Algorithmic Logic-Based Verification with SeaHorn

Arie Gurfinkel

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

http://ece.uwaterloo.ca/~agurfink

based on work with Teme Kahsai, Jorge Navas, Anvesh Komuravelli, Jeffrey Gennari, Ed Schwartz, and many others
Automated Software Analysis

Program → Automated Analysis

Correct
Incorrect

Software Model Checking with Predicate Abstraction
e.g., Microsoft’s SDV

Abstract Interpretation with Numeric Abstraction
e.g., ASTREE, Polyspace
Turing, 1936: “undecidable”
How can one check a routine in the sense of making sure that it is right? The programmer should make a number of definite assertions which can be checked individually, and from which the correctness of the whole programme easily follows.
Automated Verification

Deductive Verification

• A user provides a program and a verification certificate
 – e.g., inductive invariant, pre- and post-conditions, function summaries, etc.
• A tool automatically checks validity of the certificate
 – this is not easy! (might even be undecidable)
• Verification is manual but machine certified

Algorithmic Verification

• A user provides a program and a desired specification
 – e.g., program never writes outside of allocated memory
• A tool automatically checks validity of the specification
 – and generates a verification certificate if the program is correct
 – and generates a counterexample if the program is not correct
• Verification is completely automatic – “push-button”
Algorithmic Logic-Based Verification

Program + Spec

Verification Condition (in Logic)

Decision Procedure

Yes

No

Safety Properties

Constrained Horn Clauses

Spacer
SeaHorn

A fully automated verification framework for LLVM-based languages.

http://seahorn.github.io
Temesghen Kahsai (NASA/CMU)

Jorge Navas (SRI)

http://seahorn.github.io
SeaHorn Usage

Example: in test.c, check that \(x \) is always greater than or equal to \(y \)

```c
extern int nd();
extern void __VERIFIER_error() __attribute__((noreturn));
void assert (int cond) { if (!cond) __VERIFIER_error (); } 
int main()
{ 
int x,y;
x=1; y=0;
while (nd ()
{ 
x=x+y;
y++;
}
assert (x>=y);
return 0;
}
```

SeaHorn command:

```bash
-> sea pf test.c
```

SeaHorn result:

```
PROPERTY (line 12)  |  TRUE
TIME(ms)            |  0.06
```
SeaHorn Philosophy

Build a state-of-the-art Software Model Checker

- useful to “average” users
 - user-friendly, efficient, trusted, certificate-producing, …
- useful to researchers in verification
 - modular design, clean separation between syntax, semantics, and logic, …

Stand on the shoulders of giants

- reuse techniques from compiler community to reduce verification effort
 - SSA, loop restructuring, induction variables, alias analysis, …
 - static analysis and abstract interpretation
- reduce verification to logic
 - verification condition generation
 - Constrained Horn Clauses

Build reusable logic-based verification technology

- “SMT-LIB” for program verification
Three-Layers of a Program Verifier

Compiler
- compiles surface syntax a target machine
- embodies syntax with semantics

Verification Condition Generator
- transforms a program and a property to a verification condition in logic
- employs different abstractions, refinements, proof-search strategies, etc.

Automated Theorem Prover / Reasoning Engine
- discharges verification conditions
- general purpose constraint solver
- SAT, SMT, Abstract Interpreter, Temporal Logic Model Checker,…
SeaHorn Architecture

Front-end

- LLVM Opt
- Devirt/Exc Elim
- Property Instr
- Lifting Assert

Middle-end

- Heap Disambig
- Array Abstraction
- VC Generation: small, large, flat...
- Precision: scalars, pointers, memory

Back-end

- Template Inv
- BMC
- Crab
- Spacer

C/C++ LLVM bitcode Horn Clauses
DEMO
Property-Directed Test-Case Generation

- Software Model Checker
- Directed Symbolic Execution
- Efficient complete traces
- Interaction between SMC and SE
- Executable harness
- Precise abstract traces
- Executable
A Counterexample Harness

```c
if (get_input() == 0x1234 &&
    get_input() == 0x8765) {
    __VERIFIER_error();
} else {
    return 0;
}
```

goget_input() is an external function

Program considered buggy if and only if __VERIFIER_error() is reachable

```c
void __get_input() {
    static int x = 0;
    switch (x++) {
        case 0: return 0x1234;
        case 1: return 0x8765;
        default: return 0;
    }
}
```

Implementation of external functions linked to original source code

Causes program to execute __VERIFIER_error()
Generating Harnesses for Linux Device Drivers

```c
void *ldv_ptr(void)
{
    void *tmp;
    tmp = __c();
    return tmp;
}
...

void *is_got = ldv_ptr();
if (is_got <= (long)2012)
{
    ...  
}
```

- Sample from Linux Device Verification (LDV) project\(^1\)
- Harness functions returning pointers are tricky
 - May not be reasonable addresses
 - Might return “new” memory
- Original program instrumented with memory read/store hooks that control access to external memory

\(^1\)http://linuxtesting.org/ldv
Virtual External Memory

Accesses to external “virtual” memory are mapped to real memory
- opportunistically allocate memory for new accesses
- ignore invalid stores, return a default value for an invalid load
SMT-BASED DECISION PROCEDURE FOR DECIDING CHC
Safety Verification Problem

Is Bad reachable?

INIT

Bad
Safety Verification Problem

Is Bad reachable?

Yes. There is a counterexample!
Safety Verification Problem

Is Bad reachable?

No. There is an inductive invariant
Symbolic Reachability Problem

\[P = (V, \text{Init}, \text{Tr}, \text{Bad}) \]

\(P \) is UNSAFE if and only if there exists a number \(N \) s.t.

\[
\text{Init}(X_0) \land \left(\bigwedge_{i=0}^{N-1} \text{Tr}(X_i, X_{i+1}) \right) \land \text{Bad}(X_N) \not\Rightarrow \bot
\]

\(P \) is SAFE if and only if there exists a safe inductive invariant \(\text{Inv} \) s.t.

\[
\begin{align*}
\text{Init} & \Rightarrow \text{Inv} \\
\text{Inv}(X) \land \text{Tr}(X, X') & \Rightarrow \text{Inv}(X') \\
\text{Inv} & \Rightarrow \neg \text{Bad}
\end{align*}
\]
Constrained Horn Clauses (CHC)

A Constrained Horn Clause (CHC) is a FOL formula of the form

$$\forall V . (\phi \land p_1[X_1] \land \ldots \land p_n[X_n] \rightarrow h[X]),$$

where

- A is a background theory (e.g., Linear Arithmetic, Arrays, Bit-Vectors, or combinations of the above)
- \(\phi\) is a constrained in the background theory A
- \(p_1, \ldots, p_n, h\) are n-ary predicates
- \(p_i[X]\) is an application of a predicate to first-order terms

A **model** of a set of clauses is an interpretation of the predicates \(p_i\) and \(h\) that makes all clauses **valid**

A set of clauses is **satisfiable** iff it has a model
int $x = 1$;
int $y = 0$;
while (*) {
 $x = x + y$;
 $y = y + 1$;
}
assert($x \geq y$);
Spacer: Solving SMT-constrained CHC

Spacer: a solver for SMT-constrained Horn Clauses
- stand-alone implementation in a fork of Z3
- http://bitbucket.org/spacer/code

Support for Non-Linear CHC
- model procedure summaries in inter-procedural verification conditions
- model assume-guarantee reasoning
- uses MBP to under-approximate models for finite unfoldings of predicates
- uses MAX-SAT to decide on an unfolding strategy

Supported SMT-Theories
- Best-effort support for arbitrary SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic
- Full support for Linear arithmetic (rational and integer)
- Quantifier-free theory of arrays
 - only quantifier free models with limited applications of array equality
Verification by Evolving Approximations

approx. 1

approx. 2

approx. 3

Safe?

No
IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to SMT)

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015

ArrayPDR: CHC with constraints over Arithmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan: Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015
Algorithm Overview

Input: Safety problem $\langle \text{Init}(X), \text{Tr}(X, X'), \text{Bad}(X) \rangle$

$F_0 \leftarrow \text{Init}$; $N \leftarrow 0$ repeat

\begin{align*}
G & \leftarrow \text{PdrMkSafe}([F_0, \ldots, F_N], \text{Bad}) \\
\text{if } G = [] \text{ then return } & \text{Reachable; } \\
\forall 0 \leq i \leq N \cdot F_i & \leftarrow G[i]
\end{align*}

$F_0, \ldots, F_N \leftarrow \text{PdrPush}([F_0, \ldots, F_N])$

\begin{align*}
\text{if } \exists 0 \leq i < N \cdot F_i = F_{i+1} \text{ then return } & \text{Unreachable; } \\
N & \leftarrow N + 1; F_N \leftarrow \emptyset
\end{align*}

until ∞;

bounded safety

strengthen result
IC3/PDR In Pictures: MkSafe

$x = 3, y = 0$

$x = 1, y = 0$

$x < y$
IC3/PDR in Pictures: Push

Algorithm Invariants

- $R_i \rightarrow \neg \text{Bad}$
- $\text{Init} \rightarrow R_i$
- $R_i \rightarrow R_{i+1}$
- $R_i \land \rho \rightarrow R_{i+1}$
Logic-based Algorithmic Verification

- Simulink
- Java
- C/C++
- CPR

Languages and Tools:
- Lustre
- CoCoSim
- Zustre
- T2
- Termination for C
- SeaHorn
- JayHorn
- Spacer

Supporting concurrent/distributed systems.
4th Competition on Software Verification held at TACAS 2015

Goals

• Provide a snapshot of the state-of-the-art in software verification to the community.
• Increase the visibility and credits that tool developers receive.
• Establish a set of benchmarks for software verification in the community.

Participants:

• Over 22 participants, including most popular Software Model Checkers and Bounded Model Checkers

Benchmarks:

• C programs with error location (programs include pointers, structures, etc.)
• Over 6,000 files, each 2K – 100K LOC
• Linux Device Drivers, Product Lines, Regressions/Tricky examples
• http://sv-comp.sosy-lab.org/2015/benchmarks.php

http://sv-comp.sosy-lab.org/2015/
Results for DeviceDriver category

![Graph showing the results for different tools in the DeviceDriver category. The x-axis represents the accumulated score, and the y-axis represents time in seconds. The graph compares BLAST, CBMC, CPAchecker, ESBMC, SeaHorn, SMACKCorral, UAutomizer, and UKojak.]
Applications of SeaHorn at NASA

Absence of Buffer Overflows
- Open source auto-pilots
 - paparazzi and mnav autopilots
- Automatically instrument buffer accesses with runtime checks
- Use SeaHorn to validate that run-time checks never fail
 - slower than pure abstract interpretation
 - BUT, much more precise!

Verify Level 5 requirements of the LADEE software stack
- Manually encode requirements in Simulink model
- Verify that the requirements hold in auto-generated C

Memory safety of C++ controller code
- ongoing...
Conclusion

SeaHorn (http://seahorn.github.io)

• a state-of-the-art Software Model Checker
• LLVM-based front-end
• CHC-based verification engine
• a framework for research in logic-based verification

The future

• making SeaHorn useful to the consumers of verification technology
 – counterexamples, build integration, property specification, proofs,
• Concurrent / distributed / embedded systems
 – cyber-physical systems
 – very challenging but there are many opportunities
• richer properties
 – termination[TACAS’16], liveness, synthesis
IC3/PDR

Input: A safety problem \(\langle Init(X), Tr(X, X'), Bad(X)\rangle\).

Output: *Unreachable* or *Reachable*

Data: A cex queue \(Q\), where \(c \in Q\) is a pair \(\langle m, i\rangle\), \(m\) is a cube over state variables, and \(i \in \mathbb{N}\). A level \(N\). A trace \(F_0, F_1, \ldots\)

Initially: \(Q = \emptyset\), \(N = 0\), \(F_0 = Init\), \(\forall i > 0 \cdot F_i = \emptyset\).

```
repeat
    **Unreachable** If there is an \(i < N\) s.t. \(F_i \subseteq F_{i+1}\) return *Unreachable*.
    **Reachable** If there is an \(m\) s.t. \(\langle m, 0\rangle \in Q\) return *Reachable*.
    **Unfold** If \(F_N \rightarrow \neg Bad\), then set \(N \leftarrow N + 1\).
    **Candidate** If for some \(m\), \(m \rightarrow F_N \land Bad\), then add \(\langle m, N\rangle\) to \(Q\).
    **Decide** If \(\langle m, i+1\rangle \in Q\) and there are \(m_0\) and \(m_1\) s.t. \(m_1 \rightarrow m\), \(m_0 \land m'_1\) is satisfiable, and \(m_0 \land m'_1 \rightarrow F_i \land Tr \land m'\), then add \(\langle m_0, i\rangle\) to \(Q\).
    **Conflict** For \(0 \leq i < N\): given a candidate model \(\langle m, i+1\rangle \in Q\) and clause \(\varphi\), such that \(\varphi \rightarrow \neg m\), if \(Init \rightarrow \varphi\), and \(\varphi \land F_i \land Tr \rightarrow \varphi'\), then add \(\varphi\) to \(F_j\), for \(j \leq i + 1\).
    **Leaf** If \(\langle m, i\rangle \in Q\), \(0 < i < N\) and \(F_{i-1} \land Tr \land m'\) is unsatisfiable, then add \(\langle m, i+1\rangle\) to \(Q\).
    **Induction** For \(0 \leq i < N\) and a clause \((\varphi \lor \psi) \in F_i\), if \(\varphi \notin F_{i+1}\), \(Init \rightarrow \varphi\) and \(\varphi \land F_i \land Tr \rightarrow \varphi'\), then add \(\varphi\) to \(F_j\), for each \(j \leq i + 1\).
```

until \(\infty\);
IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
- terminate the algorithm when a solution is found

Unfold
- increase search bound by 1

Candidate
- choose a bad state in the last frame

Decide
- extend a cex (backward) consistent with the current frame
- choose s s.t. $(s \land R_i \land Tr \land cex')$ is SAT

Conflict
- Find a lemma that explains why cex cannot be extended
- Find L s.t. $L \Rightarrow \neg cex$ and $L \land R_i \land Tr \Rightarrow L'$

Induction
- Propositional generalization (drop literals from the lemma)
Looking for φ'

ARITHMETIC CONFLICT

$$((F_i \land Tr) \lor Init') \Rightarrow \varphi'$$

$$\varphi' \Rightarrow c'$$
Craig Interpolation Theorem

Theorem (Craig 1957)
Let A and B be two First Order (FO) formulae such that $A \implies \neg B$, then there exists a FO formula I, denoted $ITP(A, B)$, such that

$$A \implies I \quad I \implies \neg B$$

$$atoms(I) \in atoms(A) \cap atoms(B)$$

A Craig interpolant $ITP(A, B)$ can be effectively constructed from a resolution proof of unsatisfiability of $A \wedge B$

In Model Checking, Craig Interpolation Theorem is used to safely over-approximate the set of (finitely) reachable states
Craig Interpolant

A

I

B
Examples of Craig Interpolation for Theories

Boolean logic

\[A = \left(\neg b \land \left(\neg a \lor b \lor c \right) \land a \right) \]

\[B = \left(\neg a \lor \neg c \right) \]

\[ITP(A, B) = a \land c \]

Equality with Uninterpreted Functions (EUF)

\[A = \left(f(a) = b \land p(f(a)) \right) \]

\[B = \left(b = c \land \neg p(c) \right) \]

\[ITP(A, B) = p(b) \]

Linear Real Arithmetic (LRA)

\[A = \left(z + x + y > 10 \land z < 5 \right) \]

\[B = \left(x < -5 \land y < -3 \right) \]

\[ITP(A, B) = x + y > 5 \]
Alternative Definition of an Interpolant

Let $F = A(x, z) \land B(z, y)$ be UNSAT, where x and y are distinct

- Note that for any assignment v to z either
 - $A(x, v)$ is UNSAT, or
 - $B(v, y)$ is UNSAT

An interpolant is a circuit $I(z)$ such that for every assignment v to z

- $I(v) = A$ only if $A(x, v)$ is UNSAT
- $I(v) = B$ only if $B(v, y)$ is UNSAT

A proof system S has a **feasible interpolation** if for every refutation π of F in S, F has an interpolant polynomial in the size of π

- propositional resolution has feasible interpolation
- extended resolution does not have feasible interpolation
Farkas Lemma

Let $M = t_1 \geq b_1 \land \ldots \land t_n \geq b_n$, where t_i are linear terms and b_i are constants M is \textit{unsatisfiable} iff $0 \geq 1$ is derivable from M by resolution.

M is \textit{unsatisfiable} iff $M \vdash 0 \geq 1$

• e.g., $x + y > 10$, $-x > 5$, $-y > 3 \vdash (x+y-x-y) > (10 + 5 + 3) \vdash 0 > 18$

M is unsatisfiable iff there exist \textit{Farkas} coefficients g_1, \ldots, g_n such that

• $g_i \geq 0$
• $g_1 \times t_1 + \ldots + g_n \times t_n = 0$
• $g_1 \times b_1 + \ldots + g_n \times b_n \geq 1$
Interpolation for Linear Real Arithmetic

Let $M = A \land B$ be UNSAT, where

- $A = t_1 \geq b_1 \land \ldots \land t_i \geq b_i$, and
- $B = t_{i+1} \geq b_i \land \ldots \land t_n \geq b_n$

Let g_1, \ldots, g_n be the Farkas coefficients witnessing UNSAT

Then

- $g_1 \times (t_1 \geq b_1) + \ldots + g_i \times (t_i \geq b_i)$ is an interpolant between A and B
- $g_{i+1} \times (t_{i+1} \geq b_i) + \ldots + g_n \times (t_n \geq b_n)$ is an interpolant between B and A

- $g_1 \times t_1 + \ldots + g_i \times t_i = - (g_{i+1} \times t_{i+1} + \ldots + g_n \times t_n)$
- $\neg (g_{i+1} \times (t_{i+1} \geq b_i) + \ldots + g_n \times (t_n \geq b_n))$ is an interpolant between A and B
Craig Interpolation for Linear Arithmetic

Useful properties of existing interpolation algorithms [CGS10] [HB12]

- $I \in \text{ITP}(A, B)$ then $\neg I \in \text{ITP}(B, A)$
- If A is syntactically convex (a monomial), then I is convex
- If B is syntactically convex, then I is co-convex (a clause)
- If A and B are syntactically convex, then I is a half-space
Arithmetic Conflict

Notation: $\mathcal{F}(A) = (A(X) \land Tr) \lor Init(X')$.

Conflict For $0 \leq i < N$, given a counterexample $\langle P, i + 1 \rangle \in Q$ s.t. $\mathcal{F}(F_i) \land P'$ is unsatisfiable, add $P^\uparrow = ITP(\mathcal{F}(F_i), P')$ to F_j for $j \leq i + 1$.

Counterexample is blocked using Craig Interpolation
- summarizes the reason why the counterexample cannot be extended

Generalization is not inductive
- weaker than IC3/PDR
- inductive generalization for arithmetic is still an open problem
$s \subseteq pre(c)$

$\equiv s \Rightarrow \exists X'. Tr \land c'$

Computing a predecessor s of a counterexample c
Model Based Projection

Definition: Let φ be a formula, U a set of variables, and M a model of φ. Then $\psi = \text{MBP} (U, M, \varphi)$ is a Model Based Projection of U, M and φ iff

1. ψ is a monomial (optional)
2. $\text{Vars} (\psi) \subseteq \text{Vars} (\varphi) \setminus U$
3. $M \models \psi$
4. $\psi \Rightarrow \exists U . \varphi$

For a fixed set of variables U and a formula φ, MBP is a function from models to formulas

MBP is \textit{finite} if its range (as a function defined above) is finite
Model Based Projection

Expensive to find a quantifier-free

\[\psi(y) \equiv \exists x \cdot \varphi(x, y) \]

1. Find model M of \(\varphi(x,y) \)

2. Compute a partition containing M
Loos Weispfenning Quantifier Elimination

φ is LRA formula in Negation Normal Form
E is set of x=t atoms, U set of x < t atoms, and L set of s < x atoms
There are no other occurrences of x in φ[x]

\[\exists x. \varphi[x] \equiv \varphi[\infty] \lor \bigvee_{x=t \in E} \varphi[t] \lor \bigvee_{x < t \in U} \varphi[t - \epsilon] \]

where
\[(x < t')[t - \epsilon] \equiv t \leq t' \quad (s < x)[t - \epsilon] \equiv s < t \quad (x = e)[t - \epsilon] \equiv false \]

The case of lower bounds is dual
• using \(-\infty\) and \(t+\epsilon\)
LW-Quantifier Elimination Example

\[\exists x \cdot \varphi[x] \]
\[\equiv \exists x \cdot (x = e \land \psi_1) \lor (s < x \land x < t) \lor (x < t \land \psi_2) \]
\[\equiv \varphi[e] \lor \varphi[t - \epsilon] \lor \varphi[\infty] \]
\[\equiv (\psi_1 \lor (s < e \land e < t) \lor (e < t \land \psi_2)) \lor (s < t \land t \leq t) \lor (t \leq t \land \psi_2) \lor false \]
MBP for Linear Rational Arithmetic

Compute a single disjunct from LW-QE that includes the model

- Use the Model to uniquely pick a substitution term for x

\[Mbp_x(M, x = s \land L) = L[x \leftarrow s] \]

\[Mbp_x(M, x \neq s \land L) = Mbp_x(M, s < x \land L) \text{ if } M(x) > M(s) \]

\[Mbp_x(M, x \neq s \land L) = Mbp_x(M, -s < -x \land L) \text{ if } M(x) < M(s) \]

\[Mbp_x(M, \bigwedge_i s_i < x \land \bigwedge_j x < t_j) = \bigwedge_i s_i < t_0 \land \bigwedge_j t_0 \leq t_j \text{ where } M(t_0) \leq M(t_i), \forall i \]

MBP techniques have been developed for

- Linear Rational Arithmetic, Linear Integer Arithmetic
- Theories of Arrays, and Recursive Data Types
Arithmetic Decide

Notation: \(F(A) = (A(X) \land Tr(X, X') \lor Init(X'). \)

Decide If \(\langle P, i + 1 \rangle \in Q \) and there is a model \(m(X, X') \) s.t. \(m \models F(F_i) \land P' \), add \(\langle P_{\downarrow}, i \rangle \) to \(Q \), where \(P_{\downarrow} = MBP(X', m, F(F_i) \land P') \).

Compute a predecessor using an under-approximation of quantifier elimination – called Model Based Projection

To ensure progress, Decide must be finite

- finitely many possible predecessors when all other arguments are fixed

Alternatives

- Completeness can follow from the **Conflict** rule only
 - for Linear Arithmetic this means using Fourier-Motzkin implicants
- Completeness can follow from an interaction of **Decide** and **Conflict**
PROPERTY-DIRECTED TEST
CASE GENERATION
Property-Directed Test-Case Generation

Software Model Checker

Directed Symbolic Execution

efficient complete traces

precise abstract traces

interaction between SMC and SE

executable harness

Property

Program

Trace

PDTG

Executable
A Counterexample Harness

```c
if (get_input() == 0x1234 &&
    get_input() == 0x8765) {
    __VERIFIER_error();
} else {
    return 0;
}
```

get_input() is an external function

Program considered buggy if and only if __VERIFIER_error() is reachable

```c
void __get_input() {
    static int x = 0;
    switch (x++) {
        case 0: return 0x1234;
        case 1: return 0x8765;
        default: return 0;
    }
}
```

Implementation of external functions linked to original source code

Causes program to execute __VERIFIER_error()
Generating Harnesses for Linux Device Drivers

```c
void *ldv_ptr(void)
{
    void *tmp;
    tmp = __c();
    return tmp;
}
...

void *is_got = ldv_ptr();
if (is_got <= (long)2012)
{
    ...
}
```

- Sample from Linux Device Verification (LDV) project\(^1\)
- Harness functions returning pointers are tricky
 - May not be reasonable addresses
 - Might return “new” memory
- Original program instrumented with memory read/store hooks that control access to external memory

\(^1\)http://linuxtesting.org/ldv
Accesses to external “virtual” memory are mapped to real memory

- opportunistically allocate memory for new accesses
- ignore invalid stores, return a default value for an invalid load