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A brief history
❖ 1970’s Statistical databases — Census “daticians” worried about privacy breaches in 

published census data.
❖ 1982 Goguen and Meseguer — Non-interference security: sought to tease out what it 

means for confidential information to leak.
❖ 1993 Landauer — Lattice of Information. A first attempt to compare the leakiness of 

security mechanisms.
❖ 1995-ish side channel attacks which undermined security protocols especially when 

implemented on small devices.
❖ 2000’s Quantitative information flow — measure information loss using Shannon 

Entropy; “Channel model of information flow” for quantitative non-interference.                            
❖ 2009 Min-Entropy, Guessing Entropy — these are better for measuring information 

loss damaging to security.
❖ 2012 “Generalised Entropy” to define threat models; security refinement.
❖ 2014 Generalised capacity to prove that any leak is “small enough”.



Secrets
We model a secret as something that an attacker can try to guess.

X

DX

Basic type for secrets

Probability distributions over secrets

The distribution over a secret models how well hidden the secret is.

A uniform distribution means that the attacker knows nothing about the
secret except for its type. 

A uniform distribution over some subset Y means that the attacker can
rule out  the complement       \ Y.X



Entropy
We can get a better handle on how well hidden is the secret by using “Entropy”

For example, Shannon 
Entropy is one way to 
measure “uncertainty” (wrt 
the attacker’s point of view).

Probability of X

H(X)

The higher the 
entropy
the more uncertainty 
because the more 
resources are required.



Bayes Risk
We can get a better handle on how hidden the secret is by using “Entropy”

Bayes Risk gives the average 
over  “$1 fines” to the 
attacker if he incorrectly 
guesses the secret in one try.

Probability of X

The higher the entropy
the more uncertainty because 
the more the attacker is fined 
on average.



Guessing Entropy
We can get a better handle on how disguised is the secret by using “Entropy”

Guessing Entropy gives the
expected number of guesses
it takes for the attacker to 
guess the entire secret.

Probability of X

The higher the entropy
the more uncertainty 
because the more guesses 
on average are needed to 
uncover the secret.



Abstract Properties of Entropy

❖ Different secrets can have different associated 
risks, depending on the context.

❖ Indistinguishability between secrets: secrets 
which are hard to distinguish in probability 
should be hard to distinguish in entropy.              

❖ Averaging between uncertainties increases 
the overall uncertainty.



Abstract Properties of Entropy

❖ Entropy is a function from secrets to reals.             

❖ Entropy is continuous.

❖ Entropy is concave.

DX ! R

U(�1 �p �2) � p⇥U(�1) + (1�p)⇥U(�2)

�1!�2 ) U(�1)!U(�2)



Mechanisms change the risk

x := 0� 1� 2;

leak (x mod 2)

Initially the secret x is 
uniformly set over 0, 1, 2.

Subsequently its low order 
bit is revealed.

What does this leak tell the 
attacker about the secret?



Mechanisms change the risk

x := 0� 1� 2;

leak (x mod 2)

Initially the secret x is 
uniformly set over 0, 1, 2.

Subsequently its low order 
bit is revealed.

What does this leak tell the 
attacker about the secret?

If “1” is leaked then the attacker deduces that the secret x is 1;
If “0” is leaked then the attacker deduces that the secret is not 1, 
but is uniformly distributed over 0 or 2.



Generalising Mutual Information
The theory of Shannon Information introduces the idea of “mutual information” 
between random variables X and Y. Mutual information measures the “mutual 
dependence” between X and Y. 

Shannon based:

x := 0� 1� 2;

leak (x mod 2)

log 3� 2/3 log 2 ⇡ 0.918

Bayes Risk based: 2/3� 1/3 = 1/3

Guessing Entropy based: 

These measure 
actual “dollar” 

amounts in 
reduction in 

“costs” to the 
attacker.

2� 4/3 = 2/3



Measure the change in Entropy

H[x := 0� 1� 2] = log 3 H[x := 0� 1� 2; “leak (x mod 2)”] =

2

3

log 2

B[x := 0� 1� 2; “leak (x mod 2)”] =

1

3

G[x := 0� 1� 2; “leak (x mod 2)”] =

4

3

B[x := 0� 1� 2] =
2

3

G[x := 0� 1� 2] = 2

Shannon: Before Shannon: After

Bayes Risk: Before Bayes Risk: After

Guessing Entropy: Before Guessing Entropy: After



Generalised entropy and attack 
strategies



Loss functions and attack strategies
A loss function     is a mapping ,

Where        is a (finite) set of 
strategies.

W

Given a loss function     and a distribution representing some secret

`

` ⇡

We define the expected loss as

min
w2W

X

x2X
`.w.x⇥ ⇡

x

W ! X ! R

U`(⇡) :=

Each of the entropies above can be expressed as a          for some   U` `



Abstract Properties of Entropy

❖ For fixed        The function          is the cost function 
for strategy 

❖ Considered as a function from secrets to reals              
becomes a tangent to the entropy curve. 

❖ Entropy is then determined exactly by the set of 
attacker strategies.

w `.w

DX ! R

`.w



Loss functions and attack strategies
We interpret the “generalised” entropies as costs related to attacker strategies.

x := 0� 1� 2;

leak (x mod 2)

Bayes Risk - The attacker has three strategies:

A: Guess “x=0” costs $1 if the guess is wrong;
B: Guess “x=1” costs $1 if the guess is wrong;
C: Guess “x=2” costs $1 if the guess is wrong;
 

Before the leak, for
a uniform prior, any of the 
three choices costs him the 

same, i.e. 2/3.

Change of strategy: If he observes 
“1” he uses B. If he observes “0” then 

he uses either A or C. The average 
cost related to this strategy is zero 

1/3 of the time, and only 1/2 for 2/3 
of the time giving a total of 1/3.  



Before
We interpret the “generalised” entropies as costs related to attacker strategies.

x := 0� 1� 2;

leak (x mod 2)

Bayes Risk - The attacker has three possible choices to build guessing 
attacks:

A: Guess “x=0” costs $1 if the guess is wrong;
B: Guess “x=1” costs $1 if the guess is wrong;
C: Guess “x=2” costs $1 if the guess is wrong;
 

Guess
B

Guess
A or C

Consider the strategy: 
Randomly select A or C, unless the
prior indicates it’s more likely the

secret is 1. In that case select B.

Less likely
that x =1 More 

likely
that x =1

No
clue



After
We interpret the “generalised” entropies as costs related to attacker strategies.

x := 0� 1� 2;

leak (x mod 2)

Bayes Risk - The attacker has three possible choices to build guessing 
attacks:

A: Guess “x=0” costs $1 if the guess is wrong;
B: Guess “x=1” costs $1 if the guess is wrong;
C: Guess “x=2” costs $1 if the guess is wrong;
 

Use A or C unless 
observe “1”

Change the strategy based on the 
observations.

Less likely
that x =1 More 

likely
that x =1

No
clue



Attacking after is more worthwhile than attacking before

x := 0� 1� 2;

leak (x mod 2)

Use A or C unless 
observe “1”

He can always find a strategy that,
will reduce his losses if he attacks

after the leak.

Less likely
that x =1 More 

likely
that x =1

No
clue



Change of entropy is a measure of effectiveness of strategy 
change

x := 0� 1� 2;

leak (x mod 2)

Initially the secret x is 
uniformly set over 0, 1, 2.

‘’1’’ is leaked with probability 1/3 — in this case the attacker 
knows the secret to be 1.

“0” is leaked with probability 2/3 — in this case he deduces that 
the remaining uncertainty is a posterior distribution evenly split 
between 0 and 2.

After the leak we take the 
observations into account.



where             is the probability of observing      and        is the posterior 
distribution given 

Risk after the leak
The posterior distributions are calculated using Bayes’ Formula:

Pr(secret is x, Given observation A) 
=  Pr(secret is x AND observation is A)/Pr(observation is A).

The probabilities are worked out from the joint probability distribution 
generated from the prior and the observations.

The posterior average loss with respect to loss function is 

X

a2A
pr(a)⇥ U`(⇡

a)

pr(a) ⇡aa
a

Concavity  explains why the 
posterior average entropy is 

reduced.



Can one mechanism be more 
secure than another?



Robust comparisons
Given two medical devices for testing for some disease, both taking inputs X from 
patients, we can decide how good these devices are by determining which is better “on 
average” in identifying patients who have the disease or not.  The secret is whether the 
patient actually has the disease or not; the leak is whether the observation decreases the 
original uncertainty.

Our theory tells us that if we can model the 
information leaks as stochastic channels, from secrets 
to observations then we can make some robust 
judgements about their comparative security 
properties.



Robust comparisons: refinement for security

The question is then whether there is a robust leakage ordering, allowing 
us to conclude that one channel never leaks more than another, regardless 
of the prior or gain function. Such a robust ordering could support a 
stepwise refinement methodology for constructing secure systems. 

The main interest in composition refinement is its relation to g-leakage. 
First, composition refinement implies a strong g-leakage ordering; this 
can be seen as an analogue of the classic data-processing inequality. 

loss



Applying the theory
There are many ways to apply these results on information flow. Here are three of 
them, some of which we have tried.

1. Evaluating the overall information leaks in programs; Side channel analysis. 
2. Information flow in security protocols; Voting protocols.
3. Developing reasoning techniques based on refinement to explain and verify 

how to use security protocols and to determine that elaborate algorithms meet 
their information-flow requirements.



Voting protocols
A basic principle of democratic voting is 
privacy. 

A second principles is integrity which 
means that votes must be accurately 
counted, i.e. so that the result is a “true” 
amalgamation of the votes cast.

There is an obvious tension between privacy and integrity.

We wanted to study that tension from an information flow perspective, in 
particular:

Given that some information must flow (eg the winners/losers have to be 
announced), can we determine how much privacy that gives voters?



Voting protocols: summary results
1. The privacy questions we investigated using loss functions are:                        

(a) What is the chance that an observer can correctly guess a voter’s cast ballot?                      
(b) What is the expected number of voters’ cast ballots can be guessed 
correctly?

2. We first looked at “first past the post” voting protocols, and compared two 
versions: the first where only the winner is announced, and the second where 
the actual counts are also announced.  We found that there is no difference in 
privacy wrt the two privacy scenarios (a) and (b).

3. The chance of guessing any voter’s ballot as a direct result of the information flow 
decreases (tends to 0) as the pool of voters increases (gets very large).

4. We next looked at Instant Run-Off elections. These are slightly simpler than 
Australia’s full preferential counting, but the information flow is similar. In 
fact they are a special case of first past the post with multiple candidates.



Voting protocols: summary results
We next looked at Instant Run-Off elections. These are slightly simpler than 
Australia’s full preferential counting, but the information flow is similar. In fact 
they are a special case of first past the post with multiple candidates.

Number of possible 
observations. 
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. For 2 voters preferential 

voting increases the risk by 
45%

For 18 voters, the risk is only 
increased by 12%, and this 

decreases the larger the 
voting population.



Channel capacities
Channel capacities give robust upper bounds over all priors and loss functions. 

Maximum taken over loss functions with range in [0, 1], and all possible priors.

Multiplicative capacity

Additive capacity

max

`,⇡

(1� U`[⇡, C])

(1� U`[⇡])

max

`,⇡
(U`[⇡]� U`[⇡, C])



Channel capacities
Multiplicative capacity (m): 
• Easy to calculate
• log(m) provides an upper bound 

on average bits leaked (as in 
Shannon leakage).

Additive capacity (a):
• Easy to calculate for fixed prior

(but not for all priors)
• Gives an upper bound on actual 

cost to the attacker

a  1� 1/m

Equality is achieved for channels 
that leak information 
“deterministically” rather than 
unpredictably.



Side channel analysis of code



Side channel analysis of code

These figures were calculated in Haskell by 
using Haskell’s Probability Monad standard 
library, and giving a monadic semantics to 
“leak” statements as well as state updates. 
Program semantics is greatly simplified using 
Monads rather than matrices, giving programs 
type DX ! D2X

Calculations produced by Carroll Morgan.



Conclusions

❖ Quantitative information flow gives the ability to define relevant scenarios 
using loss functions;

❖ We can define a compositional refinement order using this idea: refinement 
of P by Q means that by any measure of entropy, Q leaks less than does P. 
This relation is robust even when P and Q are placed in context.

❖ Applying these concepts in real situations means that we can make robust 
comparisons e.g. information flow in voting.

❖ We can develop source-level reasoning to show that protocols leak no more 
information than do minimal specifications which describe only “logical 
leaks”.

❖ We can develop tools which measure actual information leaks which can be 
used when the channel models are too large to inspect directly.
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