
Programming abstractions for

automating the verification of replicated state machine

Cezara Drăgoi, INRIA Paris/ENS

joint work with
Tom Henzinger, IST Austria

Josef Widder, TU Wien
Damien Zufferey, MPI Kaiserslautern

Replication

Replication

Replicated state machine

E
A

BD

C

B B

B

A A

A

Zab
Viewstamped Generalized Paxos

Goal
Design automated verification for
implementations of replicated state machine

4

• Impossibility result [FLP’85]: “Consensus cannot be reached
in asynchronous networks in the presence of at least one faulty
process”
• protocols have been developed for different network

assumptions: Different degrees of synchrony and faults

Difficulties

Difficulties: Complex control structure
• asynchronous parallel composition

||

Difficulties: Complex control structure

A

B

1

2

• asynchronous parallel composition
• communication via message passing: peer-

to-peer, broadcast
• timer constraints: how long does a process wait for a message ?
what if two messages are received in the reverse sending order ?

Difficulties: Complex control structure

A

B

1

2

• asynchronous parallel composition
• communication via message passings:

peer-to-peer, broadcast
• timer constraints: how long does a process wait for a message ?
what if two messages are received in the reverse order ?

• unbounded buffers: A process receives a bunch of messages
that momentarily it does not need.

B 2

C3

C3

• asynchronous parallel composition
• communication via message passings:

peer-to-peer, broadcast
• timer constraints: how long does a process wait for a message ?
what if two messages are received in the reverse order ?

• unbounded buffers: A process receives a bunch of messages
that momentarily it does not need.

• faults: message drop, process-crash,
messages are corrupted

Difficulties: Complex control structure

A

B

1

2

B 2

C3

C3

?

• asynchronous parallel composition
• communication via message passings:

peer-to-peer, broadcast
• timer constraints: how long does a process wait for a message ?
what if two messages are received in the reverse order ?

• unbounded buffers: A process receives a bunch of messages
that momentarily it does not need.

• faults: message drop, process-crash,
messages are corrupted

Difficulties: Complex control structure

Asynchrony

Fault
Waiting for a message

State of the art in verification of RSM

Mechanized verification:
- Verdi, EventML(2012) (only safety)
- IronFleet(2013)
- TLA+

 Automated verification:
- model checking of simple algorithms or protocols using
minor coordination
- Ivy(2016)
- Psync

Goal

simpler source code
+ specifications

Programming
abstraction

Automated
Verification

Acknowledge

Example

Assumptions: synchronous communication and no faults

A

A

A

there is a bound b on the message delay

Assumptions: the leader receives the messages from all
processes and every process hears from the leader

Propose Commit

A

A

A

Example: Communication

every process
hears from the leader

Propose/Commit

Acknowledge

A

A

A

Propose

A

A

A
Commit

Propose/Commit

A

A
A

Propose/Commit

A
A
A

Wait longer

Heartbeats
Change leader

Example: Communication

Acknowledge Commit

Acknowledge Commit
Acknowledge

Wait longer

Heartbeats
Change leader

Acknowledge

A

A

A

Propose

A

A

A
Commit

the leader
hears from all processes

Example

the leader hears from all
processes,

every process hears from
the leader

We would like a round based model that separates the
network properties from the algorithmic computation

compute the
minimum value,

a commun prefix, etc.

AcknowledgePropose

A

A

A
Commit

B

B

2. Faults and asynchrony simulated by an adversarial environment

3. We want a simple programming abstraction that offers a
synchronous image of the system and compiles into executable
asynchronous code.

Programming model

1. Separates the network properties from the algorithmic
computation

16

Init Round[0] Round[1] … Round[i]

Communication close rounds[Erlad,Francez’83]

Communication close = two rounds do not communicate with each other, i.e.,
messages are scoped in the round.

17

A round is a computation step that
• defines the interaction between the processes that participate in that step,
• processes synchronize at the boundary between rounds,
• it gives a logical unit of time.

Round[i]

Communication close rounds[Erlad,Francez’83]

A round is a computation step that
• defines the interaction between the processes that participate in that step,
• processes synchronize at the boundary between rounds,
• it gives a logical unit of time.

Communication close = two rounds do not communicate with each other, i.e.,
messages are scoped in the round.

18

Store value/
compute
minimum

?
?
?

Comm + Algo

Round[i]

HO-model [Charrone-Bost, Schiper'09]

19

Store value/
compute
minimum

?
?
?

AlgoComm

Store value/
compute
minimum

Round[i]

HO-model

20

Store value/
compute
minimum

?
?
?

AlgoComm

if(HO == n)
 log= min(...)

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
2. Network assumptions are stated over the

HO variables

Round[i]

21

Store value/
compute
minimum

?
?
?

AlgoComm

if(HO == n)
 log= min(...)

Each process p has a variable, HO(p)= the set of processes p hears-from
HO(p) is non-deterministically chosen by an adversarial environment.

1. Determines the delivered messages
2. The network assumptions are stated over

the HO variables
(∀p. p \in HO(leader) /\ leader \in HO(p))

HO-model

Round[0] Round[1] … Round[i mod r]

Env(HO) Env(HO) Env(HO)

Send Update Send Update Send Update

Algo Algo Algo

22
(∀p. p \in HO(leader) /\ leader \in HO(p))

HO-model

 (∀p. p \in HO(Leader) /\ Leader \in HO(p))

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(') ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”

3

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(') ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”

3

Approach

Replicated state machine
implementations HO-computational model

Verifier

proof or
counterexample

Runtime

Replicated state
machine
implementations

Psync

|=

• Program

• RoundT

PSync Program Structure [popl'16]

Comm Pred

Example

AcknowledgePropose Commit

Propose Acknowledge Commit; ;

Zab,
Viewstamped

Communication Predicates:

Paxos

 (∀p. p \in HO(Leader) /\ Leader \in HO(p))

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(') ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”

3

 (∀p. p \in HO(Leader) /\ Leader \in HO(p))

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(') ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”

3

Syntax of LTL

A vocabulary L of propositional variables p, q, . . . 2 L

' ::= ? | > | logical constants false and true

p | propositional variable

¬' | negation

(' _ ') | (' ^ ') | disjunction, conjunction

(') ') | (' , ') | implication, equivalence

±' | circle, ”nexttime”

3' | diamond, ”now or sometimes in the future”

2' | box, ”now and always in the future”

('U') until, (pUq) is read as ”p until q”

' 2 L - ”' is a formula written in the vocabulary L”

3

Leader
Propose Ack Commit

new Round[(Int,Time)]{
 def send(): Map[ProcessID, (Int,Time)] = Map(leader -> (x, ts))
 def update(mailbox: Map[ProcessID, (Int,Time)]) {
 if (id == leader && mailbox.size > n/2) {
 vote = mailbox.maxBy(_._2._2)._2._1 // value with maximal ts
 commit = true
 }
} }

Example: Last Voting Algorithm

Outline

Verifier

proof or
counterexample

Runtime

Replicated state
machine
implementations

Psync

|=

Discard late
messages

Send

Update

Receive

TO

Next round

Runtime: Round switch

Catching upAccumulate

Discard late
messages

Send

Update

Receive

TO

Next round

Runtime: Round switch

Catching up

CommPred
implementation

Accumulate

Partial synchrony

Runtime Execution

Network

Asynchronous

Asynchronous

Synchronous

Asynchronous

Respects liveness assumptions

Synchronous

Asynchronous Synchronous

Respects liveness assumptions

Discard
Accum

Send

Update

Receive

TO
Next round Catching

Runtime Correctness

 Runtime(P in
Psync)

Client Client
init init

out out

For any Psync program P, the runtime semantics of P observationally refines the
HO semantics of P, if the client is commutative.

P in Psync

Clients || Runtime(P) ⊆ Clients || HO(P)

Outline

Verifier

proof or
counterexample

Runtime

Replicated state
machine
implementations

Psync

|=

AcknowledgePropose

Reason about rounds in isolation.
Lockstep semantics, no interleaving.

Simple invariants that reason at the round boundaries,
no messages are in flight, only the local states matter.

Psync: Benefits for Verification

Specification
SpecPsync program

annotated
with

inductive
invariants.

Verification
Condition
Generator

∀xold, xnew.
INV(xold) ∧ TRound(xold, xnew)

 INV(xnew)

Formulas defining
the inductiveness checks

Expert

Decision
procedure

NO

YES

Counter-example or ?

CORRECT

Psync: semi-automated verification

Hoare-style Verification [vmcai'14]

Inv InvTrue
Init Liveness assumptions

Prop

Init ; (EnvHO ; Round)*; (EnvHO ; Round);(EnvHO ; Round)*

Safety: Inductive invariant checking
Liveness: Variant functions

Invariant for Agreement

Specification logic

• is able to express:

• has a semi-decision procedure for checking entailment

• has a decidable satisfiability problem for a fragment Cldec

-- properties of sets of processes in the network
-- cardinality constraints
-- properties of the data values stored by each process
-- ∃∀ quantifier alternation

• captures the transition relation of algorithms in the HO-model

Psync: verification correctness

 Runtime(P in
Psync)

Client Client
init init

out out

P in Psync

Given a specification S closed under indistinguishability, if a Psync program P
satisfies S then the asynchronous semantics of P refines S.

Spec

Clients || Runtime(P) ⊆ Clients || Spec(P)

Algorithm LOC Use rounds Asynchronous
One third rule 52 ✓ ✓
Last Voting (Paxos) 89 ✓ ✓
Flood min consensus 24 ✓ ✗

Ben-Or randomized consensus 56 ✓ ✓
K-set agreement 42 ✓ ✓
K-set agreement early stopping 33 ✓ ✗

Lattice agreement 34 ✗ ✓
54 ✓ ✓

Two phases commit 53 ✓ ✗

Eager reliable broadcast 36 ✗ ✗

Chandra Toueg 121 ✓ ✓
Generalized Paxos 152 ✓ ✓
ViewStampted 91 ✗ ✓

Do Algorithms use Rounds ?

Paxos in LOC Executable Verification
PSync 89 ✓ Semi-

automatedDistAlgo 43 ✓ ✗

Distal 157 ✓ ✗

Overlog 107 ✓ ✗

TLA+ 53 ✗ Interactive
IO Automata 142 ✗ Interactive
EventML 1729 N ✓ Interactive
Verdi (Raft) 520 ✓ Interactive
Bloom 224 ✓ ✗

Code Size (Easy to Implement)

Implementation Year Language Throughput (x 1000 req./s)
Last Voting in PSync 2015 Scala 170
Egalitarian Paxos 2013 Go 450
Paxos in Distal 2013 Scala 150
JPaxos / SPaxos 2012 Java 75 / 300
Paxos for system builder 2008 C 40

Verification of # Invariants (LOC) # VCs Solving time in
s.One third rule 4 (23) 27 5

Last Voting 8 (35) 45 16

Performance and Verification

PSync uses a simple programming abstraction:
Communication-closed rounds
Separates the algorithm from the network
requirements
Asynchrony and faults are modelled by an adversary
that drops messages

Runtime:
Asynchronous semantics refines the lockstep
semantics
Preserves strong consistency
Can be implemented efficiently

 Automated verification becomes possible

Conclusions

Verifier

proof
Or

counterexample

Runtime

Replicated state
machine
implementations

Psync

|=

