
Analyzing Test Completeness
for Dynamic Languages

Anders Møller
joint work with Christoffer Quist Adamsen and Gianluca Mezzetti

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://cs.au.dk/CASA

http://cs.au.dk/CASA

Languages with dynamic or
optional typing are popular!

•

•

• Typed Racket

• Reticulated Python

• DRuby

•

• … 2

3

overloaded – the behavior
and return type depend on
runtime types of parameters

(code from the Dart libraries
vector_math and box2d)

return type is either vec3, vec2,
double, or the type of out

assertion failure if unexpected
combination of types

runtime type error if values
have unexpected types

How to ensure
absence of runtime type errors

in dynamically typed languages?

static analysis?
common programming patterns require
very high analysis precision and/or annotations
(not practical)

examples:

– static determinacy analysis [Andreasen & Møller, OOPSLA 2014],

– refinement types [Vekris et al., ECOOP 2015]

4

5

Program testing can
be used to show the

presence of bugs,
but never to show

their absence

Dijkstra, 1970

6

Test completeness

7

A test suite T is complete with respect to
the type of an expression e if
execution of T covers all possible types
e may have at runtime

Many programs have manually written or auto-generated test suites

Example of test completeness

8

a single execution of this piece of code
suffices to cover all possible types
x may have at the call site

Deciding test completeness

9

How can we
(conservatively) decide

whether a given test suite T
is complete

with respect to the type of
an expression e?

A hybrid approach

10

1) execute program test suite

2) lightweight static dependence analysis

3) lightweight static type analysis

4) test completeness analysis

test completeness facts

type safety facts

1) Execution of test suite

Simply observe which values and types
appear at each expression…

(generally an under-approximation of which
values and types may appear in any execution)

11

class A {
m() { ... }

}
class B {}

f(v) {
var t = 42;
var x = g(t,v);
x.m();

}

g(a,b) {
var r;
...
if (a*a > 100) {
r = new A();

} else {
r = new B();

}
return r;

}

2) Static dependence analysis

• Over-approximates value and type dependencies

(considers both data and control dependence)

• Lightweight analysis: context- and path-insensitive
12

an overloaded function,

the type of x depends on the value of t,
which depends on nothing (it’s a constant)

the type of r
depends (only) on
the value of a

bar(p) {
var y;
if (p) {

y = 3;
} else {
y = "hello";

}
if (p) {

print(y + 6);
} else {
print(y.length);

}
}

3) Static type analysis

• Flow analysis to over-approximate types/values

– also used to infer call graph for the dependence analysis

• Lightweight analysis: context- and path-insensitive
13

(example from An et al. , POPL 2011)

from calls, p is always true or false

how to prove type safety here?
1) path-sensitive static analysis
2) cover all paths [An et al., POPL 2011]
3) cover all values of p,

exploiting lightweight static analyses:
– the type of y depends only on

the value of p

4) Test completeness analysis

Two ways to show that a test suite T
is complete for the type of an expression e:

• T has covered all the possible types/values of e
(according to the static type analysis)

• T is complete for all dependencies of e
(according to the static dependence analysis)

Combine these rules into a proof system…

14

recursive

Boosting precision using type filters

15

1) execute program test suite

2) lightweight static dependence analysis

3) lightweight static type analysis

4) test completeness analysis

test completeness facts

type safety facts

16

Type filtering in action

• First run of the type analysis infers that x has type A or B

• Second run can filter away B
and thereby prove type safety for x.m()

class A {
m() { ... }

}
class B {}

f(v) {
var t = 42;
var x = g(t,v);
x.m();

}

g(a,b) {
var r;
...
if (a*a > 100) {
r = new A();

} else {
r = new B();

}
return r;

}

Implementation: Goodenough

• finds out whether your test suite is good enough

• for the language
(developed by and)

• tested on 27 programs with test suites

17

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

18

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

For (at least) 81% of the

expressions, all types that can
possibly appear at runtime
are observed by execution of
the test suite

Experiments

19

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test suite coverage
or inadequate precision of the static analysis components?

20

Incorporating the test suites leads
to improvements in 19 out of 27
benchmarks (in code with value-dependent

types and branch correlations)

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors, when using the type filtering?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

21

Ability to prove absence of type errors
and precision of inferred call graphs
drops significantly if using a weaker
dependence analysis

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors, when using the type filtering?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

22

Typical reasons:
• inadequate test coverage
• imprecise heap modeling in

dependence analysis

Conclusion
• Hybrid static/dynamic analysis

can show absence of type errors
(and infer sound call graphs)
in Dart code that is challenging
for fully-static analysis

• Future work:
– explore variations of the

static analysis components

– apply to program optimization,
and to other languages

– use test completeness as
coverage metric for guiding test effort

23

Π CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://cs.au.dk/CASA

Program testing
can sometimes

show the absence
of errors

Goodenough, 1975

http://cs.au.dk/CASA

