
Verification beyond programs

K. Rustan M. Leino
Principal Researcher
Research in Software Engineering (RiSE), Microsoft Research, Redmond

Visiting Professor
Department of Computing, Imperial College London

Workshop on Software Correctness and Reliability, 8 October 2016, ETH Zurich, Switzerland

Program verification:
1949

Source: “An Early Program Proof by Alan Turing” by F.L. Morris and C.B. Jones, Annals of the History of Computing, 1984

Program verification:
1971

Source: “Proof of a program: FIND” by C.A.R. Hoare, CACM, 1971

Program verification:
1998

Source: Invited talk “ESC/Java” by K.R.M. Leino at Larch User’s Group Meeting, FM’99, Toulouse, France, Sep 1999

Program verification:
1998

Source: Talk and first (pre-tool) ESC/Java demo by K.R.M. Leino to Hopper et al. at DEC WRL, “Extended Static Checking for Java”, March 1998

Program verification:
2008

Source: Paper presentation on Dafny by K.R.M. Leino at LPAR-16, Dakar, Senegal, April 2010

Program verification:
2016
Interactive proof assistants:

Applications in program
verification

Automated program verifiers:
Growth into meta
mathematics
Uses as more general proof
assistants

Photo credits: www.publicdomainpictures.net

Correctness of systems

CompCert

seL4 Verified

Ironclad, IronFleet

…

Demo
Iteration, induction, lemmas

Language illustration: INC
Cmd ::= Inc | Cmd⨟Cmd | Repeat(Cmd)

Semantics given by the “big step” relation

Cmd, State → State

where

𝐶, 𝑠 → 𝑡

says that
there is an execution of command 𝐶 from state 𝑠 that
terminates in state 𝑡

Semantics of INC
Cmd ::= Inc | Cmd⨟Cmd | Repeat(Cmd)

𝑡 = 𝑠+1

Inc, 𝑠 → 𝑡

𝑐0, 𝑠 → 𝑠′ 𝑐1, 𝑠′ → 𝑡

𝑐0⨟𝑐1, 𝑠 → 𝑡

𝑡 = 𝑠

Repeat 𝑏𝑜𝑑𝑦 , 𝑠 → 𝑡

𝑏𝑜𝑑𝑦, 𝑠 → 𝑠′ (Repeat 𝑏𝑜𝑑𝑦), 𝑠′ → 𝑡

Repeat 𝑏𝑜𝑑𝑦 , 𝑠 → 𝑡

Semantics of INC
Cmd ::= Inc | Cmd⨟Cmd | Repeat(Cmd)

𝑡 = 𝑠+1

Inc, 𝑠 → 𝑡

 𝑠′. 𝑐0, 𝑠 → 𝑠′ 𝑐1, 𝑠′ → 𝑡

𝑐0⨟𝑐1, 𝑠 → 𝑡

𝑡 = 𝑠

Repeat 𝑏𝑜𝑑𝑦 , 𝑠 → 𝑡

 𝑠′. 𝑏𝑜𝑑𝑦, 𝑠 → 𝑠′ (Repeat 𝑏𝑜𝑑𝑦), 𝑠′ → 𝑡

Repeat 𝑏𝑜𝑑𝑦 , 𝑠 → 𝑡

Demo
INC

𝐵𝑖𝑔𝑆𝑡𝑒𝑝 = ℱ(𝐵𝑖𝑔𝑆𝑡𝑒𝑝)

has many solutions in 𝐵𝑖𝑔𝑆𝑡𝑒𝑝

We want the least solution

The recurrence equation

BENEFITS:
• Separation of concern
• Readable
• Editable

Verification tool architecture

Source language

Intermediate verification language (IVL)

Satisfiability modulo theories (SMT) solver

Show and tell
Source, IVL, SMT

Intermediate verification language

Intermediate verification language

෠𝑃

Intermediate verification language

Picture credit: red figures from tihidi.wordpress.com

Intermediate verification language

phat
1. cool
2. Pretty Hot And Tempting

Intermediate verification language

The problem with "phat" is that it is no
longer in really. It has kind of phased out
and is mostly used by wannabes,
lowerclassmen in high school, or middle
schoolers. It is now considered a slang
faux pas. I wouldn't use it if I was you.

14 year old: "That's phat man."
22 year old: "Um, dude, that word got
old in the late '90s"

Intermediate verification language

2 idioms

Idiom 0:

Check what I say, not what I assume

assert Y

assert Y

Check what I say, not what I assume

assert X

assume Y

assert Y

Check what I say, not what I assume

assert X0

assert X1

assume Y

assert Y

assert  n  ( k  k < n  P(k))  P(n)

assume  n  P(n)

assert  n  P(n)

induction hypothesis

Idiom 1:

Check it, then forget about it

assert X

assume Y

if * then

assert X

assume false

else

assume Y

end

assert Y

assert X0

assert X1

assume Y

assert Y if * then

assert X0

assert X1

assume false

else

assume Y

end

Certified IVL: Goal

Quick-turnaround verification
of source program

Soundness of encoding

if * then

a := assert X0

b := assert X1

assume false

else

assume Y since a  b  Y

end

Fast path:

Erase the meta correctness
constructs

This verification is on the
user’s clock

Slow path:
Verification includes
soundness of assumptions

This verification can be done
overnight

Conclusions

Program verification is accessible to interested non-experts

Teaching reasoning does not require understanding complex
logics or tactics

High automation of verification is not just for programs

github.com/microsoft/dafny
Try Dafny in your browser: rise4fun.com/dafny

