Probabilistic couplings for cryptography and privacy

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

October 7, 2016
Relational properties

Properties about two runs of the same program

- Assume inputs are related by Ψ
- Want to prove the outputs are related by Φ
Examples

Monotonicity

- $\Psi: in_1 \leq in_2$
- $\Phi: out_1 \leq out_2$
- “Bigger inputs give bigger outputs”
Examples

Monotonicity

- $\Psi : in_1 \leq in_2$
- $\Phi : out_1 \leq out_2$
- “Bigger inputs give bigger outputs”

Stability

- $\Psi : inp_1 \sim inp_2$
- $\Phi : out_1 \sim out_2$
- “If inputs are similar, then outputs are similar”
Examples

Monotonicity

- $\Psi: \text{in}_1 \leq \text{in}_2$
- $\Phi: \text{out}_1 \leq \text{out}_2$
- “Bigger inputs give bigger outputs”

Stability

- $\Psi: \text{inp}_1 \sim \text{inp}_2$
- $\Phi: \text{out}_1 \sim \text{out}_2$
- “If inputs are similar, then outputs are similar”

Non-interference

- $\Psi: \text{lowinp}_1 = \text{lowinp}_2$
- $\Phi: \text{lowout}_1 = \text{lowout}_2$
- “If low inputs are equal, then low outputs are equal”
Probabilistic relational properties

Monotonicity

- \(\psi : \text{in}_1 \leq \text{in}_2 \)
- \(\Phi : \Pr[\text{out}_1 \geq k] \leq \Pr[\text{out}_2 \geq k] \)
Probabilistic relational properties

Monotonicity

- $\Psi: in_1 \leq in_2$
- $\Phi: \Pr[out_1 \geq k] \leq \Pr[out_2 \geq k]$

Stability

- $\Psi: in_1 \sim in_2$
- $\Phi: \Pr[out_1 = k] \sim \Pr[out_2 = k]$
Probabilistic relational properties

Monotonicity

- $\Psi : in_1 \leq in_2$
- $\Phi : Pr[out_1 \geq k] \leq Pr[out_2 \geq k]$

Stability

- $\Psi : in_1 \sim in_2$
- $\Phi : Pr[out_1 = k] \sim Pr[out_2 = k]$

Non-interference

- $\Psi : lowinp_1 = lowinp_2$
- $\Phi : Pr[lowout_1 = k] = Pr[lowout_2 = k]$
Probabilistic relational properties

Monotonicity

- $\Psi: in_1 \leq in_2$
- $\Phi: \Pr[out_1 \geq k] \leq \Pr[out_2 \geq k]$

Stability

- $\Psi: in_1 \sim in_2$
- $\Phi: \Pr[out_1 = k] \sim \Pr[out_2 = k]$

Non-interference

- $\Psi: lowinp_1 = lowinp_2$
- $\Phi: \Pr[lowout_1 = k] = \Pr[lowout_2 = k]$

Richer properties

- Indistinguishability, differential privacy
Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling
Probabilistic couplings

- Used by mathematicians for proving relational properties
- Applications: Markov chains, probabilistic processes

Idea

- Place two processes in the same probability space
- Coordinate the sampling

Why is this interesting?

- Proving relational probabilistic properties reduced to proving non-relational non-probabilistic properties
- Compositional
Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_1, X_2 over set A
- Produce: joint distribution Y over $A \times A$
 - Projection over the first component is X_1
 - Projection over the second component is X_2
Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_1, X_2 over set A
- Produce: joint distribution Y over $A \times A$
 - Projection over the first component is X_1
 - Projection over the second component is X_2

Definition

Given two distributions X_1, X_2 over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_1(Y) = X_1$ and $\pi_2(Y) = X_2$
Introducing probabilistic couplings

Basic ingredients

- Given: two distributions X_1, X_2 over set A
- Produce: joint distribution Y over $A \times A$
 - Projection over the first component is X_1
 - Projection over the second component is X_2

Definition
Given two distributions X_1, X_2 over a set A, a coupling Y is a distribution over $A \times A$ such that $\pi_1(Y) = X_1$ and $\pi_2(Y) = X_2$ where

$$\pi_1(Y)(a_1) = \sum_{a_2} Y(a_1, a_2)$$
Fair coin toss

- One way to coordinate: require $x_1 = x_2$
- A different way: require $x_1 = \neg x_2$
- Yet another way: product distribution
- Choice of coupling depends on application
- Couplings always exist
Couplings vs liftings

Let $\mu_1, \mu_2 \in \text{Distr}(A)$, $\mu \in \text{Distr}(A \times A)$ and $R \subseteq A \times A$. Then

$$\mu \leftarrow_R \langle \mu_1 \& \mu_2 \rangle \triangleq \pi_1(\mu) = \mu_1 \land \pi_2(\mu) = \mu_2 \land \Pr_{y \leftarrow \mu}[y \in R] = 1$$

Different couplings yield liftings for different relations
Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \leftarrow \text{flip}$
- Heads: $p \leftarrow p + 1$
- Tails: $p \leftarrow p - 1$
Convergence of random walks

Simple random walk on integers

- Start at some position p
- Each step, flip coin $x \xLeftarrow{\$} \text{flip}$
- Heads: $p \leftarrow p + 1$
- Tails: $p \leftarrow p - 1$
Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

▶ Arrange samplings $x_1 = x_2$
▶ Continue to have $p_1 = p_2$
Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings $x_1 = x_2$
- Continue to have $p_1 = p_2$

Case $p_1 \neq p_2$: Walks have not met

- Arrange samplings $x_1 = \neg x_2$
- Walks make mirror moves
Coupling the walks to meet

Case $p_1 = p_2$: Walks have met

- Arrange samplings $x_1 = x_2$
- Continue to have $p_1 = p_2$

Case $p_1 \neq p_2$: Walks have not met

- Arrange samplings $x_1 = \neg x_2$
- Walks make mirror moves

Under coupling, if walks meet, they move together
Why is this interesting?

Memorylessness
Positions converge as we take more steps
Why is this interesting?

Memorylessness

Positions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don’t meet

Theorem

If Y is a coupling of two distributions (X_1, X_2), then

$$\|X_1 - X_2\|_{TV} \leq \Pr(y_1, y_2) \sim Y[y_1 \neq y_2].$$
Why is this interesting?

Memorylessness
Positions converge as we take more steps

Coupling bounds distance between distributions

- Once walks meet, they stay equal
- Distance is at most probability walks don’t meet

Theorem
If \(Y \) is a coupling of two distributions \((X_1, X_2)\), then

\[
\|X_1 - X_2\|_{TV} \triangleq \sum_{a \in A} |X_1(a) - X_2(a)| \leq \Pr_{(y_1, y_2) \sim Y}[y_1 \neq y_2].
\]
probabilistic Relational Hoare Logic

⊢ \{ P \} c_1 \sim c_2 \{ Q \} \text{ iff there exists } \mu \text{ such that}

\begin{equation}
P(m_1 \uplus m_2) \Rightarrow \mu \triangleleft_Q \langle \llbracket c_1 \rrbracket m_1 \& \llbracket c_2 \rrbracket m_2 \rangle
\end{equation}

where

\begin{equation}
\mu \triangleleft_R \langle \mu_1 \& \mu_2 \rangle \triangleq \pi_1(\mu) = \mu_1 \land \pi_2(\mu) = \mu_2 \land \text{supp}(\mu) \subseteq R
\end{equation}

Fundamental lemma of pRHL

If \(Q \triangleq E_1 \Rightarrow E_2 \) then \(\Pr(\llbracket c_1 \rrbracket m_1)[E_1] \leq \Pr(\llbracket c_2 \rrbracket m_2)[E_2] \)
Core rules

\[
\begin{align*}
\{\Phi\} c_1 & \sim c_2 \{\Theta\} & \{\Theta\} c'_1 & \sim c'_2 \{\Psi\} \\
\{\Phi\} c_1; c'_1 & \sim c_2; c'_2 \{\Psi\}
\end{align*}
\]

\[
\begin{align*}
\{\Phi \land b_1 \land b_2\} c_1 & \sim c_2 \{\Psi\} & \{\Phi \land \neg b_1 \land \neg b_2\} c'_1 & \sim c'_2 \{\Psi\} \\
\{\Phi \land b_1 = b_2\} \text{if } b_1 \text{ then } c_1 \text{ else } & c'_1 \sim \text{if } b_2 \text{ then } c_2 \text{ else } c'_2 \{\Psi\}
\end{align*}
\]

\[
\begin{align*}
\{\Phi \land b_1 \land b_2\} c_1 & \sim c_2 \{\Phi \land b_1 = b_2\} \\
\{\Phi \land b_1 = b_2\} \text{while } b_1 \text{ do } c_1 \sim \text{while } b_2 \text{ do } c_2 \{\Phi \land \neg b_1 \land \neg b_2\}
\end{align*}
\]
Loops

\[\psi \implies p_0 \oplus p_1 \oplus p_2 \]

\[\psi \land p_0 \implies e_1 \land e_2 \quad \psi \land p_1 \implies e_1 \quad \psi \land p_2 \implies e_2 \]

\[\text{while } e_1 \land p_1 \text{ do } c_1 \Downarrow \text{while } e_2 \land p_2 \text{ do } c_2 \]

\[\{ \psi \land p_1 \} c_1 \sim \text{skip}\{ \psi \} \quad \{ \psi \land p_2 \} \text{skip} \sim c_2\{ \psi \} \]

\[\{ \psi \land p_0 \} c_1 \sim c_2\{ \psi \} \]

\[\{ \psi \} \text{while } e_1 \text{ do } c_1 \sim \text{while } e_2 \text{ do } c_2\{ \psi \land \neg e_1 \land \neg e_2 \} \]
Random assignment

\[\mu \triangleleft_q \langle \mu_1 \& \mu_2 \rangle \]
\[\vdash \{ \top \} x_1 \leftarrow \mu_1 \sim x_2 \leftarrow \mu_2 \{ Q \}\]

Specialized rule

\[f \in T \xrightarrow{1-1} T \quad \forall v \in T. \ d_1(v) = d_2(f \ v) \]
\[\vdash \{ \forall v, Q[v/x_1, f \ v/x_2] \} \ x_1 \leftarrow \mu_1 \sim x_2 \leftarrow \mu_2 \{ Q \}\]

Notes

- Bijection \(f \): specifies how to coordinate the samples
- Side condition: marginals are preserved under \(f \)
- Assume: samples coupled when proving postcondition \(\Phi \)
Applications to cryptography

▶ EasyCrypt: interactive proof assistant (inspired from ssreflect) with back-end to SMT and CAS
▶ applied to encryption, signatures, hash designs, key exchange protocols, zero knowledge protocols, garbled circuits, SHA3, e-voting

Formalizing cryptographic proofs?

▶ *In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor.* Bellare and Rogaway, 2004-2006
▶ *Do we have a problem with cryptographic proofs? Yes, we do [...] We generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect).* Halevi, 2005
approximate probabilistic Relational Hoare Logic

- Quantitative generalization of pRHL \(\vdash_{\epsilon,\delta} \{ P \} c_1 \sim c_2 \{ Q \} \)

- Valid if there exists \(\mu_L, \mu_R \) such that

\[
P(m_1 \uplus m_2) \implies \mu_L, \mu_R \triangleright^\epsilon,\delta_Q \langle \llbracket c_1 \rrbracket m_1 & \llbracket c_2 \rrbracket m_2 \rangle
\]

where

\[
\mu_L, \mu_R \triangleright^\epsilon,\delta_Q \langle \mu_1 & \mu_2 \rangle \triangleq \begin{cases}
\pi_1(\mu_L) = \mu_1 & \pi_2(\mu_R) = \mu_2 \\
\text{supp}(\mu_L), \text{supp}(\mu_R) \subseteq Q \\
\Delta_\epsilon(\mu_1, \mu_2) \leq \delta
\end{cases}
\]

- Fundamental theorem of apRHL: if \(Q \triangleq E_1 \Rightarrow E_2 \) then

\[
\Pr(\llbracket c_1 \rrbracket m_1)[E_1] \leq \exp(\epsilon) \Pr(\llbracket c_2 \rrbracket m_2)[E_2] + \delta
\]

- Extends to \(f \)-divergences
Application: differential privacy

A randomized algorithm K is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$:

$\forall S. \Pr[K(D_1) \in S] \leq \exp(\epsilon) \cdot \Pr[K(D_2) \in S] + \delta$

Privacy as approximate couplings

K is (ϵ, δ)-differentially private wrt Φ iff $\vdash \epsilon, \delta \{ \Phi \}^K_1 \sim K_2 \{ \equiv \}$
Application: differential privacy

A randomized algorithm K is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$:

$$\forall S. \Pr[K(D_1) \in S] \leq \exp(\epsilon) \cdot \Pr[K(D_2) \in S] + \delta$$

Privacy as approximate couplings:

K is (ϵ, δ)-differentially private w.r.t Φ iff $\vdash \epsilon, \delta \{ \Phi \} K_1 \sim K_2 \{ \equiv \}$
Application: differential privacy

A randomized algorithm K is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t.

$$\forall S. \Pr[K(D_1) \in S] \leq \exp(\epsilon) \cdot \Pr[K(D_2) \in S] + \delta$$

Privacy as approximate couplings

K is (ϵ, δ)-differentially private wrt Φ iff

$$\epsilon, \delta \{\Phi\} K \sim_1 K_2 \{\equiv\}$$

Bounded ratio
A randomized algorithm \mathcal{K} is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$

$$\forall S. \Pr[\mathcal{K}(D_1) \in S] \leq \exp(\epsilon) \cdot \Pr[\mathcal{K}(D_2) \in S] + \delta$$
A randomized algorithm \mathcal{K} is (ϵ, δ)-differentially private w.r.t. Φ iff for all databases D_1 and D_2 s.t. $\Phi(D_1, D_2)$

$$\forall S. \ Pr[\mathcal{K}(D_1) \in S] \leq \exp(\epsilon) \cdot Pr[\mathcal{K}(D_2) \in S] + \delta$$

Privacy as approximate couplings
\mathcal{K} is (ϵ, δ)-differentially private wrt Φ iff $\vdash_{\epsilon, \delta} \{\Phi\} \mathcal{K}_1 \sim \mathcal{K}_2\{\equiv\}$
Differential privacy via output perturbation

Let f be k-sensitive w.r.t. Φ:

$$\Phi(a, a') \implies |f(a) - f(a')| \leq k$$

Then $a \mapsto L_\epsilon(f(a))$ is $(k \cdot \epsilon, 0)$-differentially private w.r.t. Φ.
Proof principles for Laplace mechanism

Making different things look equal

\[\Phi \triangleq |e_1 - e_2| \leq k' \]

\[\vdash_{k', \epsilon, 0} \{ \Phi \} y_1 \overset{\$}{\sim} L_\epsilon(e_1) \sim y_2 \overset{\$}{\sim} L_\epsilon(e_2) \{ y_1 = y_2 \} \]

Making equal things look different

\[\Phi \triangleq e_1 = e_2 \]

\[\vdash_{k, \epsilon, 0} \{ \Phi \} y_1 \overset{\$}{\sim} L_\epsilon(e_1) \sim y_2 \overset{\$}{\sim} L_\epsilon(e_2) \{ y_1 + k = y_2 \} \]

Pointwise equality

\[\forall i. \vdash_{\epsilon, 0} \{ \Phi \} c_1 \sim c_2 \{ x_1 = i \Rightarrow x_2 = i \} \]

\[\vdash_{\epsilon, 0} \{ \Phi \} c_1 \sim c_2 \{ x_1 = x_2 \} \]
If \mathcal{K} is (ϵ, δ)-differentially private, and

$\lambda a. \mathcal{K}'(a, b)$ is (ϵ', δ')-differentially private for every $b \in B$,

then $\lambda a. \mathcal{K}'(a, \mathcal{K}(a))$ is $(\epsilon + \epsilon', \delta + \delta')$-differentially private.
Beyond composition: Sparse Vector Technique

SparseVector\(_{bt}(a, b, M, N, d) := \)
\[
i \leftarrow 0; l \leftarrow []; u \leftarrow \mathcal{L}_\epsilon(0); A \leftarrow a - u; B \leftarrow b + u; \\
\text{while } i < N \text{ do} \\
\quad i \leftarrow i + 1; q \leftarrow A(l); S \leftarrow \mathcal{L}_\epsilon(q(d)); \\
\quad \text{if } (A \leq S \leq B \land |l| < M) \text{ then } l \leftarrow i :: l; \\
\text{return } l
\]

Privacy
If queries are 1-sensitive, then \((\sqrt{M\epsilon}, \delta')\)-diff. private

Tools
- advanced composition
- accuracy-dependent privacy
- optimal subset coupling
Proofs as (products) programs: xpRHL

- Every pRHL derivation yields a product program
- Different derivations yield different programs
- Can be modelled by a proof system
 \[\vdash \{ \Phi \} c_1 \leadsto c_2 \{ \Psi \} \leadsto c \]

Fundamental lemma of xpRHL

- \[\vdash \{ \Phi \} c_1 \leadsto c_2 \{ \Psi \} \implies x_1 = x_2 \]
- \[\{ \Box \Phi \} c \{ \Pr[\neg \Psi] \leq \epsilon \} \]
 implies

\[m_1 \Phi m_2 \Rightarrow |\Pr([c_1] m_1)[E(x_1)] - \Pr([c_2] m_2)[E(x_2)]| \leq \epsilon \]
Dynkin's card trick (shift coupling)

\[
p \leftarrow s; \quad l \leftarrow [p];
\]

while \(p < N \) do
\[
n \leftarrow \mathcal{U}[1, 10];
\]
\[
p \leftarrow p + n;
\]
\[
l \leftarrow p :: l;
\]
return \(p \)

Convergence

If \(s_1, s_2 \in [1, 10] \), and \(N > 10 \), then
\[
\Delta(p_1^{\text{final}}, p_2^{\text{final}}) \leq \left(\frac{9}{10} \right)^{N/5-2}
\]
Perspectives and further directions

- Program logics for provable security and differential privacy
 - Based on probabilistic couplings

Open questions
- couplings
- applications