
From Specifications
to Monitors

Klaus Havelund (NASA Jet Propulsion Laboratory/Caltech, USA)

Doron Peled (Bar Ilan University, Israel)

Dogan Ulus (Verimag/Universite Grenoble-Alpes, France)

Workshop on Software Correctness and Reliability
October 13-14, 2017

ETH, Zurich, Switzerland

Runtime verification

fault protection

event
event
event

response

monitor

log file analysis

event
event
event

monitor

command sequence analysis

command
command
command

monitor

command sequence analysis

command
command
command

monitor

command
sequence

verified
command
sequence

In April 2011 TraceContract was
selected by LADEE mission
management for writing the

flight rule checker!

Classical dimensions to consider = E3

•Efficiency

•Expressiveness

•Elegance

DejaVu
With:

Doron Peled (Bar Ilan University, Israel)

Dogan Ulus (Verimag/Universite Grenoble-Alpes, France)

First-order past time temporal formulas

The Logic

Derived Constructs Example

Result of verifying trace against a formula

true or false

a set of assignments

a BDD

Some definitions

• Domains D1, D2, …, possibly infinite

• Variables V = {x,y,…} ranging over domains x : D1, y : D2, …

• Assignments [x -> “tel”, y -> “tel2”]

• Predicates open(“tel”), open(x), close(y), …

• Ground predicates open(“tel”)

• A state is a set of ground predicates: {open(“tel1”), open(“tel2”)}

• A trace is a finite sequence of states: <s1,s2,…,sn>

First Semantics: the “standard” definition

Example

open(“tel”) open(“dict”) close(“tel2”)open(“out”)

We need to save all past values of file names that were opened,
and compare with the current one that is closed.

Lets look at a more complicated formula:
x y (q(y) S p(x))

p(5),
q(6),q(7),
q(8)

q(7),q(8),
q(9)

q(8),q(9),
q(10)

q(9),q(10),
q(11)

The answer is F: there is no common value of q(y) since q(5).

Lets look at a more complicated formula:
x y (q(y) S p(x))

p(3),
q(7),q(8),
q(9)

q(8),q(9),
q(10)

q(9),q(10),
q(11)

The answer is T: there is a common value of q(9) since p(3).

p(5),
q(6),q(7),
q(8)

x y (q(y) S p(x))
The “bookkeeping” is nontrivial:

p(3),
q(7),q(8),
q(9)

q(8),q(9),
q(10)

q(9),q(10),
q(11)

The answer is T: there is a common value of q(9) since p(3).

Keep common subsets of values of y in q(y) since you see p(5).
Keep common subsets of values of y in q(y) since you see p(3).

p(5),
q(6),q(7),
q(8)

x y (q(y) S p(x))
The “bookkeeping” is nontrivial:

p(3),
q(7),q(8),
q(9)

q(8),q(9),
q(10)

q(9),q(10),
q(11)

The answer is T: there is a common value of q(9) since p(3).
Keep common subsets of values of y in q(y) since you see p(3).
Do the same with x=5
In general we keep track of sets of tuples (assignments) of x
and y values: e.g. {(3,7), (3,8), (3,9)}, at each point.
Standard semantics does not give a good intuition how to
perform this bookkeeping!

x=3 with
y=7,8,9

x=3 with
y=8,9

x=3 with
y=9

Theorem:

complement
set
=

infinite set

Second semantics: Set semantics. Each
(sub)formula on a prefix of an execution denotes a
set of assignments that satisfy the formula.

Third Semantics:
representing sets of assignments as BDDs

not(p) ∧ q ∧ not(r) (p ∧ q ∧ r)
∨

(p ∧ q ∧ not(r))

open(“tel”) open(“dict”) close(“tel2”)open(“out”)

“tel” 000

“dict” 001

“out” 010

“tel2” 011

Value to
bit string
table

{000, 001, 010}

opened = {“tel”, “dict”,”out”}
b0b1b2

(!b0 ∧ !b1 ∧ !b2) ∨
(!b0 ∧ !b1 ∧ b2) ∨
(!b0 ∧ b1 ∧ !b2)

λ(b0b1b2).

We do not represent values directly. Instead we
enumerate values in binary, and store sets of
these binaries as BDDs.

We keep values in a hash to check reoccurrence

“tel” 000

“dict” 001

“out” 010

“tel2” 011

Value to
bit string
table

b0b1b2

000 001 010 011

{000, 001, 010}

{“tel”, “dict”,”out”}

(!b0 ∧ !b1 ∧ !b2) ∨
(!b0 ∧ !b1 ∧ b2) ∨
(!b0 ∧ b1 ∧ !b2)

λ(b0b1b2).

{000} union {001} union {010}

BDD(000) or BDD(001) or BDD(010)

Characteristic function for our bit vector set
representing the accumulated set of values
P open(f)

But not BDD(011) (for “tel2”)

numerations  100 are
for values not seen so far.

Characteristic function for our bit vector set

We account for values not seen so far.

As long as we use n bits and there will be less than 2n values, then
the higher enumerations represent values not seen so far.

In particular, the value 11…111 represents “all values not yet seen”.

We can negate, obtaining the BDD for ¬P open(f)
This is easy: replace F by T at leaf level.

We can start with a rather large value of n, hoping that the BDD will be compact.

We may also add a bit “on the fly”, when more than 2n values occur.

{
[x -> “a” , y -> 42] ,

[x -> “b” , y -> 52]
}

x0x1x2y0y1y2

0 0 0 0 0 0

0 0 1 0 0 1
or

“a” 000

“b” 001

42 000

52 001

x

y

forall x . forall y .
send(x,y) -> P recv(x,y)

recv(“a”,42)
recv(“b”,52)
…

Representing a set of assignments using
enumerations

Representing a set of assignments

{
[x -> “a” , y -> 42] ,

[x -> “b” , y -> 52]
}

“a” 000

“b” 001

x0x1x2y0y1y2

0 0 0 0 0 0

0 0 1 0 0 1
or

42 000

52 001

x

y

Representing a set of assignments

{
[x -> “a” , y -> 42] ,

[x -> “b” , y -> 52]
}

“a” 000

“b” 001

x0x1x2y0y1y2

0 0 0 0 0 0

0 0 1 0 0 1
or

42 000

52 001

x

y

Representing a set of assignments

{
[x -> “a” , y -> 42] ,

[x -> “b” , y -> 52]
}

“a” 000

“b” 001

x0x1x2y0y1y2

0 0 0 0 0 0

0 0 1 0 0 1
or

42 000

52 001

x

y

Looking back at the set semantics: since
every assignment is a BDD

We can replace the set operations with BDD operations:
Union  by disjunction , Intersection  by conjunction , hide is existential
quantification over all bits of variable.

Algorithm
var pre : SubFormula –m-> BDD
var now : SubFormula –m-> BDD

Limiting quantification

• Limiting quantification to seen values:

• Finite domains:

Implementation: DejaVu

http://javabdd.sourceforge.net

Architecture

login,John

open,tel

access,John,tel

close,tel

access,John,tel

logout,John

prop secure :

forall (user) forall (file)

access(user,file) ->

[login(user),logout(user))

&

[open(file),close(file))

*** Property secure violated on event number 5:

access(John,tel)

Scala parser
combinators

Apache commons CSV
(Comma Separated Value format)
parser

JavaBDD

Grammar:

01

0

1

2

3

4

5

f

m

01

0

1

2

3

4

5

f

m

01

0

1

2

FALSE

TRUE

TRUE

0 1

0

1

2

3

4

5

01

0

1 1

2 2

3

4

5

3

01

1

2

FALSE

TRUE

TRUE

01

0

1 1

2 2

3

4

5

3

FALSE

01

1

2

01

0

1

2

0 1

0

1

2

0 1

0

1

2

FALSE

Evaluation Properties in QTL

Evaluation Properties in MonPoly

Evaluation Results

Pros

• Compact.
• With k bits we can represent 2k values

• V values can be represented by log2(V) bits

• We expect to pay little for “surplus” bits.

• We can extend the BDDs with additional bits dynamically if needed.

• Complementation is efficient (just switching the 0 and 1 leaves).

• Values not yet seen are represented by unused bit patterns (avoid
using all bit patterns).

Cons

• We cannot compare variables beyond equality

• We cannot perform computations on values

Prop allAnswersOk :
forall t2 . forall a .

answer(t2,a) ->
exists t1 . exists q .
P question(t1,q)∧
t1 < t2 ∧ rightAnswer(q) = a

TraceContract
An internal Scala DSL for monitoring

generation of logs

requirements
relating events
across time

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

CommandMustSucceed:

“An issued command must succeed, without a failure to
occur before then”.

user reaction

excellent

• I read the manual and was up an
running, all before lunch

• my first spec had no errors and
just worked

but (2 days later)

• can I define a function and call it
in a formula?

• is it possible to re-use formulas?

external versus internal DSL

programming
language

DSL

parser

external DSL

programming
language

DSL

internal DSL

pros and cons for

pros

• decreases development effort

• increases expressiveness

• allows use of existing IDE,
debuggers, etc.

cons

• steep learning curve for non-Scala
programmers

• limited analyzability (for shallow
internal DSLs)

events

abstract class Event

case class Command(name: String, nr: Int) extends Event
case class Success (name: String, nr: Int) extends Event
case class Fail (name: String, nr: Int) extends Event

event
event
event

val trace : List[Event] =
List(

Command("STOP_DRIVING", 1),
Command("TAKE_PICTURE", 2),
Success("TAKE_PICTURE", 2),
Success("TAKE_PICTURE", 2)

)

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
require {

case Command(n,x) => RequireSuccess(n,x)
}

def RequireSuccess(name: String, number: Int) =
hot {

case Fail(`name`, `number`) => error
case Success(`name`, `number`) => ok

}
}

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
require {

case Command(n, x) =>
hot {

case Fail(`n`, `x`) => error
case Success(`n`, `x`) => ok

}
}

}

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
require {

case Command(n, x) =>
not(Fail(n, x)) until (Success(n, x))

}
}

pattern LTL formula

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class ACommandMustSucceed extends Monitor[Event] {
property {

globally(
Command("A",42) implies

not(Fail("A", 42)) until (Success("A", 42))
)

}
}

LTL formula LTL formula

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)
}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {
var count = 0
require {

case Command(n, x) if count < 10 =>
count += 1
not(Fail(n, x)) until (Success(n, x))

}
}

first 10 commands must succeed

the state function

class MaxOneSuccess extends Monitor[Event]
{

require {
case Success(_, number) =>

state {
case Success(_, `number`) => error

}
}

}

CommandMustSucceed:

“An issued command can succeed at most once”.

class TWTA_Ka extends Monitor[Event] {
property { Init }

def Init: Formula =
state {

case Command("TURNON", "TWTA", time, _) => On(time)
case Command("TURNON", "KA", _, _) => error

}

def On(time: Int): Formula =
state {

case Command("TURNOFF", "TWTA", _, _) => Init
case Command("TURNON", "KA", kaTime, _)

if (time,kaTime) within (300 seconds) => error
}

}

state machines

rule-based system
for expressing past time logic

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n,x) => Commanded(n,x) +
case Success(n,x) => Commanded(n,x) ?-

}
}

Success Has a Reason:

“A command success must be caused by an issued command”.

analyzing a trace

class Requirements extends Monitor[Event] {
monitor(

new CommandMustSucceed,
new MaxOneSuccess

)
}

compose

object Apply {
def readLog(): List[Event] = {…}

def main(args: Array[String]) {
val monitor = new Requirements
val log = readLog()
monitor.verify(log)

}
}

run

result

Monitor: CommandMustSucceed

Error trace:

1=Command(STOP_DRIVING,1)

Monitor: MaxOneSuccess

Error trace:

2=Command(TAKE_PICTURE,2)

3=Success(TAKE_PICTURE,2)

4=Success(TAKE_PICTURE,2)

IMPLEMENTATION
how does it work?

formulas

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this
…

}

a

b

c

d

b

c

d
apply(a)

basic formulas (single time point)

case object True extends Formula {
override def apply(event: Event): Formula = this

}

case class Now(expectation: Event) extends Formula {
override def apply(event: Event): Formula =

if (expectation == event) True else False
}

…
not(Fail(n, x)) until (Success(n, x))
…

implicit def Event2Formula(event: Event): Formula = Now(event)

and

case class And(formula1: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =

And(formula1(event), formula2(event)).reduce()

override def reduce(): Formula = {
(formula1, formula2) match {

case (False, _) => False
case (_, False) => False
case (True, _) => formula2
case (_, True) => formula1
case (f1, f2) if f1 == f2 => f1
case _ => this

}
}

}

until

case class Until(formula1: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =

Or(formula2(event), And(formula1(event), this).reduce()).reduce()
}

f1 U f2 = f2 ∨ (f1 ∧(f1 U f2))

states

case class State(block: Block) extends Formula {
override def apply(event: Event): Formula =

if (block.isDefinedAt(event)) block(event) else this
}

case class Weak(block: Block) extends Formula {
override def apply(event: Event): Formula =

if (block.isDefinedAt(event)) block(event) else False
}

// Hot the same

// Strong the same

state

strongweak

hote’≠e : stay
at end : ok

e

e

e

e
e’≠e : error
at end : ok

e’≠e : stay
at end : error

e’≠e : error
at end : error

at the end

def end(formula: Formula): Boolean =
formula match {

case State(_) => true
case Hot(_) => false

case Weak(_) => true
case Strong(_) => false

case Until(_,_) => false

case And(formula1, formula2) => end(formula1) && end(formula2)
…

}

observations

• high expressive power, easy to develop

• hard to analyze, learning curve for non-Scala programmers

class CommandMustSucceed extends Monitor[Event] {
require {

case Command(n,x) => RequireSuccess(n,x)
}

def RequireSuccess(name: String, number: Int) =
hot {

case Fail(`name`, `number`) => error
case Success(`name`, `number`) => ok

}
}

what state
are we in?

what events
are enabled?

THANKS!

