
RustBelt: Securing the Foundations of the

Rust Programming Language

Ralf Jung
Jacques-Henri Jourdan

Robbert Krebbers
Derek Dreyer

MPI-SWS & TU Delft

October 13, 2017
ETH Zürich

Rust
Mozilla’s replacement for C/C++

A safe & flexible systems programming language

� Modern strongly-typed PL:
� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types

� But with control over resource management
(e.g., memory allocation and data layout)

� Sound type system with strong guarantees:
� Type & memory safety; absence of data races

2 of 35

Rust
Mozilla’s replacement for C/C++

A safe & flexible systems programming language

� Modern strongly-typed PL:
� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types

� But with control over resource management
(e.g., memory allocation and data layout)

� Sound? type system with strong guarantees:
� Type & memory safety; absence of data races

Goal of ERC RustBelt project:

� Prove the soundness of Rust’s type system in Coq!

2 of 35

The key challenge

Superficially, Rust’s approach to ensuring safety is sold as:

”No mutation through aliased pointers”

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!

3 of 35

The key challenge

Superficially, Rust’s approach to ensuring safety is sold as:

”No mutation through aliased pointers”

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!

3 of 35

The key challenge

Superficially, Rust’s approach to ensuring safety is sold as:

”No mutation through aliased pointers”

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!

So why is any of this sound?

3 of 35

Introduction

Overview of Rust

RustBelt

Conclusion

4 of 35

let (snd, rcv) = channel();

join(

move || { // First thread

// Allocating [b] as Box<i32> (pointer to heap)

let mut b = Box::new(0);

*b = 1;

// Transferring the ownership to the other thread...

snd.send(b);

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});

5 of 35

let (snd, rcv) = channel();

join(

move || { // First thread

// Allocating [b] as Box<i32> (pointer to heap)

let mut b = Box::new(0);

*b = 1;

// Transferring the ownership to the other thread...

snd.send(b);

*b = 2; // Error: lost ownership of [b]

// ==> Prevents data race

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});

5 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

v[1] = 4;

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

6 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

6 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

// Error: can invalidate [inner ptr]

v.push(1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

6 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

// Error: can invalidate [inner ptr]

v.push(1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

We temporarily lost ownership of vector v

We get back the full ownership of vector v

6 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

6 of 35

Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

Lifetime 'a inferred by Rust

6 of 35

Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;

7 of 35

Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;

&x creates a shared borrow of x

� Type: &'a i32

� Can be copied/shared

� Does not allow mutation

7 of 35

Summing up

� Rust’s type system is based on ownership

� Three kinds of ownership:

1. Full ownership: Vec<T> (vector), Box<T> (pointer to heap)
2. Mutable borrowed reference: &'a mut T

3. Shared borrowed reference: &'a T

� Lifetimes decide when borrows are valid

8 of 35

Interior mutability

What if we want shared mutable data structures?

Rust standard library provides types with interior mutability

� Allows mutation using only a shared reference &'a T

� Implemented in Rust using unsafe features
� Unsafety is claimed to be safely encapsulated

� The library interface restricts what mutations are possible

9 of 35

Mutex
An example of Interior mutability

let m = Mutex::new(1); // m : Mutex<i32>

// We can mutate the integer

// *with a shared borrow* only

join (|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.into_inner().unwrap())

A shared borrow establishes a sharing protocol:

� &'a i32

� =⇒ Read-only
� Safety: trivial

� &'a Mutex<i32>

� =⇒ Read-write by taking the lock
� Safety: ensured by proper synchronization

10 of 35

Mutex
An example of Interior mutability

let m = Mutex::new(1); // m : Mutex<i32>

// We can mutate the integer

// *with a shared borrow* only

join (|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.into_inner().unwrap())

A shared borrow establishes a sharing protocol:

� &'a i32

� =⇒ Read-only
� Safety: trivial

� &'a Mutex<i32>

� =⇒ Read-write by taking the lock
� Safety: ensured by proper synchronization

10 of 35

How do we know this all works?

11 of 35

Introduction

Overview of Rust

RustBelt

Conclusion

12 of 35

The λRust type system

� Syntactic (built-in types)

τ ::= bool | int | ownn τ | &κ
mut τ | &κ

shr τ | Πτ | Στ | . . .

� Typing context T assigns types τ to paths p

� Typing individual instructions:
(Γ binds variables, E and L track lifetimes)

Γ | E; L | T1 ` S a x .T2

� Typing whole functions: (K tracks continuations)

Γ | E; L | K,T ` F

13 of 35

Some typing rules

Γ | E; L ` κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ ` p1 := p2 a p1 C &κ

mut τ

Γ | E; L | T1 ` S a x .T2 Γ, x : val | E; L | K; T2,T ` F

Γ | E; L | K; T1,T ` let x = S in F

14 of 35

Some typing rules

Γ | E; L ` κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ ` p1 := p2 a p1 C &κ

mut τ

Γ | E; L | T1 ` S a x .T2 Γ, x : val | E; L | K; T2,T ` F

Γ | E; L | K; T1,T ` let x = S in F

14 of 35

Syntactic type safety

The standard “syntactic” approach to language safety is to prove a
theorem like the following, via good old “progress and preservation”:

E; L | K,T ` F =⇒ F is safe

� Problem: This theorem does not help when unsafe code is used!

� Solution: A more semantic approach based on logical relations

15 of 35

The logical relation

� Define, for every type τ , an ownership predicate, where
t is the owning thread’s id and v is the representation of τ :

JτK.own(t, v)

� Lift to semantic contexts JTK(t) using separating conjunction:

Jp1 C τ1, p2 C τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])

� Lift to semantic typing judgments:

E; L | T1 |= S |=T2 :=

∀t. {JEK ∗ JLK ∗ JT1K(t)} S {JEK ∗ JLK ∗ JT2K(t)}

16 of 35

The logical relation

� Define, for every type τ , an ownership predicate, where
t is the owning thread’s id and v is the representation of τ :

JτK.own(t, v)

� Lift to semantic contexts JTK(t) using separating conjunction:

Jp1 C τ1, p2 C τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])

� Lift to semantic typing judgments:

E; L | T1 |= S |=T2 :=

∀t. {JEK ∗ JLK ∗ JT1K(t)} S {JEK ∗ JLK ∗ JT2K(t)}

16 of 35

The logical relation

� Define, for every type τ , an ownership predicate, where
t is the owning thread’s id and v is the representation of τ :

JτK.own(t, v)

� Lift to semantic contexts JTK(t) using separating conjunction:

Jp1 C τ1, p2 C τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])

� Lift to semantic typing judgments:

E; L | T1 |= S |=T2 :=

∀t. {JEK ∗ JLK ∗ JT1K(t)} S {JEK ∗ JLK ∗ JT2K(t)}
16 of 35

Compatibility lemmas

To connect logical relation to type system,
we show semantic versions of all syntactic typing rules.

Γ | E; L ` κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ ` p1 := p2 a p1 C &κ

mut τ

E; L | T1 ` S a x .T2 E; L | K; T2,T ` F

E; L | K; T1,T ` let x = S in F

17 of 35

Compatibility lemmas

To connect logical relation to type system,
we show semantic versions of all syntactic typing rules.

Γ | E; L |= κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ |= p1 := p2 |=p1 C &κ

mut τ

E; L | T1 |= S |=x .T2 E; L | K; T2,T |= F

E; L | K; T1,T |= let x = S in F

17 of 35

Type safety (revisited)

� From compatibility:

E; L | K,T ` F a T2 =⇒ E; L | K,T |= F |=T2

� Finally, we show that the relation is adequate:

E; L | T1 |= F |=T2 =⇒ F is safe

� Conclusion: well-typed programs can’t go wrong
� No data race, no memory error, . . .

18 of 35

Type safety (semantic version)

The semantic approach provides a much stronger safety theorem than
syntactic type safety:

� For well-typed code, E; L | K; T ` Fsafe =⇒ E; L | K; T |= Fsafe
� If unsafe features are used, manually prove E; L | K; T |= Funsafe
� By compatibility, we can compose these proofs and obtain safety of

the entire program!

The whole program is safe
if the “unsafe” pieces are safe.

19 of 35

Type safety (semantic version)

The semantic approach provides a much stronger safety theorem than
syntactic type safety:

� For well-typed code, E; L | K; T ` Fsafe =⇒ E; L | K; T |= Fsafe
� If unsafe features are used, manually prove E; L | K; T |= Funsafe
� By compatibility, we can compose these proofs and obtain safety of

the entire program!

The whole program is safe
if the “unsafe” pieces are safe.

19 of 35

How do we define the logical
interpretation of types?

20 of 35

Choosing the right logic

Rust type system has ownership + complex sharing protocols
in a higher-order concurrent setting

“Obvious” choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

But which one?

21 of 35

Choosing the right logic

Rust type system has ownership + complex sharing protocols
in a higher-order concurrent setting

“Obvious” choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

But which one?

21 of 35

Choosing the right logic

Rust type system has ownership + complex sharing protocols
in a higher-order concurrent setting

“Obvious” choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

But which one?

21 of 35

A brief history of concurrent separation logic

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)

RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey

22 of 35

A brief history of concurrent separation logic

23 of 35

A brief history of concurrent separation logic

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)

RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey

24 of 35

Iris

Iris is a higher-order concurrent separation logic framework that we
have been developing since 2014 [POPL’15, ICFP’16, POPL’17, ESOP’17, ECOOP’17]

Distinguishing features of Iris:

� Simple foundation: Higher-order BI + a handful of modalities

� Rules for complex “sharing protocols” (which were built in as
primitive in prior logics) are derivable in Iris

� Supports impredicative invariants, which arise when modeling
recursive & generic types in Rust

� Excellent tactical support for mechanization in Coq

Iris is ideal for modeling Rust!

25 of 35

Iris

Iris is a higher-order concurrent separation logic framework that we
have been developing since 2014 [POPL’15, ICFP’16, POPL’17, ESOP’17, ECOOP’17]

Distinguishing features of Iris:

� Simple foundation: Higher-order BI + a handful of modalities

� Rules for complex “sharing protocols” (which were built in as
primitive in prior logics) are derivable in Iris

� Supports impredicative invariants, which arise when modeling
recursive & generic types in Rust

� Excellent tactical support for mechanization in Coq

Iris is ideal for modeling Rust!

25 of 35

Ownership interpretations of simple types

JboolK.own(t, v)

:=

v = [true] ∨ v = [false]

Jτ1 × τ2K.own(t, v)

:=

∃v1, v2. v = v1 ++ v2 ∗ Jτ1K.own(t, v1) ∗ Jτ2K.own(t, v2)

26 of 35

Ownership interpretations of pointer types

Jownn τK.own(t, v)

:=

∃`. v = [`] ∗ (∃w . ` 7→ w ∗ . JτK.own(t,w)) ∗ . . .

J&κ
mut τK.own(t, v)

:=

∃`. v = [`] ∗ &κ
(
∃w . ` 7→ w ∗ JτK.own(t,w)

)

27 of 35

Ownership interpretations of pointer types

Jownn τK.own(t, v)

:=

∃`. v = [`] ∗ (∃w . ` 7→ w ∗ . JτK.own(t,w)) ∗ . . .

J&κ
mut τK.own(t, v)

:=

∃`. v = [`] ∗ &κ
(
∃w . ` 7→ w ∗ JτK.own(t,w)

)

What is this? Not your grandma’s separation logic!

27 of 35

Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)

28 of 35

Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
.P can be transformed into. . .

29 of 35

Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
A borrowed part:

� access of P when κ is ongoing

� P must be preserved when κ ends

29 of 35

Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
An inheritance part, that gives
back P when κ is finished.

29 of 35

Lifetime tokens

How to witness that κ is alive?

We use a lifetime token [κ]

� Left in deposit when opening a borrow:

&κ P ∗ [κ] V .P ∗
(
.P V &κ P ∗ [κ]

)
� Needed to terminate κ:

[κ] V [†κ]

30 of 35

Modeling shared references

As we’ve seen, each type T may have a different “sharing protocol”
defining the semantics of &'a T.

� E.g., &'a i32 is read-only, whereas &'a Mutex<i32> grants
mutable access to its contents once a lock is acquired

We model this by defining for each τ a “sharing predicate” JτK.shr:

J&κ
shr τK.own(t, v)

:=

∃`. v = [`] ∗ JτK.shr(JκK, t, `)

The sharing predicate is required to be persistent:

� I.e., freely duplicable, since in Rust &'a T is a Copy type

31 of 35

Modeling “thread-safety” of types

Some interior-mutable types are not thread-safe

� They support shared mutable access without atomics

� Examples: reference-counted pointer (Rc<T>), . . .

Still, Rust guarantees absence of data races

� Ownership transfer between threads only allowed for some types

� T : Send ⇐⇒ T is thread-safe

In our model:

� Interpretations of types may depend on the thread ID

� JT : SendK ⇐⇒ JTK does not depend on TID

32 of 35

Introduction

Overview of Rust

RustBelt

Conclusion

33 of 35

What else is in the paper [POPL’18]

More details about the λRust type system and “lifetime logic”

How to model essential Rust types featuring interior mutability

� Cell<T>, RefCell<T>, Rc<T>, Arc<T>, Mutex<T>, RwLock<T>

How to handle lifetime inclusion and subtyping

Still missing from RustBelt:

� Trait objects (existential types), weak memory, panics, . . .

34 of 35

Conclusion

Logical relations are a great way to prove safety of a real language
in an “extensible” way.

Advances in separation logic (as embodied in Iris) make this
possible for even a language as sophisticated as Rust!

http://plv.mpi-sws.org/rustbelt/

35 of 35

http://plv.mpi-sws.org/rustbelt/

