname{next} \} \end{array}$$

inference by symmetry $\{ end(2) \leq next \}$ lock(m):9 $\{ end(2) \leq next \}$ assume(next + 10 <= len) :9 $\{\operatorname{end}(2) \leq \operatorname{next}\}$ c := next :9 $\{\operatorname{end}(2) \le \operatorname{c}(9)\}$ next := next + 10:9 $\{\operatorname{end}(2) \le \operatorname{c}(9)\}$ end := next :9 $\{\operatorname{end}(2) \le \operatorname{c}(9)\}$ unlock(m) :9 $\{\operatorname{end}(2) \leq c(9)\}$

 $\{ tasks[c(2)] \\ \land end(2) \leq c \\ tasks[c] := \\ \{ tasks[c(2)] \\ asume(tasks \\ \{ false \} \}$

(b)

(a) Initialization example (rename 2/1 and 9/2)

basis for Thread Pooling

proof space

infinite space of Hoare triples "{pre} trace {post}"

closed under inference rules of sequencing, conjunction, symmetry

generated from finite basis of Hoare triples "{pre} stmt {post}"

paradigm:

- construct proof space
- check proof space

simplify task for program verification:

Don't give a proof. Show that a proof exists.

automata: existence of accepting run

inclusion check: show that, for every word in the given set, an accepting run *exists*

simplify task for program verification:

Show that, for every program execution, a proof exists. Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Azadeh Farzan, Zachary Kincaid, Markus Lindenmann, Betim Musa, Christian Schilling, Alexander Nutz, Stefan Wissert, Evren Ermis

- Refinement of Trace Abstraction. <u>SAS 2009</u>
- Nested interpolants. POPL 2010
- Interpolant Automata. <u>ATVA 2012</u>
- Ultimate Automizer with SMTInterpol (Competition Contribution). <u>TACAS 2013</u>
- Automata as Proofs. VMCAI 2013
- Inductive data flow graphs. <u>POPL 2013</u>
- Software Model Checking for People Who Love Automata. <u>CAV 2013</u>
- Ultimate Automizer with Unsatisfiable Cores (Competition Contribution). <u>TACAS 2014</u>
- Termination Analysis by Learning Terminating Programs. <u>CAV 2014</u>
- Proofs that count. <u>POPL 2014:</u>
- Ultimate Automizer with Array Interpolation (Competition Contribution). <u>TACAS 2015</u>
- Automated Program Verification. LATA 2015
- Fairness Modulo Theory: A New Approach to LTL Software Model Checking. <u>CAV 2015</u>
- Proof Spaces for Unbounded Parallelism. POPL 2015