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Suppose we’re lucky and get a crash. Now what? 
‣ Where in the code (which callback) does the field get set to null? 
‣ Why did that callback happen before this one? 
‣ Is there another callback that should’ve reset the field to be non-null?
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bug fix with 

program analysis 
and synthesis
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Framework

App

callbacks (e.g., 
Activity.onCreate)

Android 
components 

have an 
ordered 
lifecycle

But, lifecycles of 
different components 
and other callbacks 

can interleave …

Activity

onCreate

onResume

onClick

onDestroy

onPause

this.mHostDb = null; 
this.mService = null;

Need to eagerly release resources but 
safety (e.g., of dereferences) depends on 

callback interleaving

Collect resources 
when done
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Heap … and operate over 
a shared, global 

heap

Safety (e.g., of dereferences) depends on 
the order of heap writes that depends on 

the interleaving of callbacks
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onCreate

Previous analyses do not 
consider inter-component 
interleavings in a flow-

sensitive way

An app with 1,320 callbacks would have 
created a product automaton with 10111 nodes 

(with unsoundly one instance per class)
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(this 7! bt bt · mHostDb 7! ba true) ^ ba = null

Given a program 
configuration goal, 

derive a contradiction 
w.r.t. its reachability

Thresher: A backwards abstract 
interpretation with separation logic 

constraints to refute error conditions [PLDI’13]

false false false false
false

over-approximate
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Being smart … 
Two dereferences: one safe and one buggy

onCreate

onResume

onClick

onDestroy

onPause

void onCreate() { 
  bindService(…, new ServiceConn { 
    void onConnected(@Nonnull Service s) { 
      this.mService = s; 
    } 
  }); 
  this.mHostDb = new Db(); 
}

void onClick(…) { 
  this.mHostDb.s(this.mService.g()); 
}

void onDestroy(…) { 
  this.mHostDb = null; 
  this.mService = null; 
}

1 2
safe?

lifecycle 
constraints 
relevant

✔ BugNeed to consider some but not all 
callback ordering constraints using 

data relevance
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onClickonClick
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onConnected

Find data-relevant callbacks

Filter using control-feasibility

safe?

analysis 
“jumps”
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Identify (with analysis) program 
locations that can affect query Q

Filter to the locations that can 
feasibly reach    (without “going 

through” any other transition in T ) 
`
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current 
location

current 
query

Data-relevance

`

Identify (with analysis) program 
locations that can affect query Q

Computed using pre-pass points-
to analysis, types, field-based, …

Classic idea: Following data 
dependencies yields a sparse analysis 

(but, here, flow-insensitive)
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`4

Filter the set of data-
relevant locations using 

control flow and the 
current program point

Must visit another 
relevant location first.

Not backward-reachable 
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Theorem: 
If data-relevance and 
control-feasibility are sound, 
then no behavior relevant to 
refuting Q can be missed 
(i.e., “jumping is sound”)
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2

onCreate

onResume

onClick

onDestroy

onPause

Within an event-callback (intra-event), 
follow predecessor transitions

Between event-callbacks (inter-event), 
jump using lifecycle graphs for 
control-feasibility filtering

still feasible to be as precise as 
possible within callbacks

avoiding costly and 
unnecessary interleavings
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Proving all dereferences safe

10 open source Android apps 

3,000 to 57,000 lines of code 
10 to 100 components 
120 to 1,320 callbacks

Compared 3 analyses 

Nit: type-based (flow-insensitive) 
Thresher: goal-directed path-sensitive 
Hopper: goal-directed jumping

Previous analyses 
do not consider 
inter-component 
interleavings in a 
flow-sensitive way
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Triaged 200 alarms (from Hopper), 189 false

Reasons: insufficient Android modeling, imprecise 
container and string domains
Only 17 false alarms due to timeouts

Triaging alarms to find bugs

Found 11 bugs in 4 apps 
(lastfm, seriesguide, connectbot, wordpress) 

5 bugs due to bad ordering assumptions 

10/11 patches accepted

one not accepted in a seemingly inactive project
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Summary: Hopper is an analysis that jumps

Current 
location

`cur Qcur

Current 
query

Next 
locations

`

Data-relevance

Control-
feasibility

Selective control-flow abstraction 
via a sound relevance relation

Inter-event ordering-sensitive 
reasoning via data-relevance 
and lifecycle control-feasibility

onCreate

onResume

onClick

onDestroy

onPause

relevance 
relation
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I don’t know how 
that field became 
null.

Github
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bug fix with 
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and synthesis

I am not alone
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are not static
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Framework Application

activity.onClick()

A callback is 
where the framework 
invokes an application 

method

Event: User clicks 
button

asynctask.execute()

onClick returns to 
the framework

asynctask.onPostExecute()Event: Background 
task finishes onPostExecute cannot 

happen unless execute has been 
called

A callin is where the 
application invokes a 
framework method

The event-driven framework uses callbacks to notify the 
application of events and the application uses callins to 

affect how the framework invokes future callbacks.
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activity.onClick()Event: User clicks 
button

asynctask.execute()

asynctask.execute()

Exception: Cannot 
call execute on same 
AsyncTask instance.

Need: Modeling and reasoning 
about how callins affect callbacks 

(and vice versa)

Android is an event-driven system
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Contributions: Lifestate

λlife: A (concrete) model of event-driven 
systems capturing how callins and callbacks 
affect each other

Lifestate Rules: A specification language to 
model the effects of Android callins and 
callbacks 

DroidLife: Mining lifestate specifications and 
verifying the absence of lifestate “races”
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Framework Application

activity.onClick()

asynctask.execute()

button.disable()

Enabled Allowed

activity.onClick() asynctask.execute() 
button.disable()

activity.onClick() 
asynctask.onPostExecute()

asynctask.execute() 
button.disable()

button.disable()asynctask.onPostExecute()
Model state: Enabled callbacks track what the 

framework may invoke next and allowed callins track 
what the application can invoke (without error)
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callin invokation (thunk)

message1 →cb message2

enable

message1 ↛cb message2

disable

message1 →ci message2

allow

message1 ↛ci message2
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Message causes a callback to be added 
to the enabled set

Message causes a callback to be removed 
to the enabled set

Message causes a callin to be added to 
the allowed set

Message causes a callin to be removed 
from the allowed set

Specify: When message1 is invoked, the 
effect on the enabled-allowed state is to 
enable/disable/allow/disallow message2
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Need: Mining lifestate specifications

These specifications often don’t exist in the documentation.

The Android Framework is Huge
100s of API packages, 1,000s of API classes, 

 10,000s+ of API methods (as of API 23)

Writing specifications by hand is error prone

The AsyncTask 
documentation does not fully 
document the behavior

Task: Mine lifestate specifications of the Android 
framework from large corpus of actual apps interacting 

with the framework based on the λlife model
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Generate 
Traces AsyncTask 

Specification

Button 
Specification

Learn Rules 
(unsupervised)

Direct rule learning: 
maximum likelihood rules via 
model counting (MC) using 
#SAT

Learn automata models 
(hidden Markov models 
[HMMs], probabilistic finite 
state automata [PFSAs]). 
Abstract automata into 
lifestate rules.

A portfolio of approaches to learn 
candidate specifications
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