Programming abstractions for
automating the verification of replicated state machine

Cezara Dragoi, INRIA Paris/ENS

joint work with
Tom Henzinger, IST Austria
Josef Widder, TU Wien
Damien Zufferey, MPI Kaiserslautern



Replication

Replication




Replicated state machine

Zab
Viewstamped

E

A
A
B

<
>

\/

>

o>

Generalized Paxos



Goal

Design automated verification for
iImplementations of replicated state machine

Difficulties

* Impossibility result [FLP’85]: “Consensus cannot be reached
iIn asynchronous networks in the presence of at least one faulty
process”

* protocols have been developed for different network
assumptions: Different degrees of synchrony and faults



Difficulties: Complex control structure

e asynchronous parallel composition

> @
E’ ” E’
@
¥



Difficulties: Complex control structure

e asynchronous parallel composition

e communication via message passing: peer-
to-peer, broadcast

e timer constraints: now long does a process wait for a message ?

what if two messages are received in the reverse sending order 7

L
D2 OO
<>
<



Difficulties: Complex control structure

* asynchronous parallel composition

* communication via message passings:
peer-to-peer, broadcast

e timer constraints: now long does a process wait for a message ?

what if two messages are received in the reverse order ?

e unbounded buffers: a process receives a bunch of messages

that momentarily it does not need.

D2, 6D 33
E’ W’,
C3
@5
¥



Difficulties: Complex control structure

* asynchronous parallel composition

* communication via message passings:
peer-to-peer, broadcast

 timer constraints: now long does a process wait for a message ?

what if two messages are received in the reverse order ?

e unbounded buffers: a process receives a bunch of messages

that momentarily it does not need.

* faults: message drop, process-crash,
messages are corrupted

e B2
Sl < F
BZ.

C3




Difficulties: Complex control structure

* asynchronous parallel composition

* communication via message passings:
peer-to-peer, broadcast

e timer constraints: now long does a process wait for a message ?

what if two messages are received in the reverse order ?

e unbounded buffers: a process receives a bunch of messages

that momentarily it does not need.

* faults: message drop, process-crash,

messages are corrupted
Asynchrony

—>
>

> Fault
Waiting for a messagN —=3




State of the art in verification of RSM

Mechanized verification:
- Verdi, EventML(2012) (only safety)
- lronFleet(2013)
- TLA+

Automated verification:
- model checking of simple algorithms or protocols using
minor coordination
- lvy(2016)
- Psync



Goal

N\

Programming
abstraction

simpler source code
+ specifications

Automated
Verification




Propose Acknowledge Commit

Assumptions: synchronous communication and no faults

1

there Is a bound b on the message delay

Assumptions: the leader receives the messages from all
processes and every process hears from the leader



Example: Communication

A ;
A
A .
Propose Acknowledge Commit
every process Wait longer

hears from the leader

Propose/Commit

Change leader
Heartbeats

Propose/Commit Propose/Commit



Example: Communication

A ;
A
A .
Propose Acknowledge Commit
the leader

hears from all processes

o Acknowledge Commit
Change leader i
Heartbeat
AN W 2N\

P / AN > / \/ \, >

>
Acknowledge

Acknowledge Commit



Propose Acknowledge Commit

We would like a round based model that separates the
network properties from the algorithmic computation

the leader hears from all compute the
processes, '

minimum value,
every process hears from _
the leader a commun prefix, etc.




Programming model

1. Separates the network properties from the algorithmic
computation

2. Faults and asynchrony simulated by an adversarial environment

3. We want a simple programming abstraction that offers a
synchronous image of the system and compiles into executable
asynchronous code.

16



Communication close roundsiErlad,Francez’83]

Init Round[0] Round[1] ... Round[ i ]
£ ™ L™ L —
................ * e S
................................ —

A round is a computation step that

- defines the interaction between the processes that participate in that step,
* processes synchronize at the boundary between rounds,

- it gives a logical unit of time.

Communication close = two rounds do not communicate with each other, i.e.,
messages are scoped in the round.



Communication close roundsiErlad,Francez’83]

Round[i]

Store value/ §

compute
minimum

Comm + Algo

A round is a computation step that

- defines the interaction between the processes that participate in that step,
* processes synchronize at the boundary between rounds,

- it gives a logical unit of time.

18
Communication close = two rounds do not communicate with each other, i.e.,
messages are scoped in the round.



HO-model [Charrone-Bost, Schiper'09]

Round[i]

Store value/ §

compute
minimum

Algo

19



HO-model

Round[i]

x m ......... —_
/x, if(HO == n)
o S

Comm Algo

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
20



HO-model

Round[i]

z m ......... —_
/x/ if(HO == n)
o S

Comm Algo

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
o 2. The network assumptions are stated over 21
the HO variables

PERAN (vp. p \in HO(leader) A leader \in HO(p))



HO-model

Round[0] Round[1] ... Round[ i mod r ]
Send Update @ Send Update Send Update

<O (vp. p \in HO(Leader) A Leader \in HO(p))

22

(vp. p \in HO(leader) A leader \in HO(p))




Approach

Y 4
Replicated state machine| » |
implementations

HO-computational model

v

Psync

Replicated state |= proof or
machine = counterexample

implementations




PSync Program Structure [popl'16]

* Program

:—'Varlable'—: i—' Round; '—j
Inlt

Interface

¢ ROundT

>>—' Send: () > [Id - T] H Comm Pred H Update: [Id - T] — () '—N




Propose Acknowledge Commit

[—LPropose ; Acknowledge ; Commit]—]
>

Communication Predicates:

Zab,
Viewstamped C(vp. p \in HO(Leader) A Leader \in HO(p))

Paxos OO (vp. p \in HO(Leader) A Leader \in HO(p))




Example: Last Voting Algorithm

Propose Ack Commit

Leader

new Round[(Int,Time)K
def send(): Map[ProcessID, (Int,Time)] = Map( leader -> (x, ts) )

def update(mailbox: Map[ProcessID, (Int,Time)]) {
if (id == leader && mailbox.size > n/2) {
vote = mailbox.maxBy(_._2._2)._2. 1
commit = true

}
b}



Outline

Replicated state
machine
implementations

proof or
|= counterexample



Runtime: Round switch

Send
Next d A lat Recelve Catchi
ext roun ccumulate Discard late atching up
messages

TO

Update
>
>




Runtime: Round switch

Send
Next d A lat Receive Catchi
ext roun ccumuilate ) aticning u
Discard late g up
messages
CommPred

implementation

Update




Partial synchrony

Next round Catching

Network _ _ | |
Respects liveness assumptions Respects liveness assumptions
Asynchronous Synchronous Asynchronous Synchronous

Runtime Execution
[

Asynchronous | Asynchronous Synchronous




Runtime Correctness

init

~init

out i out

Runtime(P in
Psync)

............... P |n PSynC ...............

For any Psync program P, the runtime semantics of P observationally refines the
HO semantics of P, if the client is commutative.

Clients || Runtime(P) < Clients || HO(P)



Outline

Replicated state
machine
implementations

proof or
|= counterexample



Psync: Benefits for Verification

Reason about rounds in isolation.
Lockstep semantics, no interleaving.

! !

Propose Acknowledge
> >
—> >
—> >

Simple invariants that reason at the round boundaries,
no messages are in flight, only the local states matter.



Psync: semi-automated verification

(@

)

Psync program

annotated
with
iInductive
Invariants.

Specification
Spec

Formulas defining
the inductiveness checks

1

Condition
Generator

VeI’IfICatIOH - yxold xnew

INV(x0ld) A TRound(xold, xnew)
INV/(xnew)

CORRECT procedure

YES.

Decision

o P

Counter-example or ?



Hoare-style Verification [vmcai'14]

\I Liveness assumptions

Init ; ( EnvHO ; Round)*; ( EnvHO ; Round);( EnvHO ; Round )* |

A

e

\J

Safety: Inductive invariant checking

L iveness: Variant functions




Invariant for Agreement

Vi.decided (i) A ~ready(i)
v, t,A. A={i ts(Q) >t}A|A| >n/2
Viiied=>x()=v
Vi.decided(i) = x(i) = v
Vi.commit(i) Vready(i) = vote(i) = v

t< &

> 2 e .

vi. ts(i) = ® = commit(coord)



Specification logic

* |s able to express:
-- properties of sets of processes in the network

-- cardinality constraints
-- properties of the data values stored by each process
-- 4V quantifier alternation

* captures the transition relation of algorithms in the HO-model

* has a semi-decision procedure for checking entailment

« has a decidable satisfiability problem for a fragment Cl .



Psync: verification correctness

in:it

out

Runtime(P in

Psync)
............... P Iﬂ PSynC ...............
S YT — z

Given a specification S closed under indistinguishability, if a Psync program P
satisfies S then the asynchronous semantics of P refines S.

Clients [l Runtime(P) < Clients Il Spec(P)



Do Algorithms use Rounds ?

Algorithm LOC Use rounds Asynchronous
One third rule 52 v v
Last Voting (Paxos) 89 v v
Flood min consensus 24 v X
Ben-Or randomized consensus 56 v 4
K-set agreement 42 v v
K-set agreement early stopping 33 v X
Lattice agreement 34 X v
54 v v
Two phases commit 53 4 X
Eager reliable broadcast 36 X X
Chandra Toueq 121 v 4
Generalized Paxos 152 4 v
ViewStampted 91 X v




Code Size (Easy to Implement)

Paxos in LOC Executable Verification
PSync 89 4 Semi-
DistAlgo 43 v X
Distal 157 4 X
Overlog 107 4 X
TLA+ 53 X Interactive
10 Automata 142 X Interactive
EventML 1729 N 4 Interactive
Verdi (Raft) 520 4 Interactive




Performance and Verification

Implementation Year Language  Throughput (x 1000 req./s)

Last Voting in PSync 2015 Scala 170

Egalitarian Paxos 2013 Go 450

Paxos in Distal 2013 Scala 150

JPaxos / SPaxos 2012 Java 75/300

Paxos for system builder| 2008 C 40
Verification of # Invariants (LOC) # VCs Solving time in
One third rule 4 (23) 27 5

Last Voting 8 (35) 45 16



Conclusions

PSync uses a simple programming abstraction:
Communication-closed rounds
Separates the algorithm from the network
requirements
Asynchrony and faults are modelled by an adversary
that drops messages

Replicated state proof
Runtime: machine B Or
Asynchronous semantics refines the lockstep implementations * counterexamble
semantics

Preserves strong consistency
Can be implemented efficiently

Automated verification becomes possible



