RustBelt: Securing the Foundations of the Rust Programming Language

Ralf Jung Jacques-Henri Jourdan Robbert Krebbers Derek Dreyer MPI-SWS & TU Delft

> October 13, 2017 ETH Zürich

Rust

Mozilla's replacement for C/C++

A safe & flexible systems programming language

- Modern strongly-typed PL:
 - First-class functions, polymorphism/generics
 - $\hfill\square$ Traits \approx Type classes + associated types
- But with control over resource management (e.g., memory allocation and data layout)
- Sound type system with strong guarantees:
 - Type & memory safety; absence of data races

Rust

Mozilla's replacement for $\mathsf{C}/\mathsf{C}++$

A safe & flexible systems programming language

- Modern strongly-typed PL:
 - First-class functions, polymorphism/generics
 - $\hfill\square$ Traits \approx Type classes + associated types
- But with control over resource management (e.g., memory allocation and data layout)
- Sound? type system with strong guarantees:
 - □ Type & memory safety; absence of data races

Goal of ERC RustBelt project:

Prove the soundness of Rust's type system in Coq!

Superficially, Rust's approach to ensuring safety is sold as:

"No mutation through aliased pointers"

Superficially, Rust's approach to ensuring safety is sold as:

"No mutation through aliased pointers"

But this is not always true!

- Many Rust libraries permit mutation through aliased pointers
- The safety of this is highly non-obvious because these libraries make use of unsafe features!

Superficially, Rust's approach to ensuring safety is sold as:

"No mutation through aliased pointers"

But this is not always true!

- Many Rust libraries permit mutation through aliased pointers
- The safety of this is highly non-obvious because these libraries make use of unsafe features!

So why is any of this sound?

Introduction

Overview of Rust

RustBelt

Conclusion

4 of 35

```
let (snd, rcv) = channel();
join(
  move || { // First thread
     // Allocating [b] as Box<i32> (pointer to heap)
     let mut b = Box::new(0);
    *b = 1;
```

// Transferring the ownership to the other thread...
snd.send(b);

```
},
move || { // Second thread
   let b = rcv.recv().unwrap(); // ... that receives it
   println!("{}", *b); // ... and uses it.
});
```

```
let (snd, rcv) = channel();
join(
  move || { // First thread
      // Allocating [b] as Box<i32> (pointer to heap)
      let mut b = Box::new(0);
    *b = 1;
```

let mut v = vec! [1, 2, 3];

v[1] = 4;

v.push(6);
println!("{:?}", v);

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6); println!("{:?}", v);

let mut v = vec![1, 2, 3];

```
{ let mut inner_ptr = Vec::index_mut(&mut v, 1);
  // Error: can invalidate [inner_ptr]
  v.push(1);
  *inner_ptr = 4; }
```

```
v.push(6);
println!("{:?}", v);
```

let mut v = vec![1, 2, 3];


```
let mu
        Type of index_mut:
{ let
        fn<'a> index_mut(&'a mut Vec<i32>, usize)
                  \rightarrow &'a mut i32
  *inr
        New pointer type: & 'a mut T:
v.pusł
        mutable borrowed reference
print]
        valid only for lifetime 'a
```

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);
println!("{:?}", v);

Lifetime 'a inferred by Rust

Shared borrowing

Shared borrowing

Summing up

Rust's type system is based on ownership

- Three kinds of ownership:
 - 1. Full ownership: Vec<T> (vector), Box<T> (pointer to heap)
 - 2. Mutable borrowed reference: &'a mut T
 - 3. Shared borrowed reference: & 'a T
- Lifetimes decide when borrows are valid

What if we want shared mutable data structures?

Rust standard library provides types with interior mutability

- Allows mutation using only a shared reference & 'a T
- Implemented in Rust using unsafe features
- Unsafety is claimed to be safely encapsulated
 - The library interface restricts what mutations are possible

Mutex

An example of Interior mutability

let m = Mutex::new(1); // m : Mutex<i32>

// Unique owner: no need to lock
println!("{}", m.into_inner().unwrap())

Mutex

An example of Interior mutability

How do we know this all works?

Introduction Overview of Rust

RustBelt

Conclusion

12 of 35

The λ_{Rust} type system

Syntactic (built-in types)

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \&_{\mathbf{mut}}^{\kappa} \tau \mid \&_{\mathbf{shr}}^{\kappa} \tau \mid \Pi \overline{\tau} \mid \Sigma \overline{\tau} \mid \dots$

- Typing context **T** assigns types τ to paths p
- Typing individual instructions:

(Γ binds variables, E and L track lifetimes)

```
\Gamma \mid \mathbf{E}; \mathbf{L} \mid \mathbf{T}_1 \vdash S \dashv x. \mathbf{T}_2
```

Typing whole functions:

(K tracks continuations)

$$\Gamma \mid \mathbf{E}; \mathbf{L} \mid \mathbf{K}, \mathbf{T} \vdash F$$

Some typing rules

 $\Gamma \mid \mathbf{E}; \mathbf{L} \vdash \kappa$ alive

 $\mathsf{\Gamma} \mid \mathsf{E}; \mathsf{L} \mid p_1 \lhd \&_{\mathsf{mut}}^{\kappa} \tau, p_2 \lhd \tau \vdash p_1 \coloneqq p_2 \dashv p_1 \lhd \&_{\mathsf{mut}}^{\kappa} \tau$

Some typing rules

 $\frac{\Gamma \mid \mathbf{E}; \mathbf{L} \vdash \kappa \text{ alive}}{\Gamma \mid \mathbf{E}; \mathbf{L} \mid p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau, p_2 \lhd \tau \vdash p_1 := p_2 \dashv p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau}$

$\frac{\Gamma \mid \mathbf{E}; \mathbf{L} \mid \mathbf{T}_1 \vdash S \dashv x, \mathbf{T}_2 \qquad \Gamma, x: \mathbf{val} \mid \mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}_2, \mathbf{T} \vdash F}{\Gamma \mid \mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}_1, \mathbf{T} \vdash \texttt{let} x = S \texttt{in} F}$

Syntactic type safety

The standard "syntactic" approach to language safety is to prove a theorem like the following, via good old "progress and preservation":

$$\mathbf{E}; \mathbf{L} \mid \mathbf{K}, \mathbf{T} \vdash F \implies F \text{ is safe}$$

Problem: This theorem does not help when unsafe code is used!

Solution: A more semantic approach based on logical relations

The logical relation

 Define, for every type τ, an ownership predicate, where t is the owning thread's id and v is the representation of τ:

 $[\![\tau]\!].\mathrm{own}(t,\overline{v})$

The logical relation

Define, for every type τ, an ownership predicate, where t is the owning thread's id and v is the representation of τ:

 $\llbracket \tau \rrbracket.\operatorname{own}(t,\overline{v})$

• Lift to semantic contexts [T](t) using separating conjunction:

The logical relation

Define, for every type τ, an ownership predicate, where t is the owning thread's id and v is the representation of τ:

 $\llbracket \tau \rrbracket.\operatorname{own}(t,\overline{v})$

• Lift to semantic contexts [T](t) using separating conjunction:

$$egin{array}{lll} \llbracket p_1 ee au_1, p_2 ee au_2
rbracket(t) & \coloneqq \ & \llbracket au_1
rbracket. \mathrm{own}(t, [p_1]) * \llbracket au_2
rbracket. \mathrm{own}(t, [p_2]) \end{array}$$

Lift to semantic typing judgments:

$$\mathbf{E}; \mathbf{L} \mid \mathbf{T}_1 \models S \Rightarrow \mathbf{T}_2 \quad := \\ \forall t. \{ [\![\mathbf{E}]\!] * [\![\mathbf{L}]\!] * [\![\mathbf{T}_1]\!](t) \} \ S \ \{ [\![\mathbf{E}]\!] * [\![\mathbf{L}]\!] * [\![\mathbf{T}_2]\!](t) \}$$

Compatibility lemmas

To connect logical relation to type system, we show **semantic versions** of all **syntactic typing rules**.

 $\frac{\Gamma \mid \mathbf{E}; \mathbf{L} \vdash \kappa \text{ alive}}{\Gamma \mid \mathbf{E}; \mathbf{L} \mid p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau, p_2 \lhd \tau \vdash p_1 := p_2 \dashv p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau}$

 $\frac{\mathsf{E};\mathsf{L} \mid \mathsf{T}_1 \vdash S \dashv x. \mathsf{T}_2 \qquad \mathsf{E};\mathsf{L} \mid \mathsf{K}; \mathsf{T}_2, \mathsf{T} \vdash F}{\mathsf{E};\mathsf{L} \mid \mathsf{K}; \mathsf{T}_1, \mathsf{T} \vdash \texttt{let} x = S \texttt{in} F}$

Compatibility lemmas

To connect logical relation to type system, we show **semantic versions** of all **syntactic typing rules**.

 $\frac{\Gamma \mid \mathbf{E}; \mathbf{L} \models \kappa \text{ alive}}{\Gamma \mid \mathbf{E}; \mathbf{L} \mid p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau, p_2 \lhd \tau \models p_1 := p_2 \rightleftharpoons p_1 \lhd \&_{\mathbf{mut}}^{\kappa} \tau}$

 $\frac{\mathbf{E}; \mathbf{L} \mid \mathbf{T}_1 \models S \rightleftharpoons x. \mathbf{T}_2 \qquad \mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}_2, \mathbf{T} \models F}{\mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}_1, \mathbf{T} \models \texttt{let} x = S \text{ in } F}$

Type safety (revisited)

From compatibility:

 $\mathbf{E}; \mathbf{L} \mid \mathbf{K}, \mathbf{T} \vdash F \dashv \mathbf{T}_2 \implies \mathbf{E}; \mathbf{L} \mid \mathbf{K}, \mathbf{T} \models F \rightleftharpoons \mathbf{T}_2$

Finally, we show that the relation is **adequate**:

$$\mathbf{E}; \mathbf{L} \mid \mathbf{T}_1 \models F \models \mathbf{T}_2 \implies F \text{ is safe}$$

Conclusion: well-typed programs can't go wrong
 No data race, no memory error, ...

Type safety (semantic version)

The semantic approach provides a much stronger safety theorem than syntactic type safety:

- For well-typed code, \mathbf{E} ; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \vdash F_{\mathsf{safe}} \Longrightarrow \mathbf{E}$; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \models F_{\mathsf{safe}}$
- If unsafe features are used, manually prove \mathbf{E} ; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \models F_{\text{unsafe}}$
- By compatibility, we can compose these proofs and obtain safety of the entire program!

Type safety (semantic version)

The semantic approach provides a much stronger safety theorem than syntactic type safety:

- For well-typed code, \mathbf{E} ; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \vdash F_{\mathsf{safe}} \Longrightarrow \mathbf{E}$; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \models F_{\mathsf{safe}}$
- If unsafe features are used, manually prove \mathbf{E} ; $\mathbf{L} \mid \mathbf{K}$; $\mathbf{T} \models F_{\text{unsafe}}$
- By compatibility, we can compose these proofs and obtain safety of the entire program!

The whole program is safe if the "unsafe" pieces are safe.

How do we define the logical interpretation of types?

Rust type system has **ownership** + complex **sharing protocols** in a **higher-order concurrent** setting

Rust type system has **ownership** + complex **sharing protocols** in a **higher-order concurrent** setting

"Obvious" choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

Rust type system has **ownership** + complex **sharing protocols** in a **higher-order concurrent** setting

"Obvious" choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

But which one?

A brief history of concurrent separation logic

22 of 35

A brief history of concurrent separation logic

$$\begin{array}{c} \Gamma, \Delta \mid \Phi \vdash \mathsf{stable}(\mathsf{P}) \quad \Gamma, \Delta \mid \Phi \vdash \forall y, \mathsf{stable}(\mathsf{Q}(y)) \\ \Gamma, \Delta \mid \Phi \vdash n \in C \quad \Gamma, \Delta \mid \Phi \vdash \forall x \in X. \; (x, f(x)) \in \overline{T(A)} \lor f(x) = x \\ \Gamma \mid \Phi \vdash \forall x \in X. \; (\Delta). \langle \mathsf{P} \ast \circledast_{a \in A}[\alpha]_{g(\alpha)}^n \ast \mathcal{I}(x) \rangle \; c \; \langle \mathsf{Q}(x) \ast \mathcal{I}(f(x)) \rangle^{C \setminus \{n\}} \\ \hline \Gamma \mid \Phi \vdash (\Delta). \; \langle \mathsf{P} \ast \circledast_{a \in A}[\alpha]_{g(\alpha)}^n \operatorname{region}(X, T, I, n) \rangle \\ c \\ \langle \exists x. \; \mathsf{Q}(x) \ast \operatorname{region}(\{f(x)\}, T, I, n) \rangle^C \end{array} \text{ Aromic }$$

$$\frac{\mathcal{L} \vdash \forall \stackrel{\text{div}}{\longrightarrow} b_0, \ (\pi[\bar{b}] * P) \ i \Rightarrow_1 a \ (x. \exists b' \stackrel{\text{div}}{=} x \ h. \pi[b'] * Q)}{\mathcal{L} \vdash \{[\bar{b}_0]_\pi^n * \triangleright P\}} i \Rightarrow a \ \left\{ x. \exists b'. \stackrel{\text{ff}}{=} x \ h. \pi[b'] * Q \\ + \frac{\lambda_i \land i \vdash \forall x \in X. \ \langle p_p \ \mid I(\mathbf{t}_a^{\lambda}(x)) * p(x) * [\mathbf{G}]_a \ \mathbb{C} \ \exists y \in Y. \ \langle q_p(x,y) \ \mid I(\mathbf{t}_a^{\lambda}(f(x))) * q(x,y) \rangle }{\lambda + 1; \mathcal{A} \vdash \forall x \in X. \ \langle p_p \ \mid \mathbf{t}_a^{\lambda}(x) * p(x) * |\mathbf{G}]_a \ \mathbb{C} \ \exists y \in Y. \ \langle q_p(x,y) \ \mid \mathbf{t}_a^{\lambda}(f(x)) * q(x,y) \rangle }$$

$$\begin{array}{c|c} \Gamma \mid \Phi \vdash x \in X \quad \Gamma \mid \Phi \vdash \forall \alpha \in \operatorname{Action}. \forall x \in \operatorname{Sld} \times \operatorname{Sld}. up(T(\alpha)(x)) \\ \Gamma \mid \Phi \vdash A \text{ and } B \text{ are finite} \quad \Gamma \mid \Phi \vdash C \text{ is infinite} \\ \Gamma \mid \Phi \vdash \forall n \in C. \ P \ast \otimes_{\alpha \in A} [\alpha]_1^n \Rightarrow \triangleright I(n)(x) \\ \hline \Gamma \mid \Phi \vdash \forall n \in C. \ \forall s. \operatorname{stable}(I(n)(s)) \quad \Gamma \mid \Phi \vdash A \cap B = \emptyset \\ \hline \Gamma \mid \Phi \vdash P \sqsubseteq^C \exists n \in C. \operatorname{region}(X, T, I(n), n) \ast \otimes_{\alpha \in B} [\alpha]_1^n \end{array}$$
 VALLOC

$$\begin{split} \frac{ \begin{array}{c} & \text{Update region rule} \\ \lambda; \mathcal{A} \vdash \mathbb{W}x \in X. \left\langle p_p \; \left| \; I(\mathbf{t}_a^{\lambda}(y)) * p(x) \right\rangle \mathbb{C} \quad \exists y \in Y. \left\langle q_p(x,y) \; \left| \; I(\mathbf{t}_a^{\lambda}(Q(x))) * q_1(x,y) \right\rangle \\ \hline \\ & \mathcal{W}x \in X. \left\langle p_p \; \left| \; \mathbf{t}_b^{\lambda}(x) * p(x) * a \Rightarrow \bullet \right\rangle \\ \hline \\ & \mathcal{W}x \in X. \left\langle p_p \; \left| \; \mathbf{t}_b^{\lambda}(x) * p(x) * a \Rightarrow \bullet \right\rangle \\ \hline \\ & \mathcal{H}_1; a: x \in X \rightsquigarrow Q(x), \mathcal{A} \vdash \\ \exists y \in Y. \left\langle q_p(x,y) \; \right| \; \begin{array}{c} \exists z \in Q(x), \mathbf{t}_b^{\lambda}(z) * q_1(x,y) * a \Rightarrow (x,z) \\ & \forall \mathbf{t}_a^{\lambda}(x) * q_2(x,y) * a \Rightarrow \bullet \\ \end{array} \right\rangle \end{split}$$

23 of 35

A brief history of concurrent separation logic

Iris is a higher-order concurrent separation logic framework that we have been developing since 2014 [POPL'15, ICFP'16, POPL'17, ESOP'17, ECOOP'17]

Distinguishing features of Iris:

- **Simple** foundation: Higher-order BI + a handful of modalities
- Rules for complex "sharing protocols" (which were built in as primitive in prior logics) are derivable in Iris
- Supports impredicative invariants, which arise when modeling recursive & generic types in Rust
- Excellent tactical support for mechanization in Coq

Iris is a higher-order concurrent separation logic framework that we have been developing since 2014 [POPL'15, ICFP'16, POPL'17, ESOP'17, ECOOP'17]

Distinguishing features of Iris:

- **Simple** foundation: Higher-order BI + a handful of modalities
- Rules for complex "sharing protocols" (which were built in as primitive in prior logics) are derivable in Iris
- Supports impredicative invariants, which arise when modeling recursive & generic types in Rust
- Excellent tactical support for mechanization in Coq

Iris is ideal for modeling Rust!

Ownership interpretations of simple types

$$\llbracket \mathbf{bool} \rrbracket.\mathrm{own}(t, \overline{v})$$

:=
 $\overline{v} = [\mathtt{true}] \lor \overline{v} = [\mathtt{false}]$

$$\begin{split} \|\tau_1 \times \tau_2\|.\operatorname{own}(t,\overline{\nu}) \\ &:= \\ \exists \overline{\nu}_1, \overline{\nu}_2. \ \overline{\nu} = \overline{\nu}_1 + \overline{\nu}_2 * [\tau_1]].\operatorname{own}(t,\overline{\nu}_1) * [\tau_2]].\operatorname{own}(t,\overline{\nu}_2) \end{split}$$

Ownership interpretations of pointer types

$$\llbracket \mathbf{own}_{n} \tau \rrbracket.\operatorname{own}(t, \overline{\nu}) \\ := \\ \exists \ell. \ \overline{\nu} = [\ell] * (\exists \overline{w}. \ \ell \mapsto \overline{w} * \triangleright \llbracket \tau \rrbracket.\operatorname{own}(t, \overline{w})) * \dots \\ \llbracket \&_{\mathsf{mut}}^{\kappa} \tau \rrbracket.\operatorname{own}(t, \overline{\nu}) \\ := \\ \exists \ell. \ \overline{\nu} = [\ell] * \&^{\kappa} (\exists \overline{w}. \ \ell \mapsto \overline{w} * \llbracket \tau \rrbracket.\operatorname{own}(t, \overline{w}))$$

27 of 35

Ownership interpretations of pointer types

Lifetime logic: A custom logic derived within Iris

Traditionally, P * Q splits ownership w.r.t. space

Let's allow **splitting ownership w.r.t. time**! $\triangleright P \implies \&^{\kappa} P * ([\dagger \kappa] \Longrightarrow \triangleright P)$ Lifetime logic: A custom logic derived within Iris

Traditionally, P * Q splits ownership w.r.t. space

Let's allow splitting ownership w.r.t. time!

$$\triangleright P \implies \&^{\kappa} P * ([\dagger \kappa] \Longrightarrow \triangleright P)$$

Traditionally, P * Q splits ownership w.r.t. space

Let's allow splitting ownership w.r.t. time!

$$\triangleright P \quad \Rightarrow \quad \&^{\kappa} P \quad * \ ([\dagger \kappa] \Rightarrow \triangleright P)$$

A borrowed part:

- access of P when κ is ongoing
- P must be preserved when κ ends

Traditionally, P * Q splits ownership w.r.t. space

Let's allow **splitting ownership w.r.t. time**! $\triangleright P \implies \&^{\kappa} P * ([\dagger \kappa] \implies \triangleright P)$ An *inheritance* part, that gives

back *P* when κ is finished.

How to witness that κ is alive?

We use a **lifetime token** $[\kappa]$

Left in deposit when opening a borrow:

$$\&^{\kappa} P * [\kappa] \quad \Rightarrow \quad \triangleright P \; * \; \left(\triangleright P \Rightarrow \&^{\kappa} P * [\kappa] \right)$$

• Needed to **terminate** κ :

$$[\kappa] \Rrightarrow [\dagger \kappa]$$

Modeling shared references

As we've seen, each type T may have a different "sharing protocol" defining the semantics of & a T.

E.g., &'a i32 is read-only, whereas &'a Mutex<i32> grants mutable access to its contents once a lock is acquired

We model this by defining for each τ a "sharing predicate" $[\tau]$.shr:

 $\llbracket \&_{\mathsf{shr}}^{\kappa} \tau \rrbracket .own(t, \overline{v})$:=

 $\exists \ell. \ \overline{\mathbf{v}} = [\ell] * \llbracket \tau \rrbracket. \mathrm{shr}(\llbracket \kappa \rrbracket, t, \ell)$

The sharing predicate is required to be **persistent**:

I.e., freely duplicable, since in Rust & 'a T is a Copy type

31 of 35

Modeling "thread-safety" of types

Some interior-mutable types are not thread-safe

- They support shared mutable access without atomics
- Examples: reference-counted pointer (Rc<T>), ...

Still, Rust guarantees absence of data races

- Ownership transfer between threads only allowed for some types
- T : Send \iff T is thread-safe

In our model:

- Interpretations of types may depend on the thread ID
- $\hbox{ [[T : Send]]} \Longleftrightarrow [\![T]\!] \text{ does not depend on TID}$

Introduction Overview of Rust

RustBelt

Conclusion

33 of 35

More details about the λ_{Rust} type system and "lifetime logic"

How to model essential Rust types featuring interior mutability

Cell<T>, RefCell<T>, Rc<T>, Arc<T>, Mutex<T>, RwLock<T>

How to handle lifetime inclusion and subtyping

Still missing from RustBelt:

Trait objects (existential types), weak memory, panics, ...

Conclusion

Logical relations are a great way to prove safety of a real language in an "extensible" way.

Advances in **separation logic** (as embodied in **Iris**) make this possible for even a language as sophisticated as Rust!

http://plv.mpi-sws.org/rustbelt/