
Analyzing, Abstracting, and
Mining Event-Driven Systems

ETH Zürich
October 8, 2016

University of Colorado Boulder

Bor-Yuh Evan ChangSergio Mover

Shawn Meier Maxwell RussekSam Blackshear
Facebook

Manu Sridharan
Samsung Research

Aleksandar Chakarov

Crash

Crash

A crash is magnified by the crowd

A crash is magnified by the crowd

A crash is magnified by the crowd

I don’t know how that
field became null.

Ask the expert developers …

Ask the expert developers …

Inevitable. Not
necessarily app’s fault.

Ask the expert developers …

Inevitable. Not
necessarily app’s fault.

Log information when it
happens.

Ask the expert developers …

Inevitable. Not
necessarily app’s fault.

Log information when it
happens.

Check conditions to
crash early and “fast” …

Ask the expert developers …

Inevitable. Not
necessarily app’s fault.

Log information when it
happens.

Check conditions to
crash early and “fast” …

… to be more likely seen
in testing.

Suppose we’re lucky and get a crash. Now what?
‣ Where in the code (which callback) does the field get set to null?
‣ Why did that callback happen before this one?
‣ Is there another callback that should’ve reset the field to be non-null?

I don’t know how that
field became null.

Suppose we’re lucky and get a crash. Now what?
‣ Where in the code (which callback) does the field get set to null?
‣ Why did that callback happen before this one?
‣ Is there another callback that should’ve reset the field to be non-null?

I don’t know how that
field became null.

Often: A misunderstanding of how
the (sometimes modified) framework
interacts with the app.

Suppose we’re lucky and get a crash. Now what?
‣ Where in the code (which callback) does the field get set to null?
‣ Why did that callback happen before this one?
‣ Is there another callback that should’ve reset the field to be non-null?

I don’t know how that
field became null.

Often: A misunderstanding of how
the (sometimes modified) framework
interacts with the app.

Bug from violating
(implicit) framework protocol rules

Suppose we’re lucky and get a crash. Now what?
‣ Where in the code (which callback) does the field get set to null?
‣ Why did that callback happen before this one?
‣ Is there another callback that should’ve reset the field to be non-null?

opportunity?

Imagining social programming …

I don’t know how that
field became null.

Imagining social programming …

I don’t know how that
field became null.

I am not alone

Imagining social programming …

I don’t know how that
field became null.

I am not alone

Imagining social programming …

I don’t know how that
field became null.

I am not alone

Imagining social programming …

I don’t know how that
field became null.

Github

I am not alone

Imagining social programming …

I don’t know how that
field became null.

Github

“Transfer” the
bug fix with

program analysis
and synthesis

I am not alone

Our task in this talk

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Mine artifacts for protocol specifications to
subsequently “transfer” bug fixes

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Mine artifacts for protocol specifications to
subsequently “transfer” bug fixes

Hopper: Goal-Directed Program Analysis with Jumping

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Mine artifacts for protocol specifications to
subsequently “transfer” bug fixes

Hopper: Goal-Directed Program Analysis with Jumping

Fixr: Mining and Understanding Bug Fixes

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Mine
subsequently “

Hopper: Goal-Directed Program Analysis with Jumping

Fixr

Hopper: Goal-Directed Program
Analysis with Jumping

Bor-Yuh Evan Chang
University of Colorado Boulder

Sam Blackshear
Facebook

Manu Sridharan
Samsung Research America

Blackshear, Chang, and Sridharan. “Selective Control-Flow Abstraction via Jumping.” OOPSLA 2015.

Crash

Crash
3% of all commit messages
say “NullPointerException”

Crash
3% of all commit messages
say “NullPointerException”

Callback-oriented programming:
A partially ordered “lifecycle”

Callback-oriented programming:
A partially ordered “lifecycle”

App

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Activity

onCreate

onResume

onClick

onDestroy

onPause

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Android
components

have an
ordered
lifecycle

Activity

onCreate

onResume

onClick

onDestroy

onPause

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Android
components

have an
ordered
lifecycle

Activity

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb = null;
this.mService = null;

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Android
components

have an
ordered
lifecycle

Activity

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb = null;
this.mService = null;

Collect resources
when done

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Android
components

have an
ordered
lifecycle

But, lifecycles of
different components
and other callbacks

can interleave …

Activity

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb = null;
this.mService = null;

Collect resources
when done

Callback-oriented programming:
A partially ordered “lifecycle”

Android
Framework

App

callbacks (e.g.,
Activity.onCreate)

Android
components

have an
ordered
lifecycle

But, lifecycles of
different components
and other callbacks

can interleave …

Activity

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb = null;
this.mService = null;

Need to eagerly release resources but
safety (e.g., of dereferences) depends on

callback interleaving

Collect resources
when done

Callback-oriented programming:
Interacting through a shared heap

onCreate

onResume

onClick

onDestroy

onPause

Callback-oriented programming:
Interacting through a shared heap

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

Callback-oriented programming:
Interacting through a shared heap

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

Heap

Callback-oriented programming:
Interacting through a shared heap

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

Heap … and operate over
a shared, global

heap

Callback-oriented programming:
Interacting through a shared heap

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

Heap … and operate over
a shared, global

heap

Safety (e.g., of dereferences) depends on
the order of heap writes that depends on

the interleaving of callbacks

Explore callback interleavings …

onCreate

onResume

onClick

onDestroy

onPause

Explore callback interleavings …

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

Explore callback interleavings …

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onResume

onCreate

onCreate

onResume

onCreate

Explore callback interleavings …

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onResume

onCreate

onCreate

onResume

onCreate

Previous analyses do not
consider inter-component
interleavings in a flow-

sensitive way

Explore callback interleavings …

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onResume

onCreate

onCreate

onResume

onCreate

Previous analyses do not
consider inter-component
interleavings in a flow-

sensitive way

An app with 1,320 callbacks would have
created a product automaton with 10111 nodes

(with unsoundly one instance per class)

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb.s()

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb.s()

safe?

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb.s()

safe?

Idea: Safety of a particular
dereference should not

require reasoning about all
callback interleavings

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb.s()

safe?

Idea: Safety of a particular
dereference should not

require reasoning about all
callback interleavings

A “smart” goal-directed analysis could
consider relevant callback orderings without

considering all of them

… it shouldn’t be so hard

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb.s()

safe?

Idea: Safety of a particular
dereference should not

require reasoning about all
callback interleavings

A “smart” goal-directed analysis could
consider relevant callback orderings without

considering all of them

Goal-directed program analysis

this.mHostDb.s()

safe?

Goal-directed program analysis
Given a program

configuration goal,
derive a contradiction
w.r.t. its reachability

this.mHostDb.s()

safe?

Goal-directed program analysis

mHostDb == null

Given a program
configuration goal,

derive a contradiction
w.r.t. its reachability

this.mHostDb.s()

safe?

Goal-directed program analysis

mHostDb == null

Given a program
configuration goal,

derive a contradiction
w.r.t. its reachability

false false false false
false

this.mHostDb.s()

safe?

Goal-directed program analysis

(this 7! bt bt · mHostDb 7! ba true) ^ ba = null

Given a program
configuration goal,

derive a contradiction
w.r.t. its reachability

false false false false
false

Goal-directed program analysis

(this 7! bt bt · mHostDb 7! ba true) ^ ba = null

Given a program
configuration goal,

derive a contradiction
w.r.t. its reachability

Thresher: A backwards abstract
interpretation with separation logic

constraints to refute error conditions [PLDI’13]

false false false false
false

Goal-directed program analysis

(this 7! bt bt · mHostDb 7! ba true) ^ ba = null

Given a program
configuration goal,

derive a contradiction
w.r.t. its reachability

Thresher: A backwards abstract
interpretation with separation logic

constraints to refute error conditions [PLDI’13]

false false false false
false

over-approximate

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onClick(…) {
 this.mHostDb.s(this.mService.g());
} 1 2

safe?

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

✔

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

✔

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

✔ Bug

Being smart …
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() {
 bindService(…, new ServiceConn {
 void onConnected(@Nonnull Service s) {
 this.mService = s;
 }
 });
 this.mHostDb = new Db();
}

void onClick(…) {
 this.mHostDb.s(this.mService.g());
}

void onDestroy(…) {
 this.mHostDb = null;
 this.mService = null;
}

1 2
safe?

lifecycle
constraints
relevant

✔ BugNeed to consider some but not all
callback ordering constraints using

data relevance

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onBind

onConnected

onDestroy

onUnbind

onDisconnected

onCreate

onRebind

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onBind

onConnected

onDestroy

onUnbind

onClicksafe?
onDisconnected

onCreate

onRebind

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onBind

onConnected

onDestroy

onUnbind

onClick

Find data-relevant callbacks

safe?
onDisconnected

onCreate

onRebind

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onBind

onConnected

onDestroy

onUnbind

onClick

Find data-relevant callbacks

safe?
onDisconnected

onCreate

onRebind

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onCreate

onResume

onClick

onDestroy

onPause

onBind

onConnected

onDestroy

onUnbind

onClick

onCreate

onDestroy

onConnected

Find data-relevant callbacks

safe?
onDisconnected

onCreate

onRebind

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onClick

onCreate

onDestroy

onConnected

Find data-relevant callbacks

safe?

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onClick

onCreate

onDestroy

onConnected

Find data-relevant callbacks

Filter using control-feasibility

safe?

Idea: Jumping to relevant callbacks

onCreate

onResume

onClick

onDestroy

onPause

onClick

onCreate

onDestroy

onConnected

Find data-relevant callbacks

Filter using control-feasibility

safe?

Idea: Jumping to relevant callbacks

onCreate

onClickonClick

onCreate

onConnected

Find data-relevant callbacks

Filter using control-feasibility

safe?

Idea: Jumping to relevant callbacks

onCreate

onClickonClick

onCreate

onConnected

Find data-relevant callbacks

Filter using control-feasibility

safe?

analysis
“jumps”

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Framework for sound jumping analyses1

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Applied to Android lifecycles
2

Framework for sound jumping analyses1

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Applied to Android lifecycles
2

Framework for sound jumping analyses1

Interleave data-relevance with
control-feasibility to realize jumping

1

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

`

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

transition
relation

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

transition
relation

Follow the normal control-flow
of the the program

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

transition
relation

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

transition
relation

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

relevance
relation

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

next
transitions

`

relevance
relation

Follow some other transitions
based on query Q

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

Data-relevance

Control-
feasibility

next
transitions

`

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

Data-relevance

Control-
feasibility

next
transitions

`

Identify (with analysis) program
locations that can affect query Q

Interleave data-relevance with
control-feasibility to realize jumping

1

current
location

current
query

Data-relevance

Control-
feasibility

next
transitions

`

Identify (with analysis) program
locations that can affect query Q

Filter to the locations that can
feasibly reach (without “going

through” any other transition in T)
`

Data-relevance identifies relevant writes 1

current
location

current
query

Data-relevance

`

Identify (with analysis) program
locations that can affect query Q

Data-relevance identifies relevant writes 1

current
location

current
query

Data-relevance

`

Identify (with analysis) program
locations that can affect query Q

. . .`1 `2 `3

Data-relevance identifies relevant writes 1

current
location

current
query

Data-relevance

`

Identify (with analysis) program
locations that can affect query Q

Computed using pre-pass points-
to analysis, types, field-based, …

. . .`1 `2 `3

Data-relevance identifies relevant writes 1

current
location

current
query

Data-relevance

`

Identify (with analysis) program
locations that can affect query Q

Computed using pre-pass points-
to analysis, types, field-based, …

Classic idea: Following data
dependencies yields a sparse analysis

(but, here, flow-insensitive)

. . .`1 `2 `3

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

. . .`1 `2 `3

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

Filter the set of data-
relevant locations using

control flow and the
current program point

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3
`1

`2 `3

`4

Filter the set of data-
relevant locations using

control flow and the
current program point

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3
`1

`2 `3

`4

Filter the set of data-
relevant locations using

control flow and the
current program point

Not backward-reachable
from current location

`

Control-feasibility recovers flow-sensitivity 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3
`1

`2 `3

`4

Filter the set of data-
relevant locations using

control flow and the
current program point

Must visit another
relevant location first.

Not backward-reachable
from current location

`

Insensitive versus sensitive 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Insensitive versus sensitive 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Different choices yield classical
variants of flow, path, and

context sensitivity/insensitivity

Insensitive versus sensitive 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Different choices yield classical
variants of flow, path, and

context sensitivity/insensitivity

Make sparse

Insensitive versus sensitive 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Different choices yield classical
variants of flow, path, and

context sensitivity/insensitivity

Make sparse

Be sparse by using data
relevance with desired
control-flow abstraction

Insensitive versus sensitive 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Different choices yield classical
variants of flow, path, and

context sensitivity/insensitivity

Make sparseBe selective by varying
the relevance relation at

each analysis step

Be sparse by using data
relevance with desired
control-flow abstraction

Soundness 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Soundness 1

current
location

current
query

Data-relevance

Control-
feasibility

. . .`1 `2 `3

`2 `3

`

Theorem:
If data-relevance and
control-feasibility are sound,
then no behavior relevant to
refuting Q can be missed
(i.e., “jumping is sound”)

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Applied to Android lifecycles
2

Framework for sound jumping analyses1

Contributions: Hopper is an analysis that jumps

onClick

onCreate

onConnected

Applied to Android lifecycles
2

Framework for sound jumping analyses1

An effective jumping policy for
inter-event Android analysis

2

An effective jumping policy for
inter-event Android analysis

2

Within an event-callback (intra-event),
follow predecessor transitions

An effective jumping policy for
inter-event Android analysis

2

Within an event-callback (intra-event),
follow predecessor transitions

still feasible to be as precise as
possible within callbacks

An effective jumping policy for
inter-event Android analysis

2

onCreate

onResume

onClick

onDestroy

onPause

Within an event-callback (intra-event),
follow predecessor transitions

Between event-callbacks (inter-event),
jump using lifecycle graphs for
control-feasibility filtering

still feasible to be as precise as
possible within callbacks

An effective jumping policy for
inter-event Android analysis

2

onCreate

onResume

onClick

onDestroy

onPause

Within an event-callback (intra-event),
follow predecessor transitions

Between event-callbacks (inter-event),
jump using lifecycle graphs for
control-feasibility filtering

still feasible to be as precise as
possible within callbacks

avoiding costly and
unnecessary interleavings

Is jumping effective for inter-event analysis?

Is jumping effective for inter-event analysis?

Proving all dereferences safe

Is jumping effective for inter-event analysis?

Proving all dereferences safe

… for evaluation. But a use-case
could be directed by the user.

Is jumping effective for inter-event analysis?

Proving all dereferences safe

Is jumping effective for inter-event analysis?

Proving all dereferences safe

10 open source Android apps

3,000 to 57,000 lines of code
10 to 100 components
120 to 1,320 callbacks

Is jumping effective for inter-event analysis?

Proving all dereferences safe

10 open source Android apps

3,000 to 57,000 lines of code
10 to 100 components
120 to 1,320 callbacks

Event product graph would have
1010 to 10111 nodes (with unsoundly

one instance per class)

Is jumping effective for inter-event analysis?

Proving all dereferences safe

10 open source Android apps

3,000 to 57,000 lines of code
10 to 100 components
120 to 1,320 callbacks

Event product graph would have
1010 to 10111 nodes (with unsoundly

one instance per class)

Previous analyses
do not consider
inter-component
interleavings in a
flow-sensitive way

Is jumping effective for inter-event analysis?

Proving all dereferences safe

10 open source Android apps

3,000 to 57,000 lines of code
10 to 100 components
120 to 1,320 callbacks

Previous analyses
do not consider
inter-component
interleavings in a
flow-sensitive way

Is jumping effective for inter-event analysis?

Proving all dereferences safe

10 open source Android apps

3,000 to 57,000 lines of code
10 to 100 components
120 to 1,320 callbacks

Compared 3 analyses

Nit: type-based (flow-insensitive)
Thresher: goal-directed path-sensitive
Hopper: goal-directed jumping

Previous analyses
do not consider
inter-component
interleavings in a
flow-sensitive way

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Huge number of
dereferences

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

unproven derefs

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

unproven derefs

type-
based

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

unproven derefs

type-
based

no
jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

unproven derefs

type-
based

no
jumping

Find callback
interleavings

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

unproven derefs

type-
based

no
jumping jumping

Find callback
interleavings

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

unproven derefs

type-
based

no
jumping jumping

Find callback
interleavings

Are given callback
interleavings feasible?

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Compare with state-of-
the-art NPE checking

work that reports
84-91% proven on

normal Java programs!

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

Time (min)

12.0
11.5
98.7
29.2
62.5

232.2
14.7
38.4

453.3
309.9
1262.3

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

Time (min)

12.0
11.5
98.7
29.2
62.5

232.2
14.7
38.4

453.3
309.9
1262.3

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

< 1 day
~1 sec per deref

Hopper proves 92% of dereferences safe with interleaving
of callbacks from an arbitrary number of components

Is jumping effective?

drupaleditor
npr
duckduckgo
lastfm
github

seriesguide
connectbot
textsecure
k-9
wordpress

Summary

KLOC

3
5

11
13
19
32
33
38
55
57

266

Deref

928
829

1969
4840
3603
8184
2190
5921

19032
15066
62562

Nit

679
617

1341
3528
2520
5438
1562
3643

11968
9775
41071

Thr

179
181
518
954
601
986
316
698

3104
2431
9968

Hop

72
51

143
477
290
625

74
330

1988
1362
5412

% Improve

60
72
72
50
52
37
77
53
36
44
54

% Proven

92
94
93
90
92
92
97
94
90
91
92

Time (min)

12.0
11.5
98.7
29.2
62.5

232.2
14.7
38.4

453.3
309.9
1262.3

unproven derefs jumping effectiveness

type-
based

no
jumping jumping

Triaging alarms to find bugs

Triaged 200 alarms (from Hopper), 189 false

Triaging alarms to find bugs

Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise
container and string domains

Triaging alarms to find bugs

Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise
container and string domains
Only 17 false alarms due to timeouts

Triaging alarms to find bugs

Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise
container and string domains
Only 17 false alarms due to timeouts

Triaging alarms to find bugs

Found 11 bugs in 4 apps
(lastfm, seriesguide, connectbot, wordpress)

5 bugs due to bad ordering assumptions

10/11 patches accepted

Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise
container and string domains
Only 17 false alarms due to timeouts

Triaging alarms to find bugs

Found 11 bugs in 4 apps
(lastfm, seriesguide, connectbot, wordpress)

5 bugs due to bad ordering assumptions

10/11 patches accepted

Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise
container and string domains
Only 17 false alarms due to timeouts

Triaging alarms to find bugs

Found 11 bugs in 4 apps
(lastfm, seriesguide, connectbot, wordpress)

5 bugs due to bad ordering assumptions

10/11 patches accepted

one not accepted in a seemingly inactive project

Summary: Hopper is an analysis that jumps

Summary: Hopper is an analysis that jumps

Current
location

`cur Qcur

Current
query

Next
locations

`

Selective control-flow abstraction
via a sound relevance relation

relevance
relation

Summary: Hopper is an analysis that jumps

Current
location

`cur Qcur

Current
query

Next
locations

`

Data-relevance

Control-
feasibility

Selective control-flow abstraction
via a sound relevance relation

Inter-event ordering-sensitive
reasoning via data-relevance
and lifecycle control-feasibility

onCreate

onResume

onClick

onDestroy

onPause

relevance
relation

Our task in this talk

Prove and triage safety properties in event-driven
applications (assuming protocol specifications)

Mine artifacts for protocol specifications to
subsequently “transfer” bug fixes

Hopper: Goal-Directed Program Analysis with Jumping

Fixr: Mining and Understanding Bug Fixes for Event-
Driven Protocols

Our task in this talk

Prove and triage
applications (assuming protocol specifications)

Mine artifacts for protocol specifications to
subsequently “transfer” bug fixes

Hopper

Fixr: Mining and Understanding Bug Fixes for Event-
Driven Protocols

Fixr: Mining and Understanding
Bug Fixes for Event-Driven

Protocols

Tom YehPavol Černý Sriram SankaranarayananBor-Yuh Evan Chang Kenneth M. Anderson

Sergio Mover Shawn Meier Rhys Braginton Pettee Olsen Maxwell RussekEdmund S.L. Lam

University of Colorado Boulder

Fixr: Mining and Understanding
Bug Fixes for Event-Driven

Protocols

Tom YehPavol Černý Sriram SankaranarayananBor-Yuh Evan Chang Kenneth M. Anderson

Sergio Mover Shawn Meier Rhys Braginton Pettee Olsen Maxwell RussekEdmund S.L. Lam

University of Colorado Boulder

I don’t know how
that field became
null.

Github

“Transfer” the
bug fix with

program analysis
and synthesis

I am not alone

Fixr: Mining and Understanding
Bug Fixes for Event-Driven

Protocols

Tom YehPavol Černý Sriram SankaranarayananBor-Yuh Evan Chang Kenneth M. Anderson

Sergio Mover Shawn Meier Rhys Braginton Pettee Olsen Maxwell RussekEdmund S.L. Lam

University of Colorado Boulder

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

Github

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

Github

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

Github

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesis
Github

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesis
user-centered

big data analyticsGithub

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesis
user-centered

big data analytics

software engineering
for big data

Github

The Fixr Project

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesis
user-centered

big data analytics

software engineering
for big data

Github

The Fixr Project

Tom Yeh Pavol Cerny

Sriram SankaranarayananBor-Yuh Evan Chang

Ken Anderson

Multi-faculty project
collaboratively

investigating “transferring
bug fixes” by mining

code commits

interaction

commit

fix

patch

repair
specification

probabilistic repair
specification

semantic
facts

Deltar: Inferring Semantic
Deltas and Repair

Specifications

Prepair: Deriving
Probabilistic

Repair Specifications

Harvestr: Social Validation
and Mining of Fixes

Patchr: Detecting Potential
Bugs and Synthesizing

Patches

FixrDB

syntactic

statistical-semantic

semantic

social

symbolic
program analysis

numerical-probabilistic
program analysis

program synthesis
user-centered

big data analytics

software engineering
for big data

Github

The Fixr Project

Tom Yeh Pavol Cerny

Sriram SankaranarayananBor-Yuh Evan Chang

Ken Anderson

Multi-faculty project
collaboratively

investigating “transferring
bug fixes” by mining

code commits

Abstracting Event-Driven Systems
with Lifestate Specifications

onCreate

onResume

onClick

onDestroy

onPause

Bor-Yuh Evan Chang

Shawn Meier

Sergio Mover

Android is an event-driven system

onCreate

onResume

onClick

onDestroy

onPause

Android is an event-driven system

onCreate

onResume

onClick

onDestroy

onPause

Hidden Truth

Android is an event-driven system

onCreate

onResume

onClick

onDestroy

onPause

Hidden Truth

Callback ordering constraints
are not static

Android is an event-driven system

Android is an event-driven system

Framework

Android is an event-driven system

Framework Application

Android is an event-driven system

Framework Application

Event: User clicks
button

Android is an event-driven system

Framework Application

activity.onClick()Event: User clicks
button

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

onClick returns to
the framework

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

onClick returns to
the framework

Event: Background
task finishes

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

onClick returns to
the framework

asynctask.onPostExecute()Event: Background
task finishes

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

onClick returns to
the framework

asynctask.onPostExecute()Event: Background
task finishes onPostExecute cannot

happen unless execute has been
called

A callin is where the
application invokes a
framework method

Android is an event-driven system

Framework Application

activity.onClick()

A callback is
where the framework
invokes an application

method

Event: User clicks
button

asynctask.execute()

onClick returns to
the framework

asynctask.onPostExecute()Event: Background
task finishes onPostExecute cannot

happen unless execute has been
called

A callin is where the
application invokes a
framework method

The event-driven framework uses callbacks to notify the
application of events and the application uses callins to

affect how the framework invokes future callbacks.

Event: Background
task finishes

asynctask.onPostExecute()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

Android is an event-driven system

Event: Background
task finishes

asynctask.onPostExecute()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

Android is an event-driven system

Event: Background
task finishes

Event: User clicks
button

asynctask.onPostExecute()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

Android is an event-driven system

Event: Background
task finishes

Event: User clicks
button

asynctask.onPostExecute()

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

Android is an event-driven system

Event: Background
task finishes

Event: User clicks
button

asynctask.onPostExecute()

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

asynctask.execute()

Android is an event-driven system

Event: User clicks
button

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

asynctask.execute()

Exception: Cannot
call execute on same
AsyncTask instance.

Android is an event-driven system

Event: User clicks
button

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

asynctask.execute()

Exception: Cannot
call execute on same
AsyncTask instance.

Android is an event-driven system

Event: User clicks
button

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

asynctask.execute()

Exception: Cannot
call execute on same
AsyncTask instance.

Android is an event-driven system

Event: User clicks
button

activity.onClick()

Framework Application

activity.onClick()Event: User clicks
button

asynctask.execute()

asynctask.execute()

Exception: Cannot
call execute on same
AsyncTask instance.

Need: Modeling and reasoning
about how callins affect callbacks

(and vice versa)

Android is an event-driven system

Contributions: Lifestate

Contributions: Lifestate

λlife: A (concrete) model of event-driven
systems capturing how callins and callbacks
affect each other

Contributions: Lifestate

λlife: A (concrete) model of event-driven
systems capturing how callins and callbacks
affect each other

Lifestate Rules: A specification language to
model the effects of Android callins and
callbacks

Contributions: Lifestate

λlife: A (concrete) model of event-driven
systems capturing how callins and callbacks
affect each other

Lifestate Rules: A specification language to
model the effects of Android callins and
callbacks

DroidLife: Mining lifestate specifications and
verifying the absence of lifestate “races”

Enabled callbacks and allowed callins

Framework Application

Enabled callbacks and allowed callins

Framework ApplicationEnabled

Enabled callbacks and allowed callins

Framework ApplicationEnabled

activity.onClick()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

Enabled

activity.onClick()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

asynctask.execute()
button.disable()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

button.disable()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

asynctask.execute()
button.disable()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

button.disable()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

asynctask.execute()
button.disable()

button.disable()asynctask.onPostExecute()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

button.disable()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

asynctask.execute()
button.disable()

button.disable()asynctask.onPostExecute()

Enabled callbacks and allowed callins

Framework Application

activity.onClick()

asynctask.execute()

button.disable()

Enabled Allowed

activity.onClick() asynctask.execute()
button.disable()

activity.onClick()
asynctask.onPostExecute()

asynctask.execute()
button.disable()

button.disable()asynctask.onPostExecute()
Model state: Enabled callbacks track what the

framework may invoke next and allowed callins track
what the application can invoke (without error)

Lifestate rules specify
enabledness and allowedness effects

Lifestate rules specify
enabledness and allowedness effects

message1 →cb message2

enable

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

Message causes a callback to be added
to the enabled set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

Message causes a callback to be added
to the enabled set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Message causes a callin to be added to
the allowed set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

message1 ↛ci message2

disallow

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Message causes a callin to be added to
the allowed set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

message1 ↛ci message2

disallow

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Message causes a callin to be added to
the allowed set

Message causes a callin to be removed
from the allowed set

Lifestate rules specify
enabledness and allowedness effects

A suspended callback or
callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

message1 ↛ci message2

disallow

Message causes a callback to be added
to the enabled set

Message causes a callback to be removed
to the enabled set

Message causes a callin to be added to
the allowed set

Message causes a callin to be removed
from the allowed set

Specify: When message1 is invoked, the
effect on the enabled-allowed state is to
enable/disable/allow/disallow message2

Need: Mining lifestate specifications

Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

The AsyncTask
documentation does not fully
document the behavior

Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

The Android Framework is Huge
100s of API packages, 1,000s of API classes,

 10,000s+ of API methods (as of API 23)

The AsyncTask
documentation does not fully
document the behavior

Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

The Android Framework is Huge
100s of API packages, 1,000s of API classes,

 10,000s+ of API methods (as of API 23)

Writing specifications by hand is error prone

The AsyncTask
documentation does not fully
document the behavior

Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

The Android Framework is Huge
100s of API packages, 1,000s of API classes,

 10,000s+ of API methods (as of API 23)

Writing specifications by hand is error prone

The AsyncTask
documentation does not fully
document the behavior

Task: Mine lifestate specifications of the Android
framework from large corpus of actual apps interacting

with the framework based on the λlife model

Learn lifestate rules
that explain observed traces

Learn lifestate rules
that explain observed traces

TracesTracesTraces

Generate
Traces

Learn lifestate rules
that explain observed traces

TracesTracesTraces
AsyncTask

TracesTracesTraces
Button

…

Slice
Traces

TracesTracesTraces

Generate
Traces

Learn lifestate rules
that explain observed traces

TracesTracesTraces
AsyncTask

TracesTracesTraces
Button

…

Slice
Traces

TracesTracesTraces

Generate
Traces AsyncTask

Specification

Button
Specification

Learn Rules 
(unsupervised)

Learn lifestate rules
that explain observed traces

TracesTracesTraces
AsyncTask

TracesTracesTraces
Button

…

Slice
Traces

TracesTracesTraces

Generate
Traces AsyncTask

Specification

Button
Specification

Learn Rules 
(unsupervised)

Learn automata models
(hidden Markov models
[HMMs], probabilistic finite
state automata [PFSAs]).
Abstract automata into
lifestate rules.

Learn lifestate rules
that explain observed traces

TracesTracesTraces
AsyncTask

TracesTracesTraces
Button

…

Slice
Traces

TracesTracesTraces

Generate
Traces AsyncTask

Specification

Button
Specification

Learn Rules 
(unsupervised)

Direct rule learning:
maximum likelihood rules via
model counting (MC) using
#SAT

Learn automata models
(hidden Markov models
[HMMs], probabilistic finite
state automata [PFSAs]).
Abstract automata into
lifestate rules.

Learn lifestate rules
that explain observed traces

TracesTracesTraces
AsyncTask

TracesTracesTraces
Button

…

Slice
Traces

TracesTracesTraces

Generate
Traces AsyncTask

Specification

Button
Specification

Learn Rules 
(unsupervised)

Direct rule learning:
maximum likelihood rules via
model counting (MC) using
#SAT

Learn automata models
(hidden Markov models
[HMMs], probabilistic finite
state automata [PFSAs]).
Abstract automata into
lifestate rules.

A portfolio of approaches to learn
candidate specifications

Evaluating lifestate specification mining

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Found actual rules in under-constrained search
space. Discovered undocumented rules.

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Found actual rules in under-constrained search
space. Discovered undocumented rules.

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Found actual rules in under-constrained search
space. Discovered undocumented rules.

A developer gets a crash by misusing
Fragment.getResources and then looks
for the following documentation

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Found actual rules in under-constrained search
space. Discovered undocumented rules.

A developer gets a crash by misusing
Fragment.getResources and then looks
for the following documentation

Evaluating lifestate specification mining

Do we learn rules that correspond
to actual Android behavior?

4 Android framework classes

7326 possible specification rules

Found 82 rules corresponding to actual
Android behavior by examining 163 rules

Found actual rules in under-constrained search
space. Discovered undocumented rules.

A developer gets a crash by misusing
Fragment.getResources and then looks
for the following documentation

Conclusion

Conclusion

Hopper: Prove safety properties in
event-driven applications by
soundly jumping between callbacks

Conclusion

Hopper: Prove safety properties in
event-driven applications by
soundly jumping between callbacks

DroidLife: Mine lifestate models of
how callins and callbacks affect
each other in Android

www.cs.colorado.edu/~bec
plv.colorado.edu

Sankaranaryananan SomenziChangCerny Hammer

Hopper: Prove safety properties in event-driven
applications by soundly jumping between callbacks

DroidLife: Mine lifestate models of how callins and
callbacks affect each other in Android

