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Program verification:
1949
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Source: “An Early Program Proof by Alan Turing” by F.L. Morris and C.B. Jones, Annals of the History of Computing, 1984



Program verification:
197:

Source: “Proof of a program: FIND” by C.A.R. Hoare, CACM, 1971

begin
comment This program operates on an array A{1:N], and a
value of f(1 < f < N). Its effect is to rearrange the elements
of A in such a way that:
vp,g(1<p<f<gSNDA[pISA{fISAlqD);
integer m, n; comment
m < f & wp,q(1<p<m<g<NDA[p|<Alg)),
f<n &yp,q(l<p<n<gSNDA[p|<Alg]);
m:=1; n:= N;
while m < n do
begin integer r, 2, j, w
comment
m < 1 & gp(1<p<:DA[p|<r),
J < n &we(G<gSNDr<Algl);
= A[f]; 1:=m; j:=n;
while 7 < j do
begin while A7) < rdo 1 := 17 + 1;
while r < Af[jjdoj:=j5— 1
comment A[j] < r < Ali];
if 2 < j then
begin w := A[t}; A[] := Alj); Alj] := w;
comment Ali] < r < Afj];
t:=1t4+1; j:=353—-1;
end
end increase i and decrease j;
iff<jthenn :=j
elseif : < fthenm := 1
else go to L
end reduce middle part;
L:
end Find



Stotic program checkers
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Source: Invited talk “ESC/Java” by K.R.M. Leino at Larch User’s Group Meeting, FM’99, Toulouse, France, Sep 1999



Program verification:

1998 Static program checkers
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Source: Talk and first (pre-tool) ESC/Java demo by K.R.M. Leino to Hopper et al. at DEC WRL, “Extended Static Checking for Java”, March 1998



Program verification:
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Source: Paper presentation on Dafny by K.R.M. Leino at LPAR-16, Dakar Senegal April 2010



Program verification:
2016

Interactive proof assistants:
Applications in program
verification

Automated program verifiers:

Growth into meta
mathematics

Uses as more general proof
assistants

Photo credits: www.publicdomainpictures.net



Correctness of systems
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Demo

Iteration, induction, lemmas



Language illustration: INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

Semantics given by the “big step” relation
(Cmd, State) — State

where
(C, s) >t

says that

there is an execution of command C from state s that
terminates in state t



Semantics of INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

t=s5+1
(Inc,s) >t

(c0,s)->s" (c1,s")-t
(cO0:icl, s) >t

t=s (body,s) » s’ (Repeat(body),s’) -t
(Repeat(body),s) -t (Repeat(body),s) -t




Semantics of INC
Cmd ::= Inc | Cmd;Cmd | Repeat(Cmd)

t=s5+1
(Inc,s) >t

ds".(c0,s)>s" (c1,s") >t
(cO:cl1, s) >t

t=s 1s’. (body,s) » s’ (Repeat(body),s’) >t
(Repeat(body),s) —t (Repeat(body),s) —t




Demo

INC



The recurrence eguation
BigStep = F(BigStep)

has many solutions in BigStep

We want the leagst solution



Verification tool architecture
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Show and tell

Source, VL, SMT



Intermediate verification language
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Intermediate verification language
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Intermediate verification language

Dafnyff




Intermediate verification language
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The problem with "phat" is that it is no
longer in really. It has kind of phased out

Dafnyﬁ Dafny([‘-
!

l and is mostly used by wannabes,
lowerclassmen in high school, or middle

Ph%i schoolers. It is now considered a slang
\l' faux pas. | wouldn't use it if | was you.

14 year old: "That's phat man."
z ‘3 ‘ - 22 year old: "Um, dude, that word got

old in the late '90s"




Intermediate verification language
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2 idioms



I[diom O:
Check what | say, not what | assume

assert Y

assert Y



Check what | say, not what | assume

assert Y

assert X
assume Y



Check what | say, not what | assume

assert Y

assert Xo
assert X1
assume Y



assert V n e P(n)

assert V n e \(v k «# k< n= P(k))’ = P(n)
assume V n e P(n) !

induction hypothesis



ldiom 1:

Check it, then forget about it

assert Y
if * then
assert X assert X
Jssume Y assume false
else
assume Y

end



assert Y 1f * then

assert Xo

assert X1
assert Xo

assume false
assert X1 else
assume Y assume Y

end



Certified IVL: Goal

Dafny Quick-turnaround verification
| f of source program

Soundness of encoding




Fast path:

Erase the meta correctness
constructs

This verification is on the
user’s clock

if * then
a := assert Xo
b := assert X1
assume false

else

assume Y sihce a AN b = Y

end

Slow path:

Verification includes
soundness of assumptions

This verification can be done
overnight




Program verification is accessible to interested non-experts

Teaching reasoning does not require understanding complex
logics or tactics

High automation of verification is not just for programs

github.com/microsoft/dafny
Try Dafny in your browser: rised4fun.com/dafny



