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Can you help me 
fix my WiFi?



Network Management

Network operators use a 
variety of techniques to keep 
things running including: 

• Generating configurations 
from high-level policies 

• Scraping configurations 
using command-line tools 

• Diagnosing errors with 
ping and traceroute
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Abstract
The Internet protocol suite, TCP/IP, was first proposed
fifteen years ago. It was developed by the Defense
Advanced Research Projects Agency (DARPA), and
has been used widely in military and commercial
systems. While there have been papers and
specifications that describe how the protocols work, it is
sometimes difficult to deduce from these why the
protocol is as it is. For example, the Internet protocol is
based on a connectionless or datagram mode of service.
The motivation for this has been greatly misunderstood.
This paper attempts to capture some of the early
reasoning which shaped the Internet protocols.

1. Introduction
For the last 15 years1 , the Advanced Research Projects
Agency of the U.S. Department of Defense has been
developing a suite of protocols for packet switched
networking. These protocols, which include the Internet
Protocol (IP), and the Transmission Control Protocol
(TCP), are now U.S. Department of Defense standards
for internetworking, and are in wide use in the
commercial networking environment. The ideas
developed in this effort have also influenced other
protocol suites, most importantly the connectionless
configuration of the ISO protocols2,3,4.

While specific information on the DOD protocols is
fairly generally available5,6,7, it is sometimes difficult to
determine the motivation and reasoning which led to the
design.

In fact, the design philosophy has evolved considerably
from the first proposal to the current standards. For
example, the idea of the datagram, or connectionless
service, does not receive particular emphasis in the first
paper, but has come to be the defining characteristic of
the protocol. Another example is the layering of the

architecture into the IP and TCP layers. This seems
basic to the design, but was also not a part of the
original proposal. These changes in the Internet design
arose through the repeated pattern of implementation
and testing that occurred before the standards were set.

The Internet architecture is still evolving. Sometimes a
new extension challenges one of the design principles,
but in any case an understanding of the history of the
design provides a necessary context for current design
extensions. The connectionless configuration of ISO
protocols has also been colored by the history of the
Internet suite, so an understanding of the Internet design
philosophy may be helpful to those working with ISO.

This paper catalogs one view of the original objectives
of the Internet architecture, and discusses the relation
between these goals and the important features of the
protocols.

2. Fundamental Goal
The top level goal for the DARPA Internet Architecture
was to develop an effective technique for multiplexed
utilization of existing interconnected networks. Some
elaboration is appropriate to make clear the meaning of
that goal.

 The components of the Internet were networks, which
were to be interconnected to provide some larger
service. The original goal was to connect together the
original ARPANET8 with the ARPA packet radio
network9,10, in order to give users on the packet radio
network access to the large service machines on the
ARPANET. At the time it was assumed that there would
be other sorts of networks to interconnect, although the
local area network had not yet emerged.

An alternative to interconnecting existing networks
would have been to design a unified system which
incorporated a variety of different transmission media, a

Designed to be robust 
even when some nodes 
misbehave or even 
experience outright 
failures...

...defers many important 
issues such as 
performance, security,  
accountability, etc.



Modern Challenges

Networks have truly 
become a critical part of 
our infrastructure...

...they have grown 
dramatically in size and 
complexity...

...and they are becoming 
unwieldy for operators to 
manage correctly!



Desired Properties

• Connectivity 
• Fault-Tolerance 
• Isolation 
• Loop Freedom 
• Blackhole Freedom 
• Service Chaining 
• Load Balancing



This Talk

Two (mostly) automated approaches 
for verifying formal properties of 

network data planes



This Talk

Plan: 
• Network-wide properties in NetKAT 
• Single-device properties in P4

Two (mostly) automated approaches 
for verifying formal properties of 

network data planes



Network-Wide 
Verification in NetKAT



Data plane: forwards packets, enforces 
access control, monitors flows, etc.

Control Plane: discovers topology, 
computes routes, manages policy, etc.

Conventional Networking

2



Software-Defined Networking
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Packets → Packets

Model
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NetKAT Syntax

  pol ::=   false 
              | true 
              | f = n 
              | f := n 
              | pol1 + pol2 
              | pol1 • pol2 
              | !pol 
              | pol* 

| dup
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NetKAT Syntax

  pol ::=   false 
              | true 
              | f = n 
              | f := n 
              | pol1 + pol2 
              | pol1 • pol2 
              | !pol 
              | pol* 

| dup

Boolean 
Predicates

Regular 
Expressions

+

Packet 
Primitives

+

} KAT}NetKAT

Negation may only be applied to Boolean predicates:  
  true, false, f = n, closed under +, •, and !

`

if b then p1 else p2 ≜ (b • p1) + (!b  • p2) 

while b do p ≜ (b • p)* • !b 

S⇾S’ ≜ sw=S • dup  • sw:=S’ • dup



Semantics
pol ::=    
   | false 
   | true 
   | field = val 
   | field := val 
   | pol1 + pol2 
   | pol1 • pol2 
   | !pol 
   | pol* 

   | dup



Semantics
pol ::=    
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   | field = val 
   | field := val 
   | pol1 + pol2 
   | pol1 • pol2 
   | !pol 
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   | dup
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Semantics
pol ::=    
   | false 
   | true 
   | field = val 
   | field := val 
   | pol1 + pol2 
   | pol1 • pol2 
   | !pol 
   | pol* 

   | dup

Local: input-output behavior of switches

〚Φ(pol)〛∈  Packets ➞ Packets

Global: network-wide paths

〚pol〛∈  Histories ➞ Histories



Encoding Tables and Links
Switch routing tables and network topologies 
can be represented in NetKAT using 
straightforward encodings

Match Actions

dstport=22 Drop

srcip=10.0.0.1 Forward	1

* Forward	2

if dstport=22 then false 
elsif srcip=10.0.0.1 then port := 1 
else port := 2

A B C

A ⇾ B + B ⇾A + B ⇾ C + C ⇾ B
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Match Actions

dstport=22 Drop

srcip=10.0.0.1 Forward	1

* Forward	2

if dstport=22 then false 
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pol

topo

Encoding Networks

A network can be encoded in NetKAT by interleaving 
steps of processing by switches and topology

(pol • topo)*



Decision Procedure
Can check whether programs are equivalent automatically!

Theoretical Insight: NetKAT programs ↔ NetKAT automata
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Decision Procedure
Can check whether programs are equivalent automatically!

Theoretical Insight: NetKAT programs ↔ NetKAT automata

p q

≈

Algorithm checks whether automata are bisimilar
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From Programs to Automata

p

Dpk1(p)

Dpk2(p)

Dpk3(p)

pk1

pk2

pk3

  Dc L = { w | c · w ∈ L }

Derivatives

Automata

Can be defined 
syntactically via a 
simple recursive 

definition 

Terminates since 
every program has 
a finite number of 
distinct derivatives



NetKAT Automata
NetKAT automata recognize the histories generated by 
packets as they traverse the network: 

pktin • pkt1 • dup • ... • dup • pktn dup • putout 

Similar to standard automata, but generalized to packets



NetKAT Automata

A NetKAT automaton M = (S, s0, ε, δ) is a tuple where: 
• S is a finite set of states, 
• s0 ∈ S is the start state, 
• ε ∈ S → Packet → Packet Set is the “acceptance” function 
• δ ∈ S → Packet → (State * Packet) Set is the “transition” function

NetKAT automata recognize the histories generated by 
packets as they traverse the network: 

pktin • pkt1 • dup • ... • dup • pktn dup • putout 

Similar to standard automata, but generalized to packets



Syntactic Derivatives
  E(false) = false  
  E(true) = true  
  E(f = n) = f = n 
  E(f := n) = f := n 
  E(!pol) = !pol 
  E(dupl) = false 
  E(pol1 + pol2) = E(pol1) + E(pol2) 
  E(pol1 • pol2) = E(pol1)  • E(pol2) 
  E(pol*) = E(pol)*

E(pol) ∈ Pol   D(false) = {} 
  D(true) = {} 
  D(f=n) = {} 
  D(f:=n) = {} 
  D(!pol) = {} 
  D(dupl) = { (true, l, true) } 
  D(pol1 + pol2) = D(pol1) + D(pol2) 
  D(pol1 • pol2) = D(pol1) • pol2 + E(pol1) • D(pol2)                   
  D(pol*) = E(pol)* • D(pol) • pol*

D(pol) ∈ (Pol * L * Pol) Set

• S is the set of dups, plus a fresh start state 
• ε l pkt = { pkt’ | pkt’ ∈ ⟦E(kl)⟧ pkt } 
• δ l pkt = { (pkt’, l’) | (d, l’, k) ∈ ⟦D(kl)⟧ ∧ pkt’ ∈ ⟦d⟧ pkt }

NetKAT Automaton

where kl is the "continuation" of dupl
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• S is the set of dups, plus a fresh start state 
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We’d like to be able to answer questions like:  

“Does the network isolate A and B?"

Can reduce this question to equivalence!

φ⊨

Application: Traffic Isolation

A • (pol  • topo)* • B ≡ false



Application: Loop Freedom
Can exploit automata representations to efficiently 
check whether a network is free of forwarding loops...

∀α. (p • t)+ • α • (p • t)+ • α ≡ false

• ∀ pkt, pkt’. pkt’ ∈ ⟦E(Φ(in • (p • t)+))⟧ pkt 

• Check whether pkt’ ∈ ⟦E(Φ(p • t)+))⟧ pkt’

Formally:

Can be made fast using sparse matrix representation

Intuitively,



Single-Device 
Verification in P4
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Language

action	learn()	{	
		generate_digest(RECV,	learn_digest);	
}	

table	smac	{	
		reads	{	ethernet.srcAddr	:	exact;	}	
		actions	{	learn;	nop;	}	
		default_action:	nop;	
}

• Slogan: "constant work in constant time" 
- No pointers or complex data types 
- Bounded state 
- No loops 

• Key construct is a match-action table

Match Action
s

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop



header_type	ethernet_t	{	
		fields	{	
				dstAddr	:	48;	
				srcAddr	:	48;	
				etherType	:	16;	
		}	
}	

header_type	intrinsic_metadata_t	{	
		fields	{	
				mcast_grp	:	4;	
				egress_rid	:	4;	
				mcast_hash	:	16;	
				lf_field_list:	32;	
		}	
}	

header	ethernet_t	ethernet;	
metadata	intrinsic_metadata_t	intrinsic_metadata;	

parser	start	{	
		return	parse_ethernet;	
}	

parser	parse_ethernet	{	
		extract(ethernet);	
		return	ingress;	
}	

field_list	mac_learn_digest	{	
		ethernet.srcAddr;	
		standard_metadata.ingress_port;	
}	

action	mac_learn()	{	
		generate_digest(MAC_LEARN_RECEIVER,	mac_learn_digest);	
}	

action	forward(port)	{	
		modify_field(standard_metadata.egress_spec,	port);	
}	

action	broadcast()	{	
		modify_field(intrinsic_metadata.mcast_grp,	1);	
}

table	smac	{	
		reads	{	
				ethernet.srcAddr	:	exact;	
		}	
		actions	{	
				mac_learn;		
				nop;	
		}	
		size	:	512;	
}	

table	dmac	{	
		reads	{	
				ethernet.dstAddr	:	exact;	
		}	
		actions	{	
				forward;	
				broadcast;	
		}	
		size	:	512;	
}	

table	mcast_src_pruning	{	
		reads	{	
				standard_metadata.instance_type	:	exact;	
		}	
		actions	{_	
				nop;		
				drop;	
		}	
		size	:	1;	
}	

control	ingress	{	
		apply(smac);	
		apply(dmac);	
}	

control	egress	{	
		(if(standard_metadata.ingress_port	==	
						standard_metadata.egress_port)	{	
				apply(mcast_src_pruning);	
		}	
}

Example: Ethernet Switch
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Parsers

Actions

Tables

Controls



Data Plane Errors

Making switches more 
programmable increases flexibility... 

...but also opens up possibilities for 
new kinds of errors: 

• Reading/writing invalid headers 
• Unhanded exceptions 
• Incorrect use of packet metadata 
• Malformed parsers/deparsers 
• Unintended control flows



Approach

P4 Program

Guarded Commands

First-Order Formula

✔ ✘

An Axiomatic Basis for 
Computer Programming 

C. A. R. HOARE 
The Queen's University of Belfast,* Northern Ireland 

In this paper an attempt is made to explore the logical founda- 
tions of computer programming by use of techniques which 
were first applied in the study of geometry and have later 
been extended to other branches of mathematics. This in- 
volves the elucidation of sets of axioms and rules of inference 
which can be used in proofs of the properties of computer 
programs. Examples are given of such axioms and rules, and 
a formal proof of  a simple theorem is displayed. Finally, it is 
argued that important advantages, both theoretical and prac- 
tical, may follow f rom a pursuance of  these topics. 

KEY WORDS AND PHRASES: axiomatic method, theory of programming' 
proofs of programs, formal language definition, programming language 
design, machine-independent programming, program documentation 
CR CATEGORY: 4.0, 4.21,4.22, 5.20, 5.21,5.23, 5.24 

1. Introduction 
Computer  programming is an exact science in tha t  all 

the properties of a program and all the consequences of 
executing it  in any given environment can, in principle, 
be found out from the text of the program itself by means 
of purely deductive reasoning. Deductive reasoning in- 
volves the application of valid rules of inference to sets of 
valid axioms. I t  is therefore desirable and interesting to 
elucidate the axioms and rules of inference which underlie 
our reasoning about computer programs. The exact choice 
of axioms will to some extent depend on the choice of 
programming language. For illustrative purposes, this 
paper is confined to a very simple language, which is effec- 
tively a subset of all eurrent procedure-oriented languages. 

2. Computer Arithmetic  
The first requirement in valid reasoning about a pro- 

gram is to know the properties of the elementary operations 
which it  invokes, for example, addition and multiplication 
of integers. Unfortunately, in several respects computer 
arithmetic is not the same as the arithmetic familiar to 
mathematicians, and it  is necessary to exercise some care 
in selecting an appropriate set of axioms. For example, the 
axioms displayed in Table I are rather a small selection 
of axioms relevant to integers. From this incomplete set 

* Depurtment of Computer Science 

of axioms it is possible to deduce such simple theorems as: 

x = x + y X O  

y < r  ~ r  + y  X q = ( r -  y) + y  X (1 + q )  

The proof of the second of these is: 

A5 ( r - - y )  + y X ( l + q )  

= ( r - - y ) +  ( y X l + y X q )  

A9 = ( r - -  y) + (y + y  X q) 

A3 = ( ( r - - y ) + y ) + y X q  

A6 = r + y X q p rov idedy  < r 

The axioms A1 to A9 are, of course, true of the tradi- 
tional infinite set of integers in mathematics. However, 
they are also true of the finite sets of "integers" which are 
manipulated by computers provided that  they are con- 
fined to nonnegative numbers. Their  t ru th  is independent 
of the size of the set; furthermore, it is largely independent 
of the choice of technique applied in the event of "over- 
flow"; for example: 

(1) Strict interpretation: the result of an overflowing 
operation does not exist; when overflow occurs, the offend- 
ing program never completes its operation. Note that  in 
this case, the equalities of A1 to A9 are strict, in the sense 
that  both sides exist or fail to exist together. 

(2) Firm boundary:  the result of an overflowing opera- 
tion is taken as the maximum value represented. 

(3) Modulo arithmetic: the result of an overflowing 
operation is computed modulo the size of the set of integers 
represented. 

These three techniques are illustrated in Table I I  by 
addition and multiplication tables for a trivially small 
model in which 0, 1, 2, and 3 are the only integers repre- 
sented. 

I t  is interesting to note that  the different systems satisfy- 
ing axioms A1 to A9 may be rigorously distinguished from 
each other by choosing a particular one of a set of mutually 
exclusive supplementary axioms. For  example, infinite 
arithmetic satisfies the axiom: 

A10z ~ 3 x V y  (y < x), 

where all finite arithmetics satisfy: 

A10~ Vx (x < max) 

where "max" denotes the largest integer represented. 
Similarly, the three treatments of overflow may be 

distinguished by a choice of one of the following aMoms 
relating to the value of max + 1: 

A l l s  ~ 3 x  (x = max + 1) (strict interpretation) 

A l l ,  max + 1 = max (firm boundary)  

AllM max + 1 = 0 (modulo arithmetic) 

Having selected one of these axioms, it  is possible to 
use it  in deducing the properties of programs; however, 
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Example: Header Validity
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Reading or writing an invalid header yields an undefined 
value (!) but packet headers have complex dependencies
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Worse, P4's type system does not offer good constructs 
for precisely documenting which headers are valid!

Reading or writing an invalid header yields an undefined 
value (!) but packet headers have complex dependencies



Demo



Example: Correct Decapsulation
action	remove_vlan_single_tagged()	{	
				modify_field(ethernet.etherType,	vlan_tag_[0].etherType);	
				remove_header(vlan_tag_[0]);	
}	
action	remove_vlan_double_tagged()	{	
				modify_field(ethernet.etherType,	vlan_tag_[1].etherType);	
				remove_header(vlan_tag_[0]);	
				remove_header(vlan_tag_[1]);	
}	
table	vlan_decap	{	
				reads	{	
								vlan_tag_[0]:	valid;	
								vlan_tag_[1]:	valid;	
				}	
				actions	{	
								nop;	
								remove_vlan_single_tagged;	
								remove_vlan_double_tagged;	
				}	
}	

@pragma	assert	not(valid(vlan[0])	or	valid(vlan[1]))



Challenge

A P4 program is really only 
half of a program 

The match-action tables are 
populated by the control 
plane which is unknown! 

Need a way to document 
assumptions about the 
control plane

Match Action
s

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop



Ghost State

header_type	_p4v_zombie_t	{	
		fields	{	
				...	
				decap_order	:	2;	
				decap_hit	:	1;	
				decap_action	:	2;	
				decap_reads_0	:	1;	
	}	
}	
action	decap_nop()	{	
		modify_field(_p4v_zombie.decap_hit,	1);	
		modify_field(_p4v_zombie.decap_reads_0,	valid(vlan[0]));	
		modify_field(_p4v_zombie.decap_action,	1);	
}

@pragma	assume	hit(decap)

Idea: instrument program with ghost state

Can then formulate control-plane assumptions



Wrapping up...



Conclusions

The intersection between formal methods and 
networking has gotten very interesting in recent years 

The emergence of SDN/P4 offers a unique 
opportunity to shape how networks are built and 
operated for decades to come 

Many challenging problems remain: 
• Stateful verification 
• Quantitative properties 
• Usability by non-experts
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Network Updates

Initial State 

Target State

How can we transition 
between global states?

Problem: naive updates can 
break important invariants!



Consistent Updates [SIGCOMM '12]
Consistency Guarantee: 
every packet (or flow) will 
be processed by a single 
version of the network-
wide configuration 

Implementations: 
• Two-Phase Update 
• One-Touch Update 
• Order Update


