Analyzing Test Completeness
for Dynamic Languages

Anders Moller

joint work with Christoffer Quist Adamsen and Gianluca Mezzetti

Il CENTER FOR ADVANCED SOFTWARE ANALYSIS
http://cs.au.dk/CASA

http://cs.au.dk/CASA

Languages with dynamic or
optional typing are popular!

- @ Dart

* JS JavaScript TypeScript

° A el Typed Racket

o A pgthon” Reticulated Python
* ZIRvby, . DRuby

- @D

dynamic cross(dynamic x, dynamic y, .
[dynamic out=null]) { overloaded — the behavior

if (x is vec3 && y is vec3) { and return type depend on

return x.cross(y, out); :
} else if (x is vec2 && y is vec2) { runtime types of parameters

assert(out == null):
return x.cross(y);

} else if (x is num &% y is vec2) {
x = x.toDouble(); ..
if Cout == mﬂg ¢ return type is either vec3, vec?,

out = new vec2.zero(); double, or the type of out

[~

}

<\

return out;
} else if (x is vec2 && y is num) {

} else { assertion failure if unexpected
= = . .
assert(false): / Comb|nat|0n Of types

¥
return null:
} runtime type error if values
- have unexpected types
/7 solve the linear system
dp2perp = cross(dp2, normal);
dplperp = cross(normal, dpl); (code from the Dart libraries

tangent = dpZperp * duvl.x + dplperp * duv2.x; vector_math and box2d)

How to ensure
absence of runtime type errors
in dynamically typed languages?

static analysis?

common programming patterns require
very high analysis precision and/or annotations

(not practical)

examples:
— static determinacy analysis [Andreasen & Mgller, OOPSLA 2014],

— refinement types [Vekris et al., ECOOP 2015]

Program testing can
be used to show the
presence of bugs,
but never to show A& |
their absence '- >

/ I
. N

'.. " .. '

- - .";. " "c‘f".—-—-j.
.. P 1 : E

l'*-.

N

= »
/|

Dijkstra,

ACM SIGPLAN Notices, 1975

TOWARD A THEORY OF TEST DATA SELECTION *

John B, Guédenw%h
Supanl, Gerhart*
SofTech, Inc, » Waltham, Massg,

Keywords and Phrageg: ® What are the Posaible sources of failure in
testin roofs of rectn 3 program?
esting, p 8 Of correctness ® What test data should be selected to demon.
Abstract strate that failures go not arise from thege.
This paper examines the theoretical and L gndadhdh i

pract}_ceg TOlayofde ntimey bn wenme we wea s SR8 Lo

properly structured tests are capable of demon-

- -
- -eeeds oy wheh'a program con-

i . Th
strating the absence of errors in a program. T

= . .. L tains no errors, In this paper, one of our goals
tually reiiél;i;: ?&F‘e ;;pi:f: “:f;inn;;iit::ﬂa: is to define the characteristics of an ideal test in
unreliable (for example, we show by example a way t}-;a.t givea ingight -intu problems of testing,
why testing all Program statements, Predicates, We begin with some basic definitions,
or paths is not usually sufficient to insure test Consider a program F whoge Input domain ig
reliability), and we outline a possible approach the set of data D, F(d) denotes the result of exe-
to developing reliable tests, We also show how cuting F with inputd ¢ D, oOU T(d, F(d)) specifies
the analysis required to define reliable tests can the output requirement for F, i,e., OUT(d, F{d))
help in checking a Program's design and specifi- is true if and only if F(d) is an acceptable result,
cations as well-ag in Preventing and detecting We will write OK(d) as an abbreviation for
implementation ey rors, OUT(d, F(d)). Let T be a subset of D, T consti-

. tutes an ideal test if OK(t) for all t ¢ T implieg
1. Introduction OK(d) for all d ¢ D, i, e, s if from succegafil aws
The purpose of this paper is: M arm A - - o

il Fm sreeesscce a2l

|

Test completeness

Many programs have manually written or auto-generated test suites

A test suite T is complete with respect to
the type of an expression e if

execution of T covers all possible types
e may have at runtime

Example of test completeness

a single execution of this piece of code
suffices to cover all possible types
X may have at the call site

ﬁ-; new AQ);
x.mQ);

Deciding test completeness

How can we
(conservatively) decide
whether a given test suite T
is complete
with respect to the type of
an expression e?

A hybrid approach

1) execute program test suite

2) lightweight static dependence analysis

3) lightweight static type analysis

‘ type safety facts

4) test completeness analysis

§

test completeness facts

1) Execution of test suite

Simply observe which values and types
appear at each expression...

(generally an under-approximation of which
values and types may appear in any execution)

11

2) Static dependence analysis

class A { g(a,b) { «——— 4n overloaded function,
y mQ { ...} varr, the type of r
class B {} if (a*a > 100) { depends (only) on
r = new AQ; the value of a

fCv) { } else {

var t = 42; r = new B();

var x = g(t,v); }

X.mQ); return r;

the type of X depends on the value of t,
which depends on nothing (it’s a constant)

 QOver-approximates value and type dependencies
(considers both data and control dependence)

* Lightweight analysis: context- and path-insensitive

12

3) Static type analysis

bar(p) { <«— from calls, p is always true or false
var y;
it (p) how to prove type safety here?
} 21:;% 1) path-sensitive static analysis
y = "hello"; 2) cover all paths [An et al., POPL 2011]
¥ 3) cover all values of p,
ﬁpgﬁ?atéy 4 6): exploiting lightweight static analyses:
} else { \ — the type of y depends only on
} print(y.length); the value of p

}
(example from An et al., POPL 2011)

* Flow analysis to over-approximate types/values
— also used to infer call graph for the dependence analysis

* Lightweight analysis: context- and path-insensitive

13

4) Test completeness analysis

Two ways to show that a test suite T
is complete for the type of an expression e:

* T has covered all the possible types/values of e

(according to the static type analysis)
.— recursive

* Tis complete for all dependencies of e
(according to the static dependence analysis)

Combine these rules into a proof system...

14

Boosting precision using type filters

1) execute program test suite

2) lightweight static dependence analysis

3) lightweight static type analysis

‘ type safety facts

4) test completeness analysis

§

test completeness facts

Type filtering in action

class A { g(a,b) {
m(O) { ... } var r;
}
class B {} if (a*a > 100) {
r = new AQ);
f(v) { } else {
var t = 42; r = new B();
var x = g(t,v); }
x.m(); return r;
} }

e First run of the type analysis infers that X has type A or B

e Second run can filter away B
and thereby prove type safety for x.m() 2

16

Implementation: Goodenough

* finds out whether your test suite is good enough

. for the @ Dart language
(developed by Google and ®€CMa)

e tested on 27 programs with test suites

CTION
TOWARD A THEORY OF TEST DATA SELE

' h
hn B, Goodenou
%ftsa.n L. Garhart*g'
SofTech, Inc., Waltham, Mass.

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence
of runtime type errors?

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

18

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How'£o0 (at least) 81% of the ZEREEE

of rul _
expressions, all types that can
Q3) How possibly appear at runtime
are observed by execution of

Q4) In sit , own,
i« tp, the test suite o

or inadequate precision of the static analysis components?

Experiments

Research questions:

Q1) To what extent can this technique show test completeness
for realistic programs and test suites?

Q2) How important are the test suites for showing absence

wme type errors?
Q3) How ir |ncorporating the test suites leads

Q4) In situ
is the
or ina

to improvements in 19 out of 27

benchmarks (in code with value-dependent
types and branch correlations)

nts?

Experiments

a2 ®

Research ¢

Q1) To wha Ability to prove absence of type errors
forrea and precision of inferred call graphs
drops significantly if using a weaker

2) How im :
Q2) dependence analysis

of runti

Q3) How important is the dependence analysis?

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

Experiments

Research questions:

Q1) To v eness
for| Typical reasons:

* inadequate test coverage

Q2) ZI]?‘: * imprecise heap modeling in i
dependence analysis
Q3) /Hov

Q4) In situations where test completeness is not shown,
is the reason typically inadequate test coverage
or inadequate precision of the static analysis components?

Conclusion
* Hybrid static/dynamic analysis

can show absence of type errors Program testing
(and infer sound call graphs) can sometimes

in Dart code that is challenging show the absence
for fully-static analysis of errors Y

e Future work:

— explore variations of the
static analysis components

— apply to program optimization,
and to other languages

— use test completeness as
coverage metric for guiding test effort

1 CENTER FOR ADVANCED SOFTWARE ANALYSIS
http://cs.au.dk/CASA

Gooénough, 1975

http://cs.au.dk/CASA

