Verification beyond programs

K. Rustan M. Leino

Principal Researcher
Research in Software Engineering (RiSE), Microsoft Research, Redmond

Visiting Professor
Department of Computing, Imperial College London

Workshop on Software Correctness and Reliability, 8 October 2016, ETH Zurich, Switzerland

Program verification:
1949

v=n!
I
|
|
r<n r<n STOP S=r<n §s=sr<n
u=r! u=r! >0 u=sr! u=(s+1)r
0<n : v=r! - v=rl v=r!
I | I ! |
| .y I | | |
| r:=1 | _y | | |
i Ty y Vi=u r—n s:=1 S u=u+v s:=s+1
<0
g1
r:=r+1g | u=srl
; v=r!
r<n
u=(@r+1r

Source: “An Early Program Proof by Alan Turing” by F.L. Morris and C.B. Jones, Annals of the History of Computing, 1984

Program verification:
197:

Source: “Proof of a program: FIND” by C.A.R. Hoare, CACM, 1971

begin
comment This program operates on an array A{1:N], and a
value of f(1 < f < N). Its effect is to rearrange the elements
of A in such a way that:
vp,g(1<p<f<gSNDA[pISA{fISAlqD);
integer m, n; comment
m < f & wp,q(1<p<m<g<NDA[p|<Alg)),
f<n &yp,q(l<p<n<gSNDA[p|<Alg]);
m:=1; n:= N;
while m < n do
begin integer r, 2, j, w
comment
m < 1 & gp(1<p<:DA[p|<r),
J < n &we(G<gSNDr<Algl);
= A[f]; 1:=m; j:=n;
while 7 < j do
begin while A7) < rdo 1 := 17 + 1;
while r < Af[jjdoj:=j5— 1
comment A[j] < r < Ali];
if 2 < j then
begin w := A[t}; A[] := Alj); Alj] := w;
comment Ali] < r < Afj];
t:=1t4+1; j:=353—-1;
end
end increase i and decrease j;
iff<jthenn :=j
elseif : < fthenm := 1
else go to L
end reduce middle part;
L:
end Find

Stotic program checkers

oovo.mge. S

vecrifcotion
extended
C=
t-\\«kmg Aecidobility
PR -t g R sy o e —--‘c.ei.\?mg

effort

Note: TWlustrotion not Lo scale

Source: Invited talk “ESC/Java” by K.R.M. Leino at Larch User’s Group Meeting, FM’99, Toulouse, France, Sep 1999

Program verification:

1998 Static program checkers
oge i

vectfeakion

extended
Oshﬁc
-ét G.\.AOL\. *y

c.e\.\m‘

effort

Note: T\lustrotion not Lo scole

Source: Talk and first (pre-tool) ESC/Java demo by K.R.M. Leino to Hopper et al. at DEC WRL, “Extended Static Checking for Java”, March 1998

Program verification:

T —y

2 OO 8 _ traditional™
functional Dafny mechanical
program

correctness | QEELEUCEEN

verification

~.

—
extended

limited hs’fa:(i_c
. ' checCkKin
checking ~ ;

automatic Interactive
decision procedures proof assistants

- (SMT solvers) fale

Source: Paper presentation on Dafny by K.R.M. Leino at LPAR-16, Dakar Senegal April 2010

Program verification:
2016

Interactive proof assistants:
Applications in program
verification

Automated program verifiers:

Growth into meta
mathematics

Uses as more general proof
assistants

Photo credits: www.publicdomainpictures.net

Correctness of systems

CompCert
selL4 Verified
lronclad, IronFleet

Demo

Iteration, induction, lemmas

Language illustration: INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

Semantics given by the “big step” relation
(Cmd, State) — State

where
(C, s) >t

says that

there is an execution of command C from state s that
terminates in state t

Semantics of INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

t=s5+1
(Inc,s) >t

(c0,s)->s" (c1,s")-t
(cO0:icl, s) >t

t=s (body,s) » s’ (Repeat(body),s’) -t
(Repeat(body),s) -t (Repeat(body),s) -t

Semantics of INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

t=s5+1
(Inc,s) >t

ds".(c0,s)>s" (c1,s") >t
(cO:cl1, s) >t

t=s 1s’. (body,s) » s’ (Repeat(body),s’) >t
(Repeat(body),s) —t (Repeat(body),s) —t

Demo

INC

The recurrence eguation
BigStep = F(BigStep)

has many solutions in BigStep

We want the leagst solution

Verification tool architecture

Dafny{(/”
WA/’W,“ Source language SRR

Separation of concern
* Readable
e Editable

//,’ A’ \‘\§\ \“ @
)
\ . // -
=

= Intermediate verification lapguage (IVL)

ZB Satisfiability modulo theories (SMT) solver

Show and tell

Source, VL, SMT

Intermediate verification language

o

Intermediate verification language

Dafnyf[i

!

Phat jﬁs

|
=

Intermediate verification language

Dafnyff

Intermediate verification language

Dafny[‘ Daf'ny[\
l phat
1. cool

Ph%% 2. Pretty Hot And Tempting
|

| =

The problem with "phat" is that it is no
longer in really. It has kind of phased out

Dafnyﬁ Dafny([‘-
!

l and is mostly used by wannabes,
lowerclassmen in high school, or middle

Ph%i schoolers. It is now considered a slang
\l' faux pas. | wouldn't use it if | was you.

14 year old: "That's phat man."
z ‘3 ‘ - 22 year old: "Um, dude, that word got

old in the late '90s"

Intermediate verification language

o

2 idioms

I[diom O:
Check what | say, not what | assume

assert Y

assert Y

Check what | say, not what | assume

assert Y

assert X
assume Y

Check what | say, not what | assume

assert Y

assert Xo
assert X1
assume Y

assert V n e P(n)

assert V n e \(v k «# k< n= P(k))’ = P(n)
assume V n e P(n) !

induction hypothesis

ldiom 1:

Check it, then forget about it

assert Y
if * then
assert X assert X
Jssume Y assume false
else
assume Y

end

assert Y 1f * then

assert Xo

assert X1
assert Xo

assume false
assert X1 else
assume Y assume Y

end

Certified IVL: Goal

Dafny Quick-turnaround verification
| f of source program

Soundness of encoding

Fast path:

Erase the meta correctness
constructs

This verification is on the
user’s clock

if * then
a := assert Xo
b := assert X1
assume false

else

assume Y sihce a AN b = Y

end

Slow path:

Verification includes
soundness of assumptions

This verification can be done
overnight

Program verification is accessible to interested non-experts

Teaching reasoning does not require understanding complex
logics or tactics

High automation of verification is not just for programs

github.com/microsoft/dafny
Try Dafny in your browser: rised4fun.com/dafny

