
Proof Spaces
Andreas Podelski

Azadeh Farzan
Zachary Kincaid

Matthias Heizmann
Jochen Hoenicke

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

c(1)

end(1)

c(2)

end(2)

c(35)

end(35) len

next

.

c(3)

end(34)

threads
have acquired block of tasks
have not yet started working

1, 2, . . . , 35

proof spaces

• new paradigm for automatic verification

• sequential/concurrent/parametrized programs

• automata

termination
recursion
concurrency
parametrized
proofs that count

Buchi automata
nested word automata
alternating finite automata
predicate automata
Petri net ⊆ counting automaton

automated verification

Ultimate Automizer

Home Video Themen Forum English DER SPIEGEL SPIEGEL TV Abo Shop Schlagzeilen Wetter TV-Programm mehr ▼

WIRTSCHAFT
 Suche Kurse

Login | Registrierung

Politik Wirtschaft Panorama Sport Kultur Netzwelt Wissenschaft Gesundheit einestages Karriere Uni Reise Auto Stil

Nachrichten > Wirtschaft > Staat & Soziales > Abgasaffäre bei Volkswagen > Bosch weist Mitschuld an VW-Abgasaffäre von sich

TeilenTeilen 64EmpfehlenEmpfehlen TwitternTwittern 47

Das ist passiert:

Volkswagen hat offizielle
Abgasmessungen seiner Diesel-
Modelle in den USA mit einer
speziellen Software manipuliert. Die
US-Umweltbehörde EPA fordert den
Rückruf von rund 500.000 Autos,
zudem drohen VW eine Strafzahlung
von bis zu 18 Milliarden Euro sowie
hohe Regressforderungen. Der
Konzern beziffert die Zahl der
möglicherweise betroffenen Fahrzeuge
weltweit auf bis zu elf Millionen.
Verkehrsminister Alexander Dobrindt
setzte eine
Untersuchungskommission ein.

Wegen der erwarteten Kosten des
Skandals wird Volkswagen 6,5
Milliarden Euro zurückstellen und
hat eine Gewinnwarnung
veröffentlicht. Martin Winterkorn
zog mittlerweile die Konsequenzen
aus dem Skandal und tritt als
Konzernchef von Volkswagen zurück.

Lesen Sie dazu auch:

Abgasaffäre bei VW: Was wir bisher
wissen - und was nicht

VW-Affäre: Winterkorn will bleiben
und entschuldigt sich

Skandal um gefälschte
Abgaswerte: VW gibt
Gewinnwarnung raus

Umweltexperte zum
Abgasskandal: "Es ist nur Zufall,
dass es VW als Erstes erwischt hat"

VW-Manipulation in den USA: Der
schmutzige Trick mit den
Abgaswerten

Zur Startseite

Diesen Artikel... Drucken Merken Senden Feedback Nutzungsrechte

Der Autozulieferer Bosch hat die Technik zur Abgasnachbehandlung für
die von der Abgas-Affäre betroffenen Volkswagen-Modelle geliefert. Eine
Mitschuld weist das Unternehmen allerdings von sich: "Die
Verantwortung für Applikation und Integration der Komponenten liegt bei
VW", sagte ein Sprecher.

Die gelieferten Komponenten seien Standardteile, darunter auch ein
"Förder- und Dosiermodul" zur Abgasnachbehandlung, sagte der
Sprecher. "Wir fertigen die Komponenten nach Spezifikation von
Volkswagen."

Aus den Unterlagen der US-Umweltbehörde EPA geht hervor, dass der
Wolfsburger Konzern selbst die Software zur Manipulation der
Abgasnachbehandlung programmiert hat. VW hatte am Wochenende
eingeräumt, mit manipulierter Software die Stickoxidemissionen von
Fahrzeugen in den USA auf dem Prüfstand heruntergeregelt zu haben.
Im Normalbetrieb liegen sie aber um ein Vielfaches über dem erlaubten
Grenzwert.

DER SCHNELLE ÜBERBLICK

brk/stk/Reuters

Mittwoch, 23.09.2015 – 15:38 Uhr

Drucken Senden Merken

Nutzungsrechte Feedback

Abgasaffäre bei Volkswagen

Bosch

Ferdinand Piëch

Autoindustrie

Volkswagen

Alle Themenseiten

92,56€ -4,44 € -4,58%

Porträt | Chart | Börse

VOLKSWAGEN VZ

Stand: 02.10.

Intraday ▼

Mehr auf SPIEGEL ONLINE

VW-Chef Winterkorn: Am Rücktritt führt kein Weg
vorbei (23.09.2015)

VW-Abgasaffäre: Dobrindt will nichts von
Manipulation gewusst haben (23.09.2015)

Skandal um Abgaswerte: New Yorks
Generalstaatsanwalt ermittelt gegen VW (23.09.2015)

Abgasaffäre bei VW: Was wir bisher wissen - und
was nicht (22.09.2015)

VW-Affäre: Teurer Sparzwang (22.09.2015)

Fotostrecke: Wie die US-Presse über VW urteilt

VW-Abgas-Affäre: Bosch weist Mitschuld von sich
Die Technik für die umstrittenen Dieselmodelle in der VW-Abgas-Affäre lieferte Bosch. Doch an der
Manipulation will das Unternehmen nicht beteiligt gewesen sein: Die Verantwortung liege allein beim
Autobauer.

TeilenTeilen 64 Personen empfehlen das. Registriere dich, um
die Empfehlungen deiner Freunde sehen zu
können.

EmpfehlenEmpfehlen

TwitternTwittern 47 +3 Empfehlen Auf anderen Social Networks teilen

Don’t give a proof.

Show that a proof exists.

simplify task for program verification:

inclusion check:
show that, for every word in the given set,

an accepting run exists

automata:
existence of accepting run

Show that,
for every program execution,

a proof exists.

simplify task for program verification:

proof spaces

• automata from unsatisfiability proofs

• proof spaces

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

no execution violates assertion = no execution reaches error location

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

automaton

alphabet: {statements}

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

infeasible trace

x := 1 ; x == -1 ;

x == 1 ; x == -1 ;

unsatisfiable formula

x

0 = 1 ^ x

0 = �1

x = 1 ^ x = �1

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

(p != 0)

(p==0)

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

accepts all traces with the same unsatisfiability proof

automaton constructed from unsatisfiability proof

(p != 0)
(n >= 0)
(p == 0)

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

does a proof exist for every trace ?

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

new trace:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

(n == 0)

(n--)
(n >= 0)

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

automaton constructed from unsatisfiability proof

accepts all traces with the same unsatisfiability proof

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

⋃
?
⊆

does a proof exist for every trace ?

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)

proof spaces

• automata from unsatisfiability proofs

• proof spaces

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

Hoare triples
proving infeasibility :

 infeasibility ⇔ pre/postcondition pair (true, false)

 {p} s {q’}

{q’} s’ {q}

{p} s ; s’ {q}

inference rule for sequencing

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

generated from finite basis of Hoare triples “{pre} stmt {post}”

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

proof of sample trace:

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

finite basis of Hoare triples “{pre} stmt {post}”

can be obtained from proofs of sample traces

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

finite basis of Hoare triples “{pre} stmt {post}” ⟼ automaton

 sequencing of Hoare triples in basis run of automaton

⟼

⟼

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rule of sequencing

generated from finite basis of Hoare triples “{pre} stmt {post}”

proof space contains “{true} trace {false}”
if

exists sequencing of Hoare triples in basis
if

exists accepting run of automaton

paradigm:

- construct proof space

- check proof space

 {p} s {q’}

{q’} s’ {q}

{p} s ; s’ {q}

inference rule for sequencing

 {p} s {q}

 {p’} s {q’}

 {p ∧ p’} s {q ∧ q’}

inference rule for parallelism

“interference freedom”

 {p} s {q}

 ------------------ renaming of thread id’s

 {p’} s’ {q’}

inference rule for unbounded number of threads

“symmetry”

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

c(1)

end(1)

c(2)

end(2)

c(35)

end(35) len

next

.

c(3)

end(34)

threads
have acquired block of tasks
have not yet started working

1, 2, . . . , 35

{true}
lock(m) :2

{true}
assume(next + 10 <= len) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
end := next :2

{end(2) next}
unlock(m); :2

{end(2) next}
lock(m) :9

{end(2) next}
assume(next + 10 <= len) :9

{end(2) next}
c := next :9

{end(2) c(9)}
next := next + 10 :9

{end(2) c(9)}
end := next :9

{end(2) c(9)}
unlock(m) :9

{end(2) c(9)}

{end(2) c(9)}
assume(c < end) :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 0 :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 1 :2
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
assume(c < end) :9
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
tasks[c] := 0 :9
{tasks[c(2)] = 1}
asume(tasks[c] != 1) :2
{false}

(a) Initialization example (b) Loop example

for given trace
(fixed set of threads),
proof
can be
computed
automatically
by SMT solver

{true} ⇡ {end(2) c(9)}

⇡

{true}
lock(m) :2

{true}
assume(next + 10 <= len) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
end := next :2

{end(2) next}
unlock(m); :2

{end(2) next}
lock(m) :9

{end(2) next}
assume(next + 10 <= len) :9

{end(2) next}
c := next :9

{end(2) c(9)}
next := next + 10 :9

{end(2) c(9)}
end := next :9

{end(2) c(9)}
unlock(m) :9

{end(2) c(9)}

{end(2) c(9)}
assume(c < end) :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 0 :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 1 :2
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
assume(c < end) :9
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
tasks[c] := 0 :9
{tasks[c(2)] = 1}
asume(tasks[c] != 1) :2
{false}

(a) Initialization example (b) Loop example

for given trace
(fixed set of threads),
proof
can be
computed
automatically
by SMT solver

{true} ⇡ {end(2) c(9)}

⇡

{true}
lock(m) :2

{true}
assume(next + 10 <= len) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
end := next :2

{end(2) next}
unlock(m); :2

{end(2) next}
lock(m) :9

{end(2) next}
assume(next + 10 <= len) :9

{end(2) next}
c := next :9

{end(2) c(9)}
next := next + 10 :9

{end(2) c(9)}
end := next :9

{end(2) c(9)}
unlock(m) :9

{end(2) c(9)}

{end(2) c(9)}
assume(c < end) :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 0 :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 1 :2
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
assume(c < end) :9
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
tasks[c] := 0 :9
{tasks[c(2)] = 1}
asume(tasks[c] != 1) :2
{false}

(a) Initialization example (b) Loop example

for given trace
(fixed set of threads),
proof
can be
assembled
automatically
from a basis of
atomic Hoare triples

{true} ⇡ {end(2) c(9)}

⇡

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

basis for Thread Pooling

{true}
lock(m) :2

{true}
assume(next + 10 <= len) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
end := next :2

{end(2) next}
unlock(m); :2

{end(2) next}
lock(m) :9

{end(2) next}
assume(next + 10 <= len) :9

{end(2) next}
c := next :9

{end(2) c(9)}
next := next + 10 :9

{end(2) c(9)}
end := next :9

{end(2) c(9)}
unlock(m) :9

{end(2) c(9)}

{end(2) c(9)}
assume(c < end) :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 0 :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 1 :2
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
assume(c < end) :9
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
tasks[c] := 0 :9
{tasks[c(2)] = 1}
asume(tasks[c] != 1) :2
{false}

(a) Initialization example (b) Loop example

inference by symmetry

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

basis for Thread Pooling

{true}
lock(m) :2

{true}
assume(next + 10 <= len) :2

{true}
c := next :2

{true}
next := next + 10 :2

{true}
end := next :2

{end(2) next}
unlock(m); :2

{end(2) next}
lock(m) :9

{end(2) next}
assume(next + 10 <= len) :9

{end(2) next}
c := next :9

{end(2) c(9)}
next := next + 10 :9

{end(2) c(9)}
end := next :9

{end(2) c(9)}
unlock(m) :9

{end(2) c(9)}

{end(2) c(9)}
assume(c < end) :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 0 :2
{c(2) < end(2) ^ end(2) c(9)}
tasks[c] := 1 :2
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
assume(c < end) :9
{tasks[c(2)] = 1 ^ c(2) < end(2)
^ end(2) c(9)}
tasks[c] := 0 :9
{tasks[c(2)] = 1}
asume(tasks[c] != 1) :2
{false}

(a) Initialization example (b) Loop example

(“rename 2/1 and 9/2”)

inference by symmetry

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

Locking

{true}

Initialization

{true} {c(1) next} {true}
hlock(m) : 1i hc := next : 1i hnext := next + 10 : 1i hend := next : 1i
{m = 1} {c(1) next} {c(1) < next} {end(1) next}
{m = 1} {end(1) next} {true} {len next}

hlock(m) : 1i hc := next : 2i hassume(next + 10 > len) : 1i hend := len : 1i
{false} {end(1) c(2)} {len next} {end(1) next}

Loop

{true} {true} {tasks[c(1)] = 1} {end(1) c(2)}
hassume(c < end) : 1i htasks[c] := 1 : 1i hassume(tasks[c] != 1) : 1i hc := c + 1 : 2i

{c(1) < end(1)} {tasks[c(1)] = 1} {false} {end(1) c(2)}
{tasks[c(1)] = 1 ^ c(1) < end(1) c(2)} {tasks[c(1)] = 1 ^ c(2) < end(2) c(1)}

htasks[c] := 0 : 2i htasks[c] := 0 : 2i
{tasks[c(1)] = 1} {tasks[c(1)] = 1}

Figure 1. Proof space for thread pooling. c(1) denotes the local variable c in T1 and hc := next : 1i denotes T1’s instance of the command
c := next (respectively for T2). All non-trivial Hoare triples are illustrated. Trivial ones of the type {'} c {'}, where the set of variables
that the command c modifies is disjoint from the set of variables in ', have been omitted for brevity.

Before we explain the proof space in detail, we will remark
on some notable high-level features of this proof. First, the set of
triples in Figure 1 make use of mixed assertions (as in [11]) which
relate the values of local variables to global variables (e.g., c(1)
next). From the perspective of predicate abstraction, this is notable
because mixed assertions yield synchronous abstractions, and thus
are incompatible with classical asynchronous verification targets
such as Boolean programs or Petri nets, as already noted in [20].
Second, the triples also make use of inter-thread assertions which
relate the local variables of different threads (e.g., end(1) c(2)).
This is interesting from the perspective of compositional proof
systems (e.g., thread-modular proofs) which require introducing
auxiliary variables to reason about inter-thread relationships [25,
32].

First, we note that the the program is transformed in the usual
way to accommodate verification: we use the standard transla-
tion of conditional branches to nondeterministic branches and two
assume commands (one for the condition and one for its negation).
Furthermore, we replace the assertion with a branch leading to an
error location. The branch uses the assume command for the er-
ror condition (the negation of the expression in the assert). The
error location is reachable only through this branch. We call an er-
ror trace an interleaving sequence of commands of any number of
threads ⇡ such that the last command of ⇡ is the assume command
for the error condition. We can express the correctness of the pro-
gram by the fact that every error trace ⇡ satisfies the specification
{true} ⇡ {false}. Thus, we have a setting where a trace is correct
if and only if it is infeasible.

Let us now demonstrate how the proof space is used to argue for
the correctness of the program. We must show that for every error
trace ⇡ there exists a proof of {true} ⇡ {false} which can be con-
structed from the triples in Figure 1 using only the combinatorial
inference rules of symmetry, conjunction, and sequencing.

Let us first consider the pair of Hoare triples in the Lock-
ing group. Note that a lock(m) command is an atomic sequence
of {assume(m = 0); m := 1}, and an unlock(m) command is
simply the assignment command m := 0. Intuitively, the locking
Hoare triples encapsulate the reasoning required to prove that the
lock m provides mutually exclusive access to the variable next. Any
trace which violates locking semantics can be proved correct using
the Hoare triples in the Locking group along with sequencing and
symmetry operations. To see why, consider that any such trace can
be decomposed as

⇡1 · hlock(m) : ii · ⇡2 · hlock(m) : ji · ⇡3

where the Hoare triples for all 5 segment of the trace are as follows:

{true} ⇡1 {true}
{true} hlock(m) : ii {m = 1}

{m = 1} ⇡2 {m = 1}
{m = 1} hlock(m) : ji {false}
{false} ⇡3 {false}

The two non-trivial triples above are inferred from the triples in the
Locking group by renaming thread 1 (i.e. using the combinatorial
symmetry operation) to i and j, respectively. The rest of the triples
come from the simple invariance Hoare triples (not depicted in
Figure 1, but mentioned in the caption), that allow us to infer
{m = 1} c {m = 1} for any command c except lock(m) and
unlock(m), and {true} c {true} and {false} c {false} for
every command.

Let us now turn our attention to the error traces which do respect
locking semantics, and show that they are infeasible. The six Hoare
triples in the Initialization section of Figure 1 are sufficient to prove
that after two threads (say 2 and 9) acquire their block of tasks,
those blocks do not overlap (i.e., we have either end(9) c(2)

or end(2) c(9), depending on the order in which the threads
acquire their tasks). An example of such a trace (which can be
proved using just sequencing and symmetry operations) appears in
Figure 3(a). We encourage the reader to show (using conjunction)
that if we extend the trace in Figure 3(a) by the initialization
sequence a third thread (say 5) to obtain a trace ⇡, then

{true} ⇡ {end(2) c(9) ^ end(2) c(5) ^ end(9) c(5)}

belongs to the proof space as well. Following similar proof combi-
nation steps, one can see that the argument can be adapted to traces
with any number of threads.

Finally, the triples in the Loop section can be used to show
two things. First, the “non-overlapping” property established in
the initialization section is preserved by the loop: for example, if
end(2) c(9) holds at the beginning of the loop, then if thread 2

or thread 9 (or any other thread) execute the loop, end(2) c(9)

continues to hold. Second, (assuming the non-overlapping condi-
tion holds), if some task has been completed then it remains com-
pleted: for example, if tasks[c(2)] = 1, then when thread 9

starts task c(9) (i.e. assigns 0 to tasks[c(9)]), it cannot over-
write the value of the array cell tasks[c(2)] (this is ensured by
the precondition c(2) < end(2) c(9), which implies c(2) 6=
c(9)). Figure 3(b) gives an example proof which can be derived us-
ing the Loop section. The sequential composition of traces in Fig-
ure 3(a) and Figure 3(b) forms an error trace (i.e. one that leads to
the error location), and sequencing their proofs yields a proof that
it is infeasible.

For this example, it may be intuitively clear that all error traces

4 2014/9/3

basis for Thread Pooling

proof space

 infinite space of Hoare triples “{pre} trace {post}”

closed under inference rules of sequencing,
conjunction, symmetry

generated from finite basis of Hoare triples “{pre} stmt {post}”

paradigm:

- construct proof space

- check proof space

Don’t give a proof.

Show that a proof exists.

simplify task for program verification:

inclusion check:
show that, for every word in the given set,

an accepting run exists

automata:
existence of accepting run

Show that,
for every program execution,

a proof exists.

simplify task for program verification:

• Refinement of Trace Abstraction. SAS 2009
• Nested interpolants. POPL 2010
• Interpolant Automata. ATVA 2012
• Ultimate Automizer with SMTInterpol - (Competition Contribution). TACAS 2013
• Automata as Proofs. VMCAI 2013
• Inductive data flow graphs. POPL 2013
• Software Model Checking for People Who Love Automata. CAV 2013
• Ultimate Automizer with Unsatisfiable Cores - (Competition Contribution). TACAS 2014
• Termination Analysis by Learning Terminating Programs. CAV 2014
• Proofs that count. POPL 2014:
• Ultimate Automizer with Array Interpolation - (Competition Contribution). TACAS 2015
• Automated Program Verification. LATA 2015
• Fairness Modulo Theory: A New Approach to LTL Software Model Checking. CAV 2015
• Proof Spaces for Unbounded Parallelism. POPL 2015

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Azadeh Farzan,
Zachary Kincaid, Markus Lindenmann, Betim Musa, Christian Schilling, Alexander Nutz,
 Stefan Wissert, Evren Ermis

