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Goal
Design automated verification for 
implementations of replicated state machine
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•  Impossibility result [FLP’85]: “Consensus cannot be reached 
in asynchronous networks in the presence of at least one faulty 
process” 
•  protocols have been developed for different network 

assumptions: Different degrees of synchrony and faults

Difficulties



Difficulties: Complex control structure
• asynchronous parallel composition   
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• asynchronous parallel composition   
• communication via message passing: peer-

to-peer, broadcast  
• timer constraints: how long does a process wait for a message ?  
what if two messages are received in the reverse sending order ?
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Asynchrony

Fault
Waiting for a message



State of the art in verification of RSM

Mechanized verification: 
- Verdi, EventML(2012) (only safety) 
- IronFleet(2013) 
- TLA+

         Automated verification:   
- model checking of simple algorithms or protocols using   
minor coordination 
- Ivy(2016) 
- Psync



Goal

simpler source code 
+ specifications

Programming 
abstraction

Automated 
Verification 



Acknowledge

Example

Assumptions: synchronous communication and no faults 
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there is a bound b on the message delay 

Assumptions: the leader receives the messages from all 
processes and every process hears from the leader
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Example: Communication 
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Example

the leader hears from all 
processes,

every process hears from 
the leader 

We would like a round based model that separates the 
network properties from the algorithmic computation

compute the 
minimum value,

a commun prefix, etc.
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2. Faults and asynchrony simulated by an adversarial environment

3. We want a simple programming abstraction that offers a 
synchronous image of the system and compiles into executable 
asynchronous code.

Programming model 

1. Separates the network properties from the algorithmic 
computation
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Init Round[0] Round[1]    … Round[ i ]

Communication close rounds[Erlad,Francez’83]

Communication close = two rounds do not communicate with each other, i.e.,
messages are scoped in the round.
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A round is a computation step that 
• defines the interaction between the processes that participate in that step,
• processes synchronize at the boundary between rounds,
• it gives a logical unit of time.
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Round[i]

HO-model [Charrone-Bost, Schiper'09]
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Round[i]

HO-model
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compute 
minimum
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AlgoComm

if(HO == n)
             log= min(...)

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
2. Network assumptions are stated over the 

HO variables 
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Store value/ 
compute 
minimum

?
?
?

AlgoComm

if(HO == n)
             log= min(...)

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
2. The network assumptions are stated over 

the HO variables   
(∀p. p \in HO(leader) /\ leader \in HO(p))

HO-model



Round[0] Round[1]    … Round[ i mod r ]

Env(HO) Env(HO) Env(HO)

Send Update Send Update Send Update

Algo Algo Algo

22  
(∀p. p \in HO(leader) /\ leader \in HO(p))

HO-model

    (∀p. p \in HO(Leader) /\ Leader \in HO(p))

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(' ) ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”
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Approach

Replicated state machine 
implementations HO-computational model 

Verifier

proof  or 
counterexample

Runtime

Replicated state 
machine 
implementations 

Psync
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• Program

• RoundT

PSync Program Structure [popl'16]

Comm Pred



Example

AcknowledgePropose Commit

Propose Acknowledge Commit; ;

Zab,  
Viewstamped

Communication  Predicates:

Paxos
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Leader
Propose Ack Commit

new Round[(Int,Time)]{
    def send(): Map[ProcessID, (Int,Time)] = Map( leader -> (x, ts) )
    def update(mailbox: Map[ProcessID, (Int,Time)]) {
        if (id == leader && mailbox.size > n/2) {
            vote = mailbox.maxBy(_._2._2)._2._1 // value with maximal ts
            commit = true
        }
}   }

Example: Last Voting Algorithm
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Verifier

proof  or 
counterexample

Runtime

Replicated state 
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Partial synchrony 

Runtime Execution

Network

Asynchronous

Asynchronous

Synchronous

Asynchronous

Respects liveness assumptions

Synchronous

Asynchronous Synchronous

Respects liveness assumptions

Discard 
Accum

Send

Update

Receive

TO
Next round Catching 



Runtime Correctness

 Runtime(P in 
Psync)

Client Client
init init

out out

For any Psync program P,  the runtime semantics of P observationally refines the 
HO semantics of P, if the client is commutative. 

P in Psync

Clients || Runtime(P)   ⊆    Clients || HO(P)
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AcknowledgePropose

Reason about rounds in isolation.
Lockstep semantics, no interleaving.

Simple invariants that reason at the round boundaries,
no messages are in flight, only the local states matter.

Psync: Benefits for Verification



Specification
SpecPsync program 

annotated 
with 

inductive 
invariants. 

Verification 
Condition 
Generator

∀xold, xnew. 
INV(xold) ∧ TRound(xold, xnew)

   INV(xnew)

Formulas defining 
the inductiveness checks

Expert 

Decision 
procedure 

NO

YES

Counter-example or ? 

CORRECT 

Psync: semi-automated verification



Hoare-style Verification [vmcai'14]

Inv InvTrue
Init Liveness assumptions

Prop

Init ; ( EnvHO ; Round)*; ( EnvHO ;  Round);( EnvHO ; Round )*

Safety: Inductive invariant checking 
Liveness: Variant functions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Invariant for Agreement



Specification logic 

• is able to express:

• has a semi-decision procedure for checking entailment 
  
• has a decidable satisfiability problem for a fragment Cldec   

-- properties of sets of processes in the network
-- cardinality constraints 
-- properties of the data values stored by each process
-- ∃∀ quantifier alternation

• captures the transition relation of algorithms in the HO-model



Psync: verification correctness 

 Runtime(P in 
Psync)

Client Client
init init

out out

P in Psync

Given a specification S closed under indistinguishability, if a Psync program P 
satisfies S then the asynchronous semantics of P refines S. 

Spec

Clients || Runtime(P)   ⊆    Clients || Spec(P)



Algorithm LOC Use rounds Asynchronous
One third rule 52 ✓ ✓
Last Voting (Paxos) 89 ✓ ✓
Flood min consensus 24 ✓ ✗

Ben-Or randomized consensus 56 ✓ ✓
K-set agreement 42 ✓ ✓
K-set agreement early stopping 33 ✓ ✗

Lattice agreement 34 ✗ ✓
54 ✓ ✓

Two phases commit 53 ✓ ✗

Eager reliable broadcast 36 ✗ ✗

Chandra Toueg 121 ✓ ✓
Generalized Paxos 152 ✓ ✓
ViewStampted 91 ✗ ✓

Do Algorithms use Rounds ?



Paxos in LOC Executable Verification
PSync 89 ✓ Semi-

automatedDistAlgo 43 ✓ ✗

Distal 157 ✓ ✗

Overlog 107 ✓ ✗

TLA+ 53 ✗ Interactive
IO Automata 142 ✗ Interactive
EventML 1729 N ✓ Interactive
Verdi (Raft) 520 ✓ Interactive
Bloom 224 ✓ ✗

Code Size (Easy to Implement)



Implementation Year Language Throughput (x 1000 req./s)
Last Voting in PSync 2015 Scala 170
Egalitarian Paxos 2013 Go 450
Paxos in Distal 2013 Scala 150
JPaxos / SPaxos 2012 Java 75 / 300
Paxos for system builder 2008 C 40

Verification of # Invariants (LOC) # VCs  Solving time in 
s.One third rule 4 (23) 27 5

Last Voting 8 (35) 45 16

Performance and Verification 



PSync uses a simple programming abstraction: 
Communication-closed rounds 
Separates the algorithm from the network 
requirements  
Asynchrony and faults are modelled by an adversary 
that drops messages 

Runtime: 
Asynchronous semantics refines the lockstep 
semantics  
Preserves strong consistency  
Can be implemented efficiently 

 Automated verification becomes possible 

Conclusions

Verifier

proof  
Or 

counterexample

Runtime

Replicated state 
machine 
implementations 

Psync
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