George R. Brown
School of Engineering

. ‘ Computer Science &
Avoidance, Detection, and Repair of Bugs in
- Structured Parallel Programs

Vivek Sarkar

E.D. Butcher Chair in Engineering
Professor of Computer Science

2 Rice University
vsarkar@rice.edu

A4

Acknowledgments --- Habanero Extreme Scale Software Group

= Faculty

= Vivek Sarkar
= Senior Research Scientists

= Michael Burke, Kathleen Knobe
= Research Scientists

= Zoran Budimli¢, Philippe Charles, Michael Fagan, Akihiro Hayashi, Vivek
Kumar, Jun Shirako, Jisheng Zhao

= Postdoctoral Researcher
» Tiago Cogumbreiro
= Post-MS PhD Students

= Kumud Bhandari, Max Grossman, Alina Sbirlea, Rishi Surendran, Sagnak
Tasirlar, Nick Vrvilo

Pre-MS PhD Students

» Prasanth Chatarasi, Arghya Chatterjee,, Ankush Mandal, Yuhan Peng,
Jonathan Sharman

With Multicore Processors and Cloud Computing,
all Computers are Parallel Computers ...

Datacenter: 10° threads

Rack: 10*-10° threads

Socket/blade: 500-5000 threads

Die: 100-1000 threads

Core/tile: 1-10 threads

... and all Software is Parallel by Default!

= New classes of bugs are being encountered in new
programming models and frameworks across the full
spectrum of parallel systems (embedded, mobile,
server, cloud)

= New challenges for software correctness and
reliability
A. Avoidance of parallelism/concurrency bugs

B. Detection of parallelism/concurrency bugs
C. Repair of parallelism/concurrency bugs

4

Context: Rice Habanero Extreme Scale Research Project

(Parallel Applications >

Structured-parallel execution model Two-level programming model
1) Lightweight asynchronous tasks and Habanero Declarative Coordination

data transfers Programming Language for Domain Experts:
= Creation: async tasks, future tasks, Languages CnC, DFGL

data-driven tasks +

= Termination: finish, future get, await Habanero Task-Parallel Languages for

= Data Transfers: asyncPut, asyncGet Compiler & PIR Parallelism-aware Developers:
2) Locality control for task and data _ Habanero-C, Habanero-C++,
distribution (BUIIt on LLVM) Habanero-Java, Habanero-Scala
= Computation and Data Distributions:

hierarchical places, global name space Habanero Mainstream

3) Inter-task synchronization operations Runtime (Joe) Para"De;ivséTéS:rhswous

= Mutual exclusion: isolated, actors System

= Collective and point-to-point :

operations: phasgrs, accSmuIators (Built on OCR) et

Extreme Scale Platforms =

) http://habanero.rice.edu ﬁ

Our Approach: Leverage Structured Parallelism

Programming models should specify what can run in parallel, not how
the parallelism should be exploited

=>» Specify logical (rather than actual) parallelism with structured
primitives that are accompanied by strong semantic guarantees

Compilers should be able to analyze and transform parallel programs

=>» Extend foundations of compiler theory so as to analyze and
transform structured parallel programs

Runtime systems should be able to efficiently manage larger degrees
of parallelism than the underlying hardware

=>»Build scalable and adaptive runtime systems for structured
parallelism that trade off parallelism, locality, energy, and resilience

Debugging and verification tools should be sound and complete, to the
largest extent possible

=> Use structured parallel abstractions to help programmers avoid,
detect and repair bugs in parallel programs

ﬁ

Structured Primitives in Habanero Execution Model

1) Lightweight asynchronous tasks and data transfers

= Creation: async tasks, future tasks, data-driven tasks
= Termination: finish, future get, await

= Data Transfers: asyncPut, asyncGet

2) Locality control for control and data distribution

= Computation and Data Distributions: hierarchical places, global
name space

3) Inter-task synchronization operations
= Mutual exclusion: global/object-based isolation, actors
= Collective and point-to-point operations: phasers, accumulators

Note: these primitives can be used directly as a programming

i model, or can be targeted by higher level programming models _
% RICE 7 é?

Semantic Classification of |,o

Habanero Parallel Programs - pir = peadLock-Free

» DRF = Data-Race-Free

= DET = Structural + Functional Determinism
= DRF=>»DET = DRF implies DET

= SER = Serial elision

= [f a Habanero program only uses async, finish,
and final future constructs, then it is guaranteed to
belong to the SER + DLF + (DRF=»DET) class

= Adding phasers yields programs in the DLF +
2) DLF- (DRF=»DET) class (dropping SER)

DRF-DET
= Adding async await yields programs in the
1) DLF- DRF=»DET class (dropping DRF)

DRF-DET-SER = Restricting shared data accesses to futures,
Isolated, actors yields programs in the DRF-ALL
class

cy 9 “Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako, Y
N RICE vivek sarkar PPPJ 2011, 8 i

5) DRF-ALL

4) DLF-DRF-ALL

Part A: Overall Approach to Bug Avoidance

= Establish sufficient conditions to ensure that bug
cannot appear in any execution of any program that
satisfies those conditions

= Example: Deadlock Avoidance

NRICE .

Deadlock Avoidance in Unstructured Fork-Join is hard

It can be hard to avoid deadlocks with unstructured
parallelism, e.g.,

1. static Thread tl, t2;

2.tl = new Thread(() -> {t2.jo1n();});
3. t2 = new Thread(() -> {tl.join();});
4. tl.start();

5. t2.start();

% RICE 0

Deadlock Avoidance can be guaranteed for Structured
Fork-Join parallelism (async-finish, spawn-sync, ...)

finish {
Task A0 (Part 1) ;
async {Al; async A2;}
try {
finish {
Task A0 (Part 2);
async A3;
async A4;
}
catch (..) { ..}
Task A0 (Part 3);

}

o ¢

Barriers: another example of deadlock
(or undefined behavior) with unstructured parallelism

1.// Assume that number of threads is >= 2
2. pragma omp parallel
3. |
const int tid = omp get thread num() ;
if (tid '= 1) {
. #pragma omp barrier
}
}

0 dJ o U1 b

Non-conforming program leads to unpredictable results on
different platforms

Deadlock, silent completion, ...
Similar examples can be created for other models, e.g., MPI
12]

Phasers: a structured generalization of barriers
and point-to-point synchronization

= Phaser allocation: phaser ph = new phaser(mode);
= Phaser ph is allocated with registration mode
» Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

= Registration mode lattice: SINGLE

SIG_WAIT(default)
/ \
SIGNAL WAIT

= Task creation: async phased (ph,<mode.>, ph,<mode,>, ...) <stmt>
= Spawned task is registered with ph, in mode,, ph, in mode,, ...
= Child task’s capabilities must be subset of parent’s
= Task drops all phaser registrations upon termination

= Synchronization: next;
= Advance each phaser that activity is registered on to its next phase
= Semantics depends on registration mode

Deadlock avoidance is guaranteed with phasers ...

finish {
phaser ph = new phaser(); //A;
async phased(ph){ STMT1l; next; STMT2; next; STMT3; } //A,
async phased(ph) { STMT4: next; STMT5; } //A,
STMT6; next; STMT7; next; STMT8; //A,

A A, Az TasksA,,A,, A, are registered
on phaser ph (can be extended
async —g — with signal/wait modes)
STMT 6 STMT | STMT 4
next next next
STMT 7 STMT 2 STMT5
next néxt Dynamic parallelism:
. STMTS STMT3 # activities registered
finish
on phaser can vary

y 6

... even with point-to-point synchronization

. finish for (point[i]: [1:N])
async phased(ph[1]<SIG>, ph[1-1]<WAIT>,
ph[1+1]<WAIT>) {
while (true) {
Al[1] = F(B[1-1], B[i1], B[i+1l]);
next; // barrier
if (equals(A[i],B[i])) break;
else B[1] = A[1];
} // while
0. } // finish-for-async

R OooO~NOOUVITHA, WN K

| Exiting from while loop terminates
Deadlock avoidance proof for-async iteration i, and

formalized in Coq automatically “deregisters” task i
: RICF " from its phasers &

Futures can deadlock if their references participate
in a data race ...

future<int> fl=null;

future<int> f2=null; int al() {
future<int> tmp=null;
do {

void main (String[] args) { tmp=£2;
} while (tmp == null);

f1 = async<int> {return al();};
return tmp.get();

f2 = async<int> {return a2();}; }
} int a2() {49——"’///

C)’CIIC walt future<int> tmp=null;
diti do {
condition tmp=£1;
} while (tmp == null);

return tmp.get();
}

... a sufficient condition to guarantee deadlock avoidance with futures is to
ensure that all future references are declared as final variables

Part B: Overall Approach to Bug Detection

= For bugs that are not guaranteed to be avoided, we
need to turn to detection

= Focus of our work is on dynamic bug detection for
soundness and precision, supported by static
analysis for efficiency

= Examples
1. Data Race Detection
2. Permission Violation Detection
3. Commutativity Violation Detection

17

Data Races

= Two accesses to a shared memory location by two
different tasks result in a data race If:

= At [east one of the access is a write, and

= The program structure imposes no happens-before ordering
between the two accesses

This definition is sometimes referred
to as a potential data race

[
‘RICE 18

SPD3: Scalable and Precise Dynamic Datarace
Detection algorithm

= A parallel sound and precise race detection algorithm for
async and finish constructs

= Two components:

= Dynamic Program Structure Tree (DPST)
= To identify potentially parallel accesses
= Access Summary
= To identify interfering accesses

= “Scalable and Precise Dynamic Data Race Detection for

Structured Parallelism”. Raghavan Raman, Jisheng Zhao,

~Vivek Sarkar, Martin Vechev, Eran Yahav. [PLDI “12]
% RICE 19

Dynamic Program Structure Tree (DPST)

= Tree that maintains parent-child relationships among async,
finish, and step instances

= |nternal nodes represent async and finish instances
= |eaf nodes represent step instances

= Step

= Maximal sequence of statements with no async or finish

= Children of a node are ordered from left-to-right

= Reflects the sequencing of computations that belong to the same
task

&' RICE 20

DPST Example

1: £inish { // F1

2 S1; Left-to-right
3 async { // Al ordering of children
4: async { // A2

5: S2;

6: } s1 Al S5 A4
7 async { // A3

8 S3; /////// \\\\\\

9: }

10: S4; A2 A3 S4 S6
11: }

12: S5;

13: async { // A4 o o

14: S6;

15: }

16: }

21

DPST Properties resulting from Structured Parallelism

= Every execution of a program with the same input produces
the same DPST

= |[f no data race is detected

= Path from a leaf to the root stays invariant as the tree
grows

= All computations happen in leaves

= May-happen-in-parallel checks will be done only
between leaves

% 'RICE 22

|dentifying Parallel Accesses using DPST

DMHP (S, S’)

Assuming S is to the
1)L:=LCA(S,S) left of S’ in the DPST
2) C := child of L that is

ancestor of S
3) If Cis async
return true
Else return false

% RICE .

|dentifying Parallel Accesses using DPST

DMHP (S, S’) A

1) L :=LCA (S, S’) Al S5 A4
3 S4

S1
2) C := child of L that is /
ancestor of S
A2
S2 S3

A S6

3) If Cis async
return true

Else return false

% RICE 2

|dentifying Parallel Accesses using DPST

DMHP (S, S’) A

1) L :=LCA (S, S’) Al S5 A4
3 S4

S1
2) C := child of L that is /
ancestor of S
A2
S2 S3

A S6

3) If Cis async
return true

Else return false

% RICE 25

|dentifying Parallel Accesses using DPST

LCA(S3, S6)
DMHP (S, S’) %

1) L :=LCA (S, S’) Al S5 A4
3 S4

S1
2) C := child of L that is /
ancestor of S
A2
S2 S3

A S6

3) If Cis async
return true

Else return false

% 'RICE 26

|dentifying Parallel Accesses using DPST

DMHP (S, S” Child of F1 that is

ancestor of S3

~
1) L := LCA (S, S’) S1 Al S5 A4
2) C := child of L that is
ancestor of S / \
3) If Cis async A2 A3 54 56

return true
Else return false

S2 S3

% 'RICE 27

|dentifying Parallel Accesses using DPST

DMHP (S, S’)

1)L:=LCA(S, S’) -

2) C := child of L that is /
ancestor of S

3) If Cis async A2

return true
Else return false

A A4

1 S5
3 S4

S2 S3

A S6

Al is an async => DMHP(S3, S6) = true

28

|dentifying Parallel Accesses using DPST

DMHP (S, S’) A

1) L :=LCA (S, S’) Al S5 A4
3 S4

S1
2) C := child of L that is /
ancestor of S
A2
S2 S3

A S6

3) If Cis async
return true

Else return false

% RICE 2

|dentifying Parallel Accesses using DPST

LCA(S5, S6)
DMHP (S, S’) %

1) L :=LCA (S, S’) Al S5 A4
3 S4

S1
2) C := child of L that is /
ancestor of S
A2
S2 S3

A S6

3) If Cis async
return true

Else return false

% 'RICE 30

|dentifying Parallel Accesses using DPST

DMHP (S, S’)

Child of F1 that is
ancestor of S5 7
A

1)L:=LCA (S, S)

o1 1 S5 A4
2) C :=child of L that is /
ancestor of S
3) If Cis async A2 A3 54 56
return true
Else return false
S2 S3

S RICE 5

|dentifying Parallel Accesses using DPST

DMHP (S, S’)

1)L:=LCA(S, S) -
2) C := child of L that is

ancestor of S /
3) If Cis async A2

return true
Else return false

A A4

1 S5
3 S4

S2 S3

A S6

S5 is NOT an async => DMHP(S5, S6) = false

32

Related Work: A Comparison

Target Language

Space Overhead
per memory
location

Guarantees

Emopirical
Evaluation

Execute Program
in Parallel

Dependent on
Scheduling
technique

% RICE

Nested Fork-Join
&

Synchronization
operations

O(m)

Per-Schedule

No

Yes

No

Nested
Fork-
Join

o(1)

Per-
Input
Minimal

Yes

No

Spawn-
Sync

o(1)

Per-Input

Yes

No

Yes

Spawn-
Sync

Per-
Input
No

Yes

Yes

Unstructured
Fork-Join

O(N)

Per-Input

Yes

Yes

No

OTFDAA — On the fly detection of access anomalies

m — number of threads executing the program

N — maximum logical concurrency in the program

Async- Async-
Finish Finish
O(1) O(1)
Per-Input | Per-Input
Yes Yes

No Yes

Yes No

6

Another Example: Detection of Permission Violations

= Permissions check for “high-level” data races
= Advances in Permission Types:

= Aliased write permissions

= Dynamic permission acquires/releases

= Storable permissions
= Extensions:

= Array-Based Parallelism

= Object-based isolation

= “Practical Permissions for Race-Free Parallelism”. Edwin
Westbrook, Jisheng Zhao, Zoran Budimlic, Vivek Sarkar,

ECOOP "12.

% RICE 34

Permission Types in Code

void insert (Node n) {
n.next = next;
next = n;

bool search (int 1) {

1f (data == 1)
return true;

else 1f (next == null)
return false;

else return next.search (1);

35

Gradual Typing: System inserts acquires as needed

volid insert (Node n) {

n.next = next; next = nj;

}

bool search (int 1) {

1if (data == 1) return true;
else 1f (next == null) return false;
else return next.search (1);

}
% RICE 36

Acquires & Fail-Stop Semantics

Permission violations are bugs!

Dynamic (Like null pointer dereferences)

Permission Exception
Conflict

Block

 Changes synchronization behavior
* Could cause deadlock

% RICE 37

Object Modes

Shared Private
Read-Only Read-Write

% RICE 3

Object Modes

Shared Private Private
Read-Write Read-Write
Read-Only (task 1) (task 2)

% 'RICE 39

Fractional Permissions

task task

Shared read > der Shared read
permission permission

% RICE 4

Gradual Typing enables Trade-off between
User Effort and Dynamic Checks

%M ~1.5x (geo mean)
Lé) [RV'11]
T \ Slowd < 5% (average)
& owdown [ECOOP’12]
.
Productivity
> (LoC modified)
| = - ,

User Effort/Expertise

: RICE M

Dynamic Determinism Checking for
Structured Parallelism [WoDet’14]

HJd = Habanero Java with determinism

— Builds on our prior race-freedom work
[RV'11,ECOOP’12]

Determinism is checked dynamically
— For application code, not parallel libraries

Determinism failures throw exceptions
— Because non-determinism is a bug!

Checking itself uses a deterministic structure
Leads to low overhead: 1.26x slowdown!

Two Sorts of Code

1. High-performance parallel libraries
— Uses complex and subtle parallel constructs
— Written by concurrency experts: the 1%

2. Beterministic application code

— Uses parallel libraries in a deterministic way
— Parallelism behavior is straightforward
— ~\Written by everybody else: the 99%

We focus on application code

Approach: Determinism via
Commutativity

1. Identify pairs of library operations which
commute

— Operations = parallel library primitives (the 1%)
— Verified independently of this work

2. Dynamic checking of the application code
(the 99%)

— Detect commutativity violations using the DPST

— Ensures no non-commuting methods could
possibly run in parallel

Example: Counting Factors in Parallel

class CountFactors {
int countFactors (int n) {
AtomicInteger cnt
= new AtomicInteger();

finish {
for (int 1 = 2; 1 < n; ++i
(! !) Fork task
async {
Join child if (n 8 1 == 0)
o) Increment cnt
asks cnt.increment(); in parallel
}}
return cnt.get (); Get result

}} after finish

Specifying Commutativity for Libraries

* Methods annotated with “commutativity sets”
— Each pair of methods in set commute
* Syntax:

@CommSets{S,, ..,S,} <method sig>
— States method is in sets S, through S

— Commutes with all other methods in these sets

Commutativity Sets for Atomiclnteger

| | get commutes
final class AtomicInteger { with itself

@CommSets{"read"} int get () { ... }

@CommSets{"modifv"} void increment|()
inc/dec commute with ()

themselves and each other _
@CommSets{ "'modify"} void decrement()

{ ...}

@CommSets{"read", "modify"} int initValue()

{ ...}

int incrementAndGet () { ... } el

with anything
Commutes with nothing
(not even itself)

Part C: Test-Driven Repair of Data Races

Use test inputs to drive program repair by inserting finish
statements to ensure that no races remain for the test inputs

Goal: maximize available parallelism after repair

- The newly inserted finish statements must respect the lexical
scope of the draft program

- The complete program after insertion of finish statements
must have the same semantics as its linearized version
(eliding parallel constructs)

“Test-Driven Repair of Data Races in Structured Parallel
Programs”. Rishi Surendran, Raghavan Raman, Swarat
Chaudhuri, John Mellor-Crummey, and Vivek Sarkar. PLDI
2014.

% RICE =25

oo -~

Parallel Software Development:
Current Practice

Sequential
Program

That was
easy

Gecrge K. Brown
R] T
Commgniter Scmmnce

| >~

Parallel Software Development:
Current Practice

These two tasks
can execute in

Sequential pagalie!

Program

=

Program with
parallelism

Parallel Software Development:
Current Practice

| it

[l

Sequential
Program

=

p

Program with
parallelism

]

Results don’ + match.
Let me try adding

synchronization

Gesege K. Brown
Sehest of Engineering
Computer Soimace

—h

Parallel Software Development:
Current Practice

Sequential
Program

'

Maybe I can
remove some
synchronization

p

Program with
parallelism

]

Poor Parallel
Performance

(=

I

Program with
data race

>

Parallel Software Development:
Our Vision

Sequential
Program

'

‘ Draft program
with parallelism

but no
synchronization

Program
repair and

Complete race-free
high-performance
parallel program

synthesis tool

Test inputs

Gesege K. Brown
Rl Sehest of Engimeering
Compr S 5

High Level View of Test-Driven Program Repair

Program
Lo~ Test input 1 = S e
Test input 2 est-Driven Repair

Tool

Repaired Program

Test input n

54

High Level View of Test-Driven Program Repair

Program
SNI= Test i t1
D= es .|npu Test-Driven Repair
Test input 2
= Tool]
—Repaired Program
Test input n

Tool guarantees data race freedom in repaired program for all
test inputs

George K. Brown
RI Schoot of Engineering
Compurtor Seionce 55

Overview of Our Approach

Program Test inputs

I

Dynamic Finish Static Finish
Placement Placement

I

'

Repaired Program

Extended ESP-Bags data race detector

Performs a sequential depth first execution of the program on a single
processor

Dynamic finish placement finds an optimal solution

Static finish placement finds a heuristic solution

%' RICE == 56

Coupling Between Static and Dynamic
Finish Placement

Dynamic Finish Placement Static Finish Placement

. J bublic static void main (...) {

e }

Insert finish nodes in S-DPST

S1; ...

@ RICE =5z 57 ‘

Coupling Between Static and Dynamic
Finish Placement

Dynamic Finish Placement Static Finish Placement

. J bublic static void main (...) {

finish { S1; ...}

Dynamic to static finish

mapping

% RICE =2 58

Coupling Between Static and Dynamic
Finish Placement

Dynamic Finish Placement Static Finish Placement

. J bublic static void main (...) {

Propagate finish back to

finish { S1; ...}

S-DPST

%' RICE &2 59 ‘

Program Repair Example: Quicksort

1 static void quicksort(int[] A, int M, int N) {
2 if(M < N) {

3 point p = partition(A, M, N);

4 int T = p.get(9);

5 int J =p.get(1);

6 async quicksort(A, M, J);

7 async quicksort(A, I, N);

8 }

9 }

10 ...

11 quicksort(A, @, size-1); //Call inside main
12 /* verify results */

Input program has data races
% RICE =25 60

Program Repair Example: Quicksort

1 static void quicksort(int[] A, int M, int N) {
2 if(M < N) {

3 point p = partition(A, M, N);

4 int I = p.get(9);

5 int J =p.get(1);

6 async quicksort(A, M, J);

7 async quicksort(A, I, N);

8 }

9 }

10 ...

11 quicksort(A, 0, size-1); //Call inside maj
12 /* verify results */ =

Input program has data races
% RICE =25 61

Program Repair Example: Quicksort

1 static void quicksort(int[] A, int M, int N) {
2 if(M < N) {

3 point p = partition(A, M, N);

4 int I = p.get(9);

5 int J =p.get(1);

6 IEE!?C quicksort(A, M, J);

7 IEE!PC quicksort(A, I, N);

8 }

9 }

10 ...

11 quicksort(A, 0, size-1); //Call inside main
12 /* verify results */

Too much synchronization
% RICE =2 62

Program Repair Example: Quicksort

%' RICE =2

1 static void quicksort(int[] A,
2 if(M < N) {

3 point p = partition(A, M,
4 int T = p.get(9);

5 int J =p.get(1);

6 async quicksort(A, M, J);
7 async quicksort(A, I, N);
8 1}

9 }

10 ...

12 /* verify results */

11 quicksort(A, 0, size-1); //Call inside main

int M, int N) {

N);

Too much synchronization

63

Program Repair Example: Quicksort

1 static void quicksort(int[] A, int M, int N) {
2 if(M < N) {

3 point p = partition(A, M, N);

4 int I = p.get(0);

5 int J =p.get(1);

6 async quicksort(A, M, J);

7 async quicksort(A, I, N);

8 }

9 }

10 ...

11 fguicksort(A, 0, size-1); //Call inside main
12 /* verify results */

| Best finish placement
% RICE =2 64 ‘

Student Homework Evaluation

Evaluated student homework submissions as part of an
undergraduate course on parallel computing

Week 1 Assignment: Perform manual repair of buggy
quicksort program with missing finish constructs

Compared 59 student submissions against the repair
performed by the tool

5 submissions had data races
29 submissions were over-synchronized

25 submissions matched the output from repair tool

% RICE =2 65

Other Related Topics

= Determinism checking [SAS “10, WoDet “14]
= Deterministic reductions [WoDet ‘11, WoDet "13]

= Definitions of Functional vs. Structural Determinism, Determinacy,
Repeatability [DFM "12]

= Delegated Isolation for Nested Task Parallelism [OOPSLA “11,
OOPSLA “13]

= (Object-based Isolation [EuroPar “15]
= Integrating Actors with Task Parallelism [OOPSLA 12, AGERE ‘14]

= Model Checking Task Parallel Programs using Gradual Permissions
[ASE "19]

= Analysis and Transformation of Parallel Programs [TOPLAS 13,
LCPC 15, PACT "19]

= See Publications link in http://habanero.rice.edu

66

Conclusions

= New challenges for correctness and reliability in parallel
software
= Avoidance of parallelism/concurrency bugs

= Detection of parallelism/concurrency bugs
= Repair of parallelism/concurrency bugs

= Structured-parallel primitives can provide foundation for
addressing these challenges

» This talk presented early experiences from the Habanero
project, and key structured-parallel primitives that can enable
effective avoidance, detection, and repair of parallel bugs

