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ETH Zürich



Rust
Mozilla’s replacement for C/C++

A safe & flexible systems programming language

� Modern strongly-typed PL:
� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types

� But with control over resource management
(e.g., memory allocation and data layout)

� Sound type system with strong guarantees:
� Type & memory safety; absence of data races
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Mozilla’s replacement for C/C++

A safe & flexible systems programming language

� Modern strongly-typed PL:
� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types

� But with control over resource management
(e.g., memory allocation and data layout)

� Sound? type system with strong guarantees:
� Type & memory safety; absence of data races

Goal of ERC RustBelt project:

� Prove the soundness of Rust’s type system in Coq!
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The key challenge

Superficially, Rust’s approach to ensuring safety is sold as:

”No mutation through aliased pointers”

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!
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The key challenge

Superficially, Rust’s approach to ensuring safety is sold as:

”No mutation through aliased pointers”

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!

So why is any of this sound?
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let (snd, rcv) = channel();

join(

move || { // First thread

// Allocating [b] as Box<i32> (pointer to heap)

let mut b = Box::new(0);

*b = 1;

// Transferring the ownership to the other thread...

snd.send(b);

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});
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// Allocating [b] as Box<i32> (pointer to heap)

let mut b = Box::new(0);

*b = 1;

// Transferring the ownership to the other thread...

snd.send(b);

*b = 2; // Error: lost ownership of [b]

// ==> Prevents data race

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});
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Borrowing and lifetimes

let mut v = vec![1, 2, 3];

v[1] = 4;

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a
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fn<'a> index_mut(&'a mut Vec<i32>, usize)
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New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

We temporarily lost ownership of vector v

We get back the full ownership of vector v
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Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<'a> index_mut(&'a mut Vec<i32>, usize)

-> &'a mut i32

New pointer type: &'a mut T:

� mutable borrowed reference

� valid only for lifetime 'a

Lifetime 'a inferred by Rust
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Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;
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Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;

&x creates a shared borrow of x

� Type: &'a i32

� Can be copied/shared

� Does not allow mutation
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Summing up

� Rust’s type system is based on ownership

� Three kinds of ownership:

1. Full ownership: Vec<T> (vector), Box<T> (pointer to heap)
2. Mutable borrowed reference: &'a mut T

3. Shared borrowed reference: &'a T

� Lifetimes decide when borrows are valid
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Interior mutability

What if we want shared mutable data structures?

Rust standard library provides types with interior mutability

� Allows mutation using only a shared reference &'a T

� Implemented in Rust using unsafe features
� Unsafety is claimed to be safely encapsulated

� The library interface restricts what mutations are possible
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Mutex
An example of Interior mutability

let m = Mutex::new(1); // m : Mutex<i32>

// We can mutate the integer

// *with a shared borrow* only

join (|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.into_inner().unwrap())

A shared borrow establishes a sharing protocol:

� &'a i32

� =⇒ Read-only
� Safety: trivial

� &'a Mutex<i32>

� =⇒ Read-write by taking the lock
� Safety: ensured by proper synchronization
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How do we know this all works?
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The λRust type system

� Syntactic (built-in types)

τ ::= bool | int | ownn τ | &κ
mut τ | &κ

shr τ | Πτ | Στ | . . .

� Typing context T assigns types τ to paths p

� Typing individual instructions:
(Γ binds variables, E and L track lifetimes)

Γ | E; L | T1 ` S a x .T2

� Typing whole functions: (K tracks continuations)

Γ | E; L | K,T ` F
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Some typing rules

Γ | E; L ` κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ ` p1 := p2 a p1 C &κ

mut τ

Γ | E; L | T1 ` S a x .T2 Γ, x : val | E; L | K; T2,T ` F

Γ | E; L | K; T1,T ` let x = S in F
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Syntactic type safety

The standard “syntactic” approach to language safety is to prove a
theorem like the following, via good old “progress and preservation”:

E; L | K,T ` F =⇒ F is safe

� Problem: This theorem does not help when unsafe code is used!

� Solution: A more semantic approach based on logical relations
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The logical relation

� Define, for every type τ , an ownership predicate, where
t is the owning thread’s id and v is the representation of τ :

JτK.own(t, v)

� Lift to semantic contexts JTK(t) using separating conjunction:

Jp1 C τ1, p2 C τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])

� Lift to semantic typing judgments:

E; L | T1 |= S |=T2 :=

∀t. {JEK ∗ JLK ∗ JT1K(t)} S {JEK ∗ JLK ∗ JT2K(t)}
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Compatibility lemmas

To connect logical relation to type system,
we show semantic versions of all syntactic typing rules.

Γ | E; L ` κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ ` p1 := p2 a p1 C &κ

mut τ

E; L | T1 ` S a x .T2 E; L | K; T2,T ` F

E; L | K; T1,T ` let x = S in F
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Compatibility lemmas

To connect logical relation to type system,
we show semantic versions of all syntactic typing rules.

Γ | E; L |= κ alive

Γ | E; L | p1 C &κ
mut τ, p2 C τ |= p1 := p2 |=p1 C &κ

mut τ

E; L | T1 |= S |=x .T2 E; L | K; T2,T |= F

E; L | K; T1,T |= let x = S in F
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Type safety (revisited)

� From compatibility:

E; L | K,T ` F a T2 =⇒ E; L | K,T |= F |=T2

� Finally, we show that the relation is adequate:

E; L | T1 |= F |=T2 =⇒ F is safe

� Conclusion: well-typed programs can’t go wrong
� No data race, no memory error, . . .
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Type safety (semantic version)

The semantic approach provides a much stronger safety theorem than
syntactic type safety:

� For well-typed code, E; L | K; T ` Fsafe =⇒ E; L | K; T |= Fsafe
� If unsafe features are used, manually prove E; L | K; T |= Funsafe
� By compatibility, we can compose these proofs and obtain safety of

the entire program!

The whole program is safe
if the “unsafe” pieces are safe.
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How do we define the logical
interpretation of types?

20 of 35



Choosing the right logic

Rust type system has ownership + complex sharing protocols
in a higher-order concurrent setting

“Obvious” choice of a logic for interpreting Rust types:

Higher-order concurrent separation logic

But which one?
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A brief history of concurrent separation logic

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)
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Deny-Guarantee (2009)
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SCSL (2013)
HOCAP (2013)
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Iris (2015)
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FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey
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Iris

Iris is a higher-order concurrent separation logic framework that we
have been developing since 2014 [POPL’15, ICFP’16, POPL’17, ESOP’17, ECOOP’17]

Distinguishing features of Iris:

� Simple foundation: Higher-order BI + a handful of modalities

� Rules for complex “sharing protocols” (which were built in as
primitive in prior logics) are derivable in Iris

� Supports impredicative invariants, which arise when modeling
recursive & generic types in Rust

� Excellent tactical support for mechanization in Coq

Iris is ideal for modeling Rust!
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Ownership interpretations of simple types

JboolK.own(t, v)

:=

v = [true] ∨ v = [false]

Jτ1 × τ2K.own(t, v)

:=

∃v1, v2. v = v1 ++ v2 ∗ Jτ1K.own(t, v1) ∗ Jτ2K.own(t, v2)
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Ownership interpretations of pointer types

Jownn τK.own(t, v)

:=

∃`. v = [`] ∗ (∃w . ` 7→ w ∗ . JτK.own(t,w)) ∗ . . .

J&κ
mut τK.own(t, v)

:=

∃`. v = [`] ∗ &κ
(
∃w . ` 7→ w ∗ JτK.own(t,w)

)
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Ownership interpretations of pointer types

Jownn τK.own(t, v)

:=

∃`. v = [`] ∗ (∃w . ` 7→ w ∗ . JτK.own(t,w)) ∗ . . .

J&κ
mut τK.own(t, v)

:=

∃`. v = [`] ∗ &κ
(
∃w . ` 7→ w ∗ JτK.own(t,w)

)

What is this? Not your grandma’s separation logic!
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Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
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Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
.P can be transformed into. . .
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Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
A borrowed part:

� access of P when κ is ongoing

� P must be preserved when κ ends
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Lifetime logic: A custom logic derived within Iris

Traditionally, P ∗ Q splits ownership w.r.t. space

Let’s allow splitting ownership w.r.t. time!

.P V &κ P ∗
(
[†κ] V .P

)
An inheritance part, that gives
back P when κ is finished.
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Lifetime tokens

How to witness that κ is alive?

We use a lifetime token [κ]

� Left in deposit when opening a borrow:

&κ P ∗ [κ] V .P ∗
(
.P V &κ P ∗ [κ]

)
� Needed to terminate κ:

[κ] V [†κ]
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Modeling shared references

As we’ve seen, each type T may have a different “sharing protocol”
defining the semantics of &'a T.

� E.g., &'a i32 is read-only, whereas &'a Mutex<i32> grants
mutable access to its contents once a lock is acquired

We model this by defining for each τ a “sharing predicate” JτK.shr:

J&κ
shr τK.own(t, v)

:=

∃`. v = [`] ∗ JτK.shr(JκK, t, `)

The sharing predicate is required to be persistent:

� I.e., freely duplicable, since in Rust &'a T is a Copy type

31 of 35



Modeling “thread-safety” of types

Some interior-mutable types are not thread-safe

� They support shared mutable access without atomics

� Examples: reference-counted pointer (Rc<T>), . . .

Still, Rust guarantees absence of data races

� Ownership transfer between threads only allowed for some types

� T : Send ⇐⇒ T is thread-safe

In our model:

� Interpretations of types may depend on the thread ID

� JT : SendK ⇐⇒ JTK does not depend on TID
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What else is in the paper [POPL’18]

More details about the λRust type system and “lifetime logic”

How to model essential Rust types featuring interior mutability

� Cell<T>, RefCell<T>, Rc<T>, Arc<T>, Mutex<T>, RwLock<T>

How to handle lifetime inclusion and subtyping

Still missing from RustBelt:

� Trait objects (existential types), weak memory, panics, . . .
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Conclusion

Logical relations are a great way to prove safety of a real language
in an “extensible” way.

Advances in separation logic (as embodied in Iris) make this
possible for even a language as sophisticated as Rust!

http://plv.mpi-sws.org/rustbelt/
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