
Verifying Network
Data Planes

Nate Foster
Cornell / Barefoot

Can you help me
fix my WiFi?

Network Management

Network operators use a
variety of techniques to keep
things running including:

• Generating configurations
from high-level policies

• Scraping configurations
using command-line tools

• Diagnosing errors with
ping and traceroute

Internet Principles

ACM SIGCOMM -1- Computer Communication Review

The Design Philosophy of the DARPA Internet Protocols

David D. Clark*

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, MA. 02139
(Originally published in Proc. SIGCOMM ‘88, Computer Communication Review Vol. 18, No. 4,

August 1988, pp. 106–114)

*This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. N00014-83-K-0125

Abstract
The Internet protocol suite, TCP/IP, was first proposed
fifteen years ago. It was developed by the Defense
Advanced Research Projects Agency (DARPA), and
has been used widely in military and commercial
systems. While there have been papers and
specifications that describe how the protocols work, it is
sometimes difficult to deduce from these why the
protocol is as it is. For example, the Internet protocol is
based on a connectionless or datagram mode of service.
The motivation for this has been greatly misunderstood.
This paper attempts to capture some of the early
reasoning which shaped the Internet protocols.

1. Introduction
For the last 15 years1 , the Advanced Research Projects
Agency of the U.S. Department of Defense has been
developing a suite of protocols for packet switched
networking. These protocols, which include the Internet
Protocol (IP), and the Transmission Control Protocol
(TCP), are now U.S. Department of Defense standards
for internetworking, and are in wide use in the
commercial networking environment. The ideas
developed in this effort have also influenced other
protocol suites, most importantly the connectionless
configuration of the ISO protocols2,3,4.

While specific information on the DOD protocols is
fairly generally available5,6,7, it is sometimes difficult to
determine the motivation and reasoning which led to the
design.

In fact, the design philosophy has evolved considerably
from the first proposal to the current standards. For
example, the idea of the datagram, or connectionless
service, does not receive particular emphasis in the first
paper, but has come to be the defining characteristic of
the protocol. Another example is the layering of the

architecture into the IP and TCP layers. This seems
basic to the design, but was also not a part of the
original proposal. These changes in the Internet design
arose through the repeated pattern of implementation
and testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a
new extension challenges one of the design principles,
but in any case an understanding of the history of the
design provides a necessary context for current design
extensions. The connectionless configuration of ISO
protocols has also been colored by the history of the
Internet suite, so an understanding of the Internet design
philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives
of the Internet architecture, and discusses the relation
between these goals and the important features of the
protocols.

2. Fundamental Goal
The top level goal for the DARPA Internet Architecture
was to develop an effective technique for multiplexed
utilization of existing interconnected networks. Some
elaboration is appropriate to make clear the meaning of
that goal.

 The components of the Internet were networks, which
were to be interconnected to provide some larger
service. The original goal was to connect together the
original ARPANET8 with the ARPA packet radio
network9,10, in order to give users on the packet radio
network access to the large service machines on the
ARPANET. At the time it was assumed that there would
be other sorts of networks to interconnect, although the
local area network had not yet emerged.

An alternative to interconnecting existing networks
would have been to design a unified system which
incorporated a variety of different transmission media, a

Designed to be robust
even when some nodes
misbehave or even
experience outright
failures...

...defers many important
issues such as
performance, security,
accountability, etc.

Modern Challenges

Networks have truly
become a critical part of
our infrastructure...

...they have grown
dramatically in size and
complexity...

...and they are becoming
unwieldy for operators to
manage correctly!

Desired Properties

• Connectivity
• Fault-Tolerance
• Isolation
• Loop Freedom
• Blackhole Freedom
• Service Chaining
• Load Balancing

This Talk

Two (mostly) automated approaches
for verifying formal properties of

network data planes

This Talk

Plan:
• Network-wide properties in NetKAT
• Single-device properties in P4

Two (mostly) automated approaches
for verifying formal properties of

network data planes

Network-Wide
Verification in NetKAT

Data plane: forwards packets, enforces
access control, monitors flows, etc.

Control Plane: discovers topology,
computes routes, manages policy, etc.

Conventional Networking

2

Software-Defined Networking

2

Packets → Packets

Model

Packets → Packets

Model

Packets → Packets

Model

NetKAT Syntax

 pol ::= false
 | true
 | f = n
 | f := n
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

| dup

NetKAT Syntax

 pol ::= false
 | true
 | f = n
 | f := n
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

| dup

Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

Negation may only be applied to Boolean predicates:
 true, false, f = n, closed under +, •, and !

NetKAT Syntax

 pol ::= false
 | true
 | f = n
 | f := n
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

| dup

Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

} KAT

Negation may only be applied to Boolean predicates:
 true, false, f = n, closed under +, •, and !

NetKAT Syntax

 pol ::= false
 | true
 | f = n
 | f := n
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

| dup

Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

} KAT}NetKAT

Negation may only be applied to Boolean predicates:
 true, false, f = n, closed under +, •, and !

NetKAT Syntax

 pol ::= false
 | true
 | f = n
 | f := n
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

| dup

Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

} KAT}NetKAT

Negation may only be applied to Boolean predicates:
 true, false, f = n, closed under +, •, and !

`

if b then p1 else p2 ≜ (b • p1) + (!b • p2)

while b do p ≜ (b • p)* • !b

S⇾S’ ≜ sw=S • dup • sw:=S’ • dup

Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

 | dup

Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

 | dup

Local: input-output behavior of switches

〚Φ(pol)〛∈ Packets ➞ Packets

Semantics
pol ::=
 | false
 | true
 | field = val
 | field := val
 | pol1 + pol2
 | pol1 • pol2
 | !pol
 | pol*

 | dup

Local: input-output behavior of switches

〚Φ(pol)〛∈ Packets ➞ Packets

Global: network-wide paths

〚pol〛∈ Histories ➞ Histories

Encoding Tables and Links
Switch routing tables and network topologies
can be represented in NetKAT using
straightforward encodings

Match Actions

dstport=22 Drop

srcip=10.0.0.1 Forward	1

* Forward	2

if dstport=22 then false
elsif srcip=10.0.0.1 then port := 1
else port := 2

A B C

A ⇾ B + B ⇾A + B ⇾ C + C ⇾ B

Encoding Tables and Links
Switch routing tables and network topologies
can be represented in NetKAT using
straightforward encodings

Match Actions

dstport=22 Drop

srcip=10.0.0.1 Forward	1

* Forward	2

if dstport=22 then false
elsif srcip=10.0.0.1 then port := 1
else port := 2

A B C

A ⇾ B + B ⇾A + B ⇾ C + C ⇾ B

pol

topo

Encoding Networks

A network can be encoded in NetKAT by interleaving
steps of processing by switches and topology

(pol • topo)*

Decision Procedure
Can check whether programs are equivalent automatically!

Theoretical Insight: NetKAT programs ↔ NetKAT automata

Decision Procedure
Can check whether programs are equivalent automatically!

Theoretical Insight: NetKAT programs ↔ NetKAT automata

p q

Decision Procedure
Can check whether programs are equivalent automatically!

Theoretical Insight: NetKAT programs ↔ NetKAT automata

p q

≈

Algorithm checks whether automata are bisimilar

From Programs to Automata

p

Dpk1(p)

Dpk2(p)

Dpk3(p)

pk1

pk2

pk3

 Dc L = { w | c · w ∈ L }

Derivatives

Automata

From Programs to Automata

p

Dpk1(p)

Dpk2(p)

Dpk3(p)

pk1

pk2

pk3

 Dc L = { w | c · w ∈ L }

Derivatives

Automata

Can be defined
syntactically via a
simple recursive

definition

From Programs to Automata

p

Dpk1(p)

Dpk2(p)

Dpk3(p)

pk1

pk2

pk3

 Dc L = { w | c · w ∈ L }

Derivatives

Automata

Can be defined
syntactically via a
simple recursive

definition

Terminates since
every program has
a finite number of
distinct derivatives

NetKAT Automata
NetKAT automata recognize the histories generated by
packets as they traverse the network:

pktin • pkt1 • dup • ... • dup • pktn dup • putout

Similar to standard automata, but generalized to packets

NetKAT Automata

A NetKAT automaton M = (S, s0, ε, δ) is a tuple where:
• S is a finite set of states,
• s0 ∈ S is the start state,
• ε ∈ S → Packet → Packet Set is the “acceptance” function
• δ ∈ S → Packet → (State * Packet) Set is the “transition” function

NetKAT automata recognize the histories generated by
packets as they traverse the network:

pktin • pkt1 • dup • ... • dup • pktn dup • putout

Similar to standard automata, but generalized to packets

Syntactic Derivatives
 E(false) = false
 E(true) = true
 E(f = n) = f = n
 E(f := n) = f := n
 E(!pol) = !pol
 E(dupl) = false
 E(pol1 + pol2) = E(pol1) + E(pol2)
 E(pol1 • pol2) = E(pol1) • E(pol2)
 E(pol*) = E(pol)*

E(pol) ∈ Pol D(false) = {}
 D(true) = {}
 D(f=n) = {}
 D(f:=n) = {}
 D(!pol) = {}
 D(dupl) = { (true, l, true) }
 D(pol1 + pol2) = D(pol1) + D(pol2)
 D(pol1 • pol2) = D(pol1) • pol2 + E(pol1) • D(pol2)
 D(pol*) = E(pol)* • D(pol) • pol*

D(pol) ∈ (Pol * L * Pol) Set

• S is the set of dups, plus a fresh start state
• ε l pkt = { pkt’ | pkt’ ∈ ⟦E(kl)⟧ pkt }
• δ l pkt = { (pkt’, l’) | (d, l’, k) ∈ ⟦D(kl)⟧ ∧ pkt’ ∈ ⟦d⟧ pkt }

NetKAT Automaton

where kl is the "continuation" of dupl

Syntactic Derivatives
 E(false) = false
 E(true) = true
 E(f = n) = f = n
 E(f := n) = f := n
 E(!pol) = !pol
 E(dupl) = false
 E(pol1 + pol2) = E(pol1) + E(pol2)
 E(pol1 • pol2) = E(pol1) • E(pol2)
 E(pol*) = E(pol)*

E(pol) ∈ Pol D(false) = {}
 D(true) = {}
 D(f=n) = {}
 D(f:=n) = {}
 D(!pol) = {}
 D(dupl) = { (true, l, true) }
 D(pol1 + pol2) = D(pol1) + D(pol2)
 D(pol1 • pol2) = D(pol1) • pol2 + E(pol1) • D(pol2)
 D(pol*) = E(pol)* • D(pol) • pol*

D(pol) ∈ (Pol * L * Pol) Set

dup labels

• S is the set of dups, plus a fresh start state
• ε l pkt = { pkt’ | pkt’ ∈ ⟦E(kl)⟧ pkt }
• δ l pkt = { (pkt’, l’) | (d, l’, k) ∈ ⟦D(kl)⟧ ∧ pkt’ ∈ ⟦d⟧ pkt }

NetKAT Automaton

where kl is the "continuation" of dupl

We’d like to be able to answer questions like:

“Does the network isolate A and B?"

Can reduce this question to equivalence!

φ⊨

Application: Traffic Isolation

A • (pol • topo)* • B ≡ false

Application: Loop Freedom
Can exploit automata representations to efficiently
check whether a network is free of forwarding loops...

∀α. (p • t)+ • α • (p • t)+ • α ≡ false

• ∀ pkt, pkt’. pkt’ ∈ ⟦E(Φ(in • (p • t)+))⟧ pkt

• Check whether pkt’ ∈ ⟦E(Φ(p • t)+))⟧ pkt’

Formally:

Can be made fast using sparse matrix representation

Intuitively,

Single-Device
Verification in P4

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

P4/RMT [SIGCOMM '13]

Traffic
Manager

Parser Ingress Egress Deparser

Language

action	learn()	{	
		generate_digest(RECV,	learn_digest);	
}	

table	smac	{	
		reads	{	ethernet.srcAddr	:	exact;	}	
		actions	{	learn;	nop;	}	
		default_action:	nop;	
}

• Slogan: "constant work in constant time"
- No pointers or complex data types
- Bounded state
- No loops

• Key construct is a match-action table

Match Action
s

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop

header_type	ethernet_t	{	
		fields	{	
				dstAddr	:	48;	
				srcAddr	:	48;	
				etherType	:	16;	
		}	
}	

header_type	intrinsic_metadata_t	{	
		fields	{	
				mcast_grp	:	4;	
				egress_rid	:	4;	
				mcast_hash	:	16;	
				lf_field_list:	32;	
		}	
}	

header	ethernet_t	ethernet;	
metadata	intrinsic_metadata_t	intrinsic_metadata;	

parser	start	{	
		return	parse_ethernet;	
}	

parser	parse_ethernet	{	
		extract(ethernet);	
		return	ingress;	
}	

field_list	mac_learn_digest	{	
		ethernet.srcAddr;	
		standard_metadata.ingress_port;	
}	

action	mac_learn()	{	
		generate_digest(MAC_LEARN_RECEIVER,	mac_learn_digest);	
}	

action	forward(port)	{	
		modify_field(standard_metadata.egress_spec,	port);	
}	

action	broadcast()	{	
		modify_field(intrinsic_metadata.mcast_grp,	1);	
}

table	smac	{	
		reads	{	
				ethernet.srcAddr	:	exact;	
		}	
		actions	{	
				mac_learn;		
				nop;	
		}	
		size	:	512;	
}	

table	dmac	{	
		reads	{	
				ethernet.dstAddr	:	exact;	
		}	
		actions	{	
				forward;	
				broadcast;	
		}	
		size	:	512;	
}	

table	mcast_src_pruning	{	
		reads	{	
				standard_metadata.instance_type	:	exact;	
		}	
		actions	{_	
				nop;		
				drop;	
		}	
		size	:	1;	
}	

control	ingress	{	
		apply(smac);	
		apply(dmac);	
}	

control	egress	{	
		(if(standard_metadata.ingress_port	==	
						standard_metadata.egress_port)	{	
				apply(mcast_src_pruning);	
		}	
}

Example: Ethernet Switch

header_type	ethernet_t	{	
		fields	{	
				dstAddr	:	48;	
				srcAddr	:	48;	
				etherType	:	16;	
		}	
}	

header_type	intrinsic_metadata_t	{	
		fields	{	
				mcast_grp	:	4;	
				egress_rid	:	4;	
				mcast_hash	:	16;	
				lf_field_list:	32;	
		}	
}	

header	ethernet_t	ethernet;	
metadata	intrinsic_metadata_t	intrinsic_metadata;	

parser	start	{	
		return	parse_ethernet;	
}	

parser	parse_ethernet	{	
		extract(ethernet);	
		return	ingress;	
}	

field_list	mac_learn_digest	{	
		ethernet.srcAddr;	
		standard_metadata.ingress_port;	
}	

action	mac_learn()	{	
		generate_digest(MAC_LEARN_RECEIVER,	mac_learn_digest);	
}	

action	forward(port)	{	
		modify_field(standard_metadata.egress_spec,	port);	
}	

action	broadcast()	{	
		modify_field(intrinsic_metadata.mcast_grp,	1);	
}

table	smac	{	
		reads	{	
				ethernet.srcAddr	:	exact;	
		}	
		actions	{	
				mac_learn;		
				nop;	
		}	
		size	:	512;	
}	

table	dmac	{	
		reads	{	
				ethernet.dstAddr	:	exact;	
		}	
		actions	{	
				forward;	
				broadcast;	
		}	
		size	:	512;	
}	

table	mcast_src_pruning	{	
		reads	{	
				standard_metadata.instance_type	:	exact;	
		}	
		actions	{_	
				nop;		
				drop;	
		}	
		size	:	1;	
}	

control	ingress	{	
		apply(smac);	
		apply(dmac);	
}	

control	egress	{	
		(if(standard_metadata.ingress_port	==	
						standard_metadata.egress_port)	{	
				apply(mcast_src_pruning);	
		}	
}

Example: Ethernet Switch

Types

Parsers

Actions

Tables

Controls

Data Plane Errors

Making switches more
programmable increases flexibility...

...but also opens up possibilities for
new kinds of errors:

• Reading/writing invalid headers
• Unhanded exceptions
• Incorrect use of packet metadata
• Malformed parsers/deparsers
• Unintended control flows

Approach

P4 Program

Guarded Commands

First-Order Formula

✔ ✘

An Axiomatic Basis for
Computer Programming

C. A. R. HOARE
The Queen's University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow f rom a pursuance of these topics.

KEY WORDS AND PHRASES: axiomatic method, theory of programming'
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24

1. Introduction
Computer programming is an exact science in tha t all

the properties of a program and all the consequences of
executing it in any given environment can, in principle,
be found out from the text of the program itself by means
of purely deductive reasoning. Deductive reasoning in-
volves the application of valid rules of inference to sets of
valid axioms. I t is therefore desirable and interesting to
elucidate the axioms and rules of inference which underlie
our reasoning about computer programs. The exact choice
of axioms will to some extent depend on the choice of
programming language. For illustrative purposes, this
paper is confined to a very simple language, which is effec-
tively a subset of all eurrent procedure-oriented languages.

2. Computer Arithmetic
The first requirement in valid reasoning about a pro-

gram is to know the properties of the elementary operations
which it invokes, for example, addition and multiplication
of integers. Unfortunately, in several respects computer
arithmetic is not the same as the arithmetic familiar to
mathematicians, and it is necessary to exercise some care
in selecting an appropriate set of axioms. For example, the
axioms displayed in Table I are rather a small selection
of axioms relevant to integers. From this incomplete set

* Depurtment of Computer Science

of axioms it is possible to deduce such simple theorems as:

x = x + y X O

y < r ~ r + y X q = (r - y) + y X (1 + q)

The proof of the second of these is:

A5 (r - - y) + y X (l + q)

= (r - - y) + (y X l + y X q)

A9 = (r - - y) + (y + y X q)

A3 = ((r - - y) + y) + y X q

A6 = r + y X q p rov idedy < r

The axioms A1 to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of "integers" which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their t ru th is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of "over-
flow"; for example:

(1) Strict interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of A1 to A9 are strict, in the sense
that both sides exist or fail to exist together.

(2) Firm boundary: the result of an overflowing opera-
tion is taken as the maximum value represented.

(3) Modulo arithmetic: the result of an overflowing
operation is computed modulo the size of the set of integers
represented.

These three techniques are illustrated in Table I I by
addition and multiplication tables for a trivially small
model in which 0, 1, 2, and 3 are the only integers repre-
sented.

I t is interesting to note that the different systems satisfy-
ing axioms A1 to A9 may be rigorously distinguished from
each other by choosing a particular one of a set of mutually
exclusive supplementary axioms. For example, infinite
arithmetic satisfies the axiom:

A10z ~ 3 x V y (y < x),

where all finite arithmetics satisfy:

A10~ Vx (x < max)

where "max" denotes the largest integer represented.
Similarly, the three treatments of overflow may be

distinguished by a choice of one of the following aMoms
relating to the value of max + 1:

A l l s ~ 3 x (x = max + 1) (strict interpretation)

A l l , max + 1 = max (firm boundary)

AllM max + 1 = 0 (modulo arithmetic)

Having selected one of these axioms, it is possible to
use it in deducing the properties of programs; however,

576 Communications of the ACM Volume 12 / Number 10 / October, 1969

Example: Header Validity

0 1

ethernet

6

vlan_tag_[0]

3

fabric_header

4

llc_header

2

ipv6

ipv4

5

mpls[next]

ipv6

ipv4

mpls[next]

7

vlan_tag_[1]

12

fabric_header_unicast

fabric_header_multicast

fabric_header_mirror

13

fabric_header_cpu

11

snap_header

8

inner_ipv6

inner_ipv4

10

tcp

icmp

15

udp

16

gre

mpls[next]

inner_ipv6

inner_ipv4

9

inner_ethernet

inner_udp

inner_tcp

inner_icmp

sflow

18

vxlan_gpe

19

genv

17

vxlan

inner_ipv6

inner_ipv4

nvgre

erspan_t3_header

14

fabric_payload_headerfabric_header_sflow

fabric_payload_header

vlan_tag_[0]

ipv6

ipv4

mpls[next]

inner_ipv6

inner_ipv4

ipv6

ipv4

mpls[next]

vlan_tag_[0]

llc_header

ipv6

ipv4

mpls[next]

inner_ethernet

20

vxlan_gpe_int_header

inner_ipv6

inner_ipv4

inner_ethernet

inner_ethernet

21

int_header

22

int_val[next]

23

int_switch_id_header

inner_ethernet

int_val[next]

24

int_ingress_port_id_header

25

int_hop_latency_header

26

int_q_occupancy_header

27

int_ingress_tstamp_header

28

int_egress_port_id_header

29

int_q_congestion_header

30

int_egress_port_tx_utilization_header

int_val[next]

0 1

ethernet

6

vlan_tag_[0]

3

fabric_header

4

llc_header

2

ipv6

ipv4

5

mpls[next]

ipv6

ipv4

mpls[next]

7

vlan_tag_[1]

12

fabric_header_unicast

fabric_header_multicast

fabric_header_mirror

13

fabric_header_cpu

11

snap_header

8

inner_ipv6

inner_ipv4

10

tcp

icmp

15

udp

16

gre

mpls[next]

inner_ipv6

inner_ipv4

9

inner_ethernet

inner_udp

inner_tcp

inner_icmp

sflow

18

vxlan_gpe

19

genv

17

vxlan

inner_ipv6

inner_ipv4

nvgre

erspan_t3_header

14

fabric_payload_headerfabric_header_sflow

fabric_payload_header

vlan_tag_[0]

ipv6

ipv4

mpls[next]

inner_ipv6

inner_ipv4

ipv6

ipv4

mpls[next]

vlan_tag_[0]

llc_header

ipv6

ipv4

mpls[next]

inner_ethernet

20

vxlan_gpe_int_header

inner_ipv6

inner_ipv4

inner_ethernet

inner_ethernet

21

int_header

22

int_val[next]

23

int_switch_id_header

inner_ethernet

int_val[next]

24

int_ingress_port_id_header

25

int_hop_latency_header

26

int_q_occupancy_header

27

int_ingress_tstamp_header

28

int_egress_port_id_header

29

int_q_congestion_header

30

int_egress_port_tx_utilization_header

int_val[next]

Reading or writing an invalid header yields an undefined
value (!) but packet headers have complex dependencies

Example: Header Validity

0 1

ethernet

6

vlan_tag_[0]

3

fabric_header

4

llc_header

2

ipv6

ipv4

5

mpls[next]

ipv6

ipv4

mpls[next]

7

vlan_tag_[1]

12

fabric_header_unicast

fabric_header_multicast

fabric_header_mirror

13

fabric_header_cpu

11

snap_header

8

inner_ipv6

inner_ipv4

10

tcp

icmp

15

udp

16

gre

mpls[next]

inner_ipv6

inner_ipv4

9

inner_ethernet

inner_udp

inner_tcp

inner_icmp

sflow

18

vxlan_gpe

19

genv

17

vxlan

inner_ipv6

inner_ipv4

nvgre

erspan_t3_header

14

fabric_payload_headerfabric_header_sflow

fabric_payload_header

vlan_tag_[0]

ipv6

ipv4

mpls[next]

inner_ipv6

inner_ipv4

ipv6

ipv4

mpls[next]

vlan_tag_[0]

llc_header

ipv6

ipv4

mpls[next]

inner_ethernet

20

vxlan_gpe_int_header

inner_ipv6

inner_ipv4

inner_ethernet

inner_ethernet

21

int_header

22

int_val[next]

23

int_switch_id_header

inner_ethernet

int_val[next]

24

int_ingress_port_id_header

25

int_hop_latency_header

26

int_q_occupancy_header

27

int_ingress_tstamp_header

28

int_egress_port_id_header

29

int_q_congestion_header

30

int_egress_port_tx_utilization_header

int_val[next]

0 1

ethernet

6

vlan_tag_[0]

3

fabric_header

4

llc_header

2

ipv6

ipv4

5

mpls[next]

ipv6

ipv4

mpls[next]

7

vlan_tag_[1]

12

fabric_header_unicast

fabric_header_multicast

fabric_header_mirror

13

fabric_header_cpu

11

snap_header

8

inner_ipv6

inner_ipv4

10

tcp

icmp

15

udp

16

gre

mpls[next]

inner_ipv6

inner_ipv4

9

inner_ethernet

inner_udp

inner_tcp

inner_icmp

sflow

18

vxlan_gpe

19

genv

17

vxlan

inner_ipv6

inner_ipv4

nvgre

erspan_t3_header

14

fabric_payload_headerfabric_header_sflow

fabric_payload_header

vlan_tag_[0]

ipv6

ipv4

mpls[next]

inner_ipv6

inner_ipv4

ipv6

ipv4

mpls[next]

vlan_tag_[0]

llc_header

ipv6

ipv4

mpls[next]

inner_ethernet

20

vxlan_gpe_int_header

inner_ipv6

inner_ipv4

inner_ethernet

inner_ethernet

21

int_header

22

int_val[next]

23

int_switch_id_header

inner_ethernet

int_val[next]

24

int_ingress_port_id_header

25

int_hop_latency_header

26

int_q_occupancy_header

27

int_ingress_tstamp_header

28

int_egress_port_id_header

29

int_q_congestion_header

30

int_egress_port_tx_utilization_header

int_val[next]

Worse, P4's type system does not offer good constructs
for precisely documenting which headers are valid!

Reading or writing an invalid header yields an undefined
value (!) but packet headers have complex dependencies

Demo

Example: Correct Decapsulation
action	remove_vlan_single_tagged()	{	
				modify_field(ethernet.etherType,	vlan_tag_[0].etherType);	
				remove_header(vlan_tag_[0]);	
}	
action	remove_vlan_double_tagged()	{	
				modify_field(ethernet.etherType,	vlan_tag_[1].etherType);	
				remove_header(vlan_tag_[0]);	
				remove_header(vlan_tag_[1]);	
}	
table	vlan_decap	{	
				reads	{	
								vlan_tag_[0]:	valid;	
								vlan_tag_[1]:	valid;	
				}	
				actions	{	
								nop;	
								remove_vlan_single_tagged;	
								remove_vlan_double_tagged;	
				}	
}	

@pragma	assert	not(valid(vlan[0])	or	valid(vlan[1]))

Challenge

A P4 program is really only
half of a program

The match-action tables are
populated by the control
plane which is unknown!

Need a way to document
assumptions about the
control plane

Match Action
s

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop

Ghost State

header_type	_p4v_zombie_t	{	
		fields	{	
				...	
				decap_order	:	2;	
				decap_hit	:	1;	
				decap_action	:	2;	
				decap_reads_0	:	1;	
	}	
}	
action	decap_nop()	{	
		modify_field(_p4v_zombie.decap_hit,	1);	
		modify_field(_p4v_zombie.decap_reads_0,	valid(vlan[0]));	
		modify_field(_p4v_zombie.decap_action,	1);	
}

@pragma	assume	hit(decap)

Idea: instrument program with ghost state

Can then formulate control-plane assumptions

Wrapping up...

Conclusions

The intersection between formal methods and
networking has gotten very interesting in recent years

The emergence of SDN/P4 offers a unique
opportunity to shape how networks are built and
operated for decades to come

Many challenging problems remain:
• Stateful verification
• Quantitative properties
• Usability by non-experts

Thank you!

• Carolyn Anderson (UMass)
• Shrutarshi Basu (Cornell)
• Spiros Eliopoulos (Inhabited Type)
• Arjun Guha (UMass)
• Bill Callahan (Yale)
• Jean-Baptiste Jeannin (Samsung Labs)
• Dexter Kozen (Cornell)
• Praveen Kumar (Cornell)
• JK Lee (Barefoot Networks)

• Matthew Milano (Cornell)
• Mark Reitblatt (Facebook)
• Cole Schlesinger (Barefoot Networks)
• Robert Soulé (USI / Barefoot Networks)
• Alexandra Silva (UCL)
• Steffen Smolka (Cornell)
• Laure Thompson (Cornell)
• David Walker (Princeton)
• Han Wang (Barefoot Networks)

http://frenetic-lang.org/

Join Us!

Backup Slides

Network Updates

Initial State

Target State

How can we transition
between global states?

Network Updates

Initial State

Target State

How can we transition
between global states?

Network Updates

Initial State

Target State

How can we transition
between global states?

Problem: naive updates can
break important invariants!

Consistent Updates [SIGCOMM '12]
Consistency Guarantee:
every packet (or flow) will
be processed by a single
version of the network-
wide configuration

Implementations:
• Two-Phase Update
• One-Touch Update
• Order Update

