From Specr

to Moni

‘ications

tors

Klaus Havelund (NASA Jet Propulsion Laboratory/Caltech, USA)

Doron Peled (Bar llan Un

iversity, Israel)

Dogan Ulus (Verimag/Universite Grenoble-Alpes, France)

cellenc,
(5
N

{ '}A) Bar-llan University A

Workshop on Software Correctness and Reliability

October 13-14, 2017
ETH, Zurich, Switzerland

Definition (Runtime Verification)

Runtime Verification is the discipline of computer science dedicated to the
analysis of system executions, including checking them against formalized
specifications.

Alternative formulation: ‘get as much out of your runs as possible”:

verification of execution traces, Boolean true or false

collection of statistics, beyond the Boolean domain

specification learning

analysis with algorithms (no specs): data race and deadlock analysis

trace visualization

fault protection: changing behavior

Runtime verification

M:E* > D

~

M : P(E*) - D

property

verdict
monitor >

observe feedback

v

instrumentation

system

fault protection

response

monitor

event
event
event

log file analysis

event
event
event

monitor

e

command sequence analysis

command
command monitor
command

command sequence analysis

command
command
command

monitor

LADEE

Lunar Atmosphere and Dust Environment Explo

verified

command

sequence
command In April 2011 TraceContract was
sequence selected by LADEE mission

management for writing the
flight rule checker!

Classical dimensions to consider = E3

* Efficiency (R}

* Expressiveness

*Elegance

KEEP IT
SIMPLE

(N

FAST

KEEP IT

DejaVu WAL

With:
Doron Peled (Bar llan University, Israel)

Dogan Ulus (Verimag/Universite Grenoble-Alpes, France)

First-order past time temporal formulas

Vf (close(f) — Popen(f))

V£ (close(f) — &(—close(f)Sopen(f)))

The Logic

Qu=true | p(ti,...,tn) | 7@ | Q1VP2 | Ix0 9| OO | 91 S @2

tu=c|x

Derived Constructs

false = —true
P1 A P2 = (791 V ~92)

P1=02="01 VP
Vxe @ =—dxe -

Po=trueS @
Ho=-P -0
[91,92) = (—92) S 9

Example

Y user o Y file ®
access(user, file) =
login(user),logout (user))
A
open(file),close(file))

Result of verifying trace against a formula

true or false

|

a set of assignments

a BDD

Some definitions

* Domains D,, D,, ..., possibly infinite

* Variables V = {x,y,...} ranging over domainsx: D, y: D, ...

* Assighments [x -> “tel”, y -> “tel2”]

* Predicates open(“tel”), open(x), close(y), ...

* Ground predicates open(“tel”)

A state is a set of ground predicates: {open(“tell1”), open(“tel2”)}
* A trace is a finite sequence of states: <s,,s,,...,5,>

First Semantics: the “standard” definition

e (£,0,i) =true.

e (8,0,i) = pla) if p(a) € oli].

« ([v—al,0,i) = p(v) if p(a) € o]

. (T:-G:i) — ({P’ﬁ""‘l’) if (T|w:rr5|[{p}=ﬁv f) |= ¢ and
(T|vﬂrs{qr}-.-ﬁ:f) |= .

e (v,0,i) =0 if not (y,0,i) = .

e (1,0,i) = (@S) if for some 1 < j <4, (Yars(y): 0, J) E
v and for all j <k <i, (Ylars(g),0: k) = ©.

e (V.0,i)=ceifi>1and (y,6,i—1) =o0.

e (v,0,i) = 3x @ if there exists a € domain(x) such that'
(YIx+—=d],0.i) = 0.

Example

Vf (close(f) — Popen(f))

open(“tel”) open(“dict”) open(“out”) close(“tel2”)
® i i | i

|

We need to save all past values of file names that were opened,
and compare with the current one that is closed.

Lets look at a more complicated formula:
Ix dy (aly) S p(x))

a(9) q(11)

N B] L
p(5),

q8),a(9), 1

a(8)

The answer is F: there is no common value of g(y) since q(5).

Lets look at a more complicated formula:
Ix dy (aly) S p(x))

3),
257;&1(8), a(9),a(10),
q(9) (11)
L N u -
ZEZ;’q(ﬂ a8)qoe), T
a(8) q(10)

The answer is T: there is a common value of q(9) since p(3).

Ix dy (aly) S p(x))
The “bookkeeping” is nontrivial:

3),
257;&1(8), a(9),a(10),
a(9) q(11)
L N u -
ZEZ;’q(ﬂ a8)qoe), T
a(8) q(10)

The answer is T: there is a common value of q(9) since p(3).

Keep common subsets of values of y in g(y) since you see p(5).
Keep common subsets of values of y in g(y) since you see p(3).

Ix dy (aly) S p(x))
The “bookkeeping” is nontrivial:

x=3 with x=3 with x=3 with

y=7,8,9 y=8,9 y=9
| u u u
p(3), a(8),a(9), a(9),qa(10),
a(7),a(8), a(10) q(11)
a(9)

The answer is T: there is a common value of q(9) since p(3).
Keep common subsets of values of y in g(y) since you see p(3).
Do the same with x=5

In general we keep track of sets of tuples (assignments) of x
and y values: e.g. {(3,7), (3,8), (3,9)}, at each point.
Standard semantics does not give a good intuition how to
perform this bookkeeping!

Second semantics: Set semantics. Each
(sub)formula on a prefix of an execution denotes a
set of assighments that satisfy the formula.

1
1
1
I
1
1
1
1
1

¢,0,0] =0.
true,C,i| = {€}.

©¢,0,i] =1[¢,0,i—1].

¢, 6,i] = hide(I]9,0,], {x}).

;P(a)pﬁa i| = if p(a) € oli] then {€} else 0.
p(v).6,1 = {[v dl|p(a) € oi]}-
(pAWV),0,i] =1[¢,0,i] N I[V,C,i -

;_'(Paca l] —tvars(o) \ I[(paG: l]
_(<PSW),G,;I=7W,GJJU(¢,0,i]NI[(¢Sy),0,i—1]).

complement

infinite set

(@SW) = (WV (@ AS(9SW)))

Theorem:

Ye I, 0,1 iff (v,0,i) = 9.

Third Semantics:
representing sets of assignments as BDDs

not(p) A g A not(r) (b AgAr)

We do not represent values directly. Instead we
enumerate values in binary, and store sets of

these binaries as BDDs.

Vf (close(f) — Popen(f))

open(“tel”) open(“dict”) open(“out”) close(“tel2”)
[= = - - >
opened = {“tel”, “dict”,”out”}
bOble
“rol” 000) {000, 001, 010}
Value to “dict” 001 A(byb,b,).
bit string
table “out” 010 . (Ibg A lb; A lb,) V
rraly” 011 €] (1by A b, Aby) V
\ J (by A by A Ib,)

We keep values in a hash to check reoccurrence

000 001 010 011

bOble

[el 000

Value to “dict” 001
bit string "

table out 010

“tel2” 011

Characteristic function for our bit vector set
representing the accumulated set of values
P open(f)

{(Itellll Ildict”’ﬂout”}
{000, 001, 010}

{000} union {001} union {010}

BDD(000) or BDD(001) or BDD(010)

But not BDD(011) (for “tel2”) MPobiby).
(Iby A b, A 1b,) V F T

numerations > 100 are ('by A by A b)) V
for values not seen so far. ('oy A by A lb,)

Characteristic function for our bit vector set

We account for values not seen so far.

As long as we use n bits and there will be less than 2" values, then
the higher enumerations represent values not seen so far.

In particular, the value 11...111 represents “all values not yet seen”.

We can negate, obtaining the BDD for -P open(f)
This is easy: replace F by T at leaf level.

We can start with a rather large value of n, hoping that the BDD will be compact.

We may also add a bit “on the fly”, when more than 2" values occur.

Representing a set of assignments using

enumerations

{
[x->“a” ,y->42],

[X _> Ilbll , y _> 52]

IIaII OOO
X >

(lbll 001
VIES 42 000

52 001

XoX1X,YoY1Y2

000000
or
001001

forall x . forall y .
send(x,y) -> P recv(x,y)

recv(“a”,42)
recv(“b”,52)

Representing a set of assignments

{

[x->“a” ,y->42],

[X _> Ilbll , y _> 52]

000
001

000
001

XoX1X,YoY1Y2

000000 ———
or

001001

Representing a set of assignments

{ XoX1X3YoY1Y2
[x ->“a” ,y->42], 000000

or
001001 ——

IIaII OOO
e 4

((b” 001
VES 42 000

52 001

[X _> Ilbll , y _> 52]

Representing a set of assignments

{

[x->“a” ,y->42],

[X _> Ilbll , y _> 52]

000
001

000
001

XoX1X,YoY1Y2

000000
or

001001

—_—

Looking back at the set semantics: since
every assignment is a BDD

° I(P,G,O]:Q

o I[true,c,i| = {€}.

e I|p(a),o,i] = if p(a) € oli] then {&} else 0.

o I[p(v),0,i]={[v—dl[p(a) € oli]}.

o I[(AWY), Gz]—l[tpjc i| M 1y, 0,i].

°]__'(Pac l] vars \ 1] P, 6, l]'

« I[(¢SV),0,i] —I[W, AUUe,0.iNI[(eSy),0,i—1]).
o I[00,0,i]=1[¢,0,i—1].

e I[3x ¢,0,i] = hide(I|@,0,i], {x}).

We can replace the set operations with BDD operations:
Union U by disjunction v, Intersection M by conjunction A, hide is existential
guantification over all bits of variable.

var pre : SubFormula —m->BDD

AlgOrlthm var now : SubFormula —m-> BDD

1) Initially, for each subformula @, now(¢) = BDD(0).

2) Observe a new state (as set of ground predicates) s as
input.

3) Let pre := now.

4) Make the following updates for each subformula. If ¢
is a subformula of y then now(®) is updated before

now ().

e now(true) = BDD(1)
e now(p(a)) = if p(a) € s then BDD(1) else BDD(0)
e now(p(x)) = if Jap(a) € s then build(x,a) else
BDD(0)
) ;gng"(p”)\ ﬁjlj(ﬁgfv((i‘p‘;‘;"(“’)’ "WY) [(o5y) = (wV (0ASpSY))
e now((@Sy)) =or(now(y),and(now(®), pre((eSy))))
e now(S @) = pre(o)
o now(dx @) = exists({xo,...,xx_1),now())

5) Goto step 2.

Limiting quantification

* Limiting quantification to seen values:

dx P g(x)
dx (seen(x) A—=Pg(x))

* Finite domains:

smaller(y,3) = —(yo Ay1)

dx (smaller(x,m) A\ Q)
Vx (smaller(x,m) — @)

Implementation: DejaVu

SOURCEFORGE.NET"

http://javabdd.sourceforge.net

Last published: October 29, 2007 4:33:11 AM PST |Doc for 2.0 SourceForge.net Project Page [| Hosted by SourceForge &

Overview
What is it?
Documentation
API (Javadoc)
Build Instructions
Installing
Performance
Links
Downloads
JavaBDD for Windows
JavaBDD for Linux &
JavaBDD for Mac OS X @
JavaBDD Source code &
Project Documentation
About
» Project Info
» Project Reports
Development Process &

Legend
& External Link
Opens in a new window

p—

built by maven.

JavaBDD

JavaBDD is a Java library for manipulating BDDs (Binary Decision Diagrams). Binary decision diagrams are widely used in
model checking, formal verification, optimizing circuit diagrams, etc. For an excellent overview of the BDD data structure, see
this set of lecture notes @ by Henrik Reif Andersen.

The JavaBDD API is based on that of the popular BuDDy @ package, a BDD package written in C by J?rn Lind-Nielsen.
However, JavaBDD's API is designed to be object-oriented. The ugly C function interface and reference counting schemes
have been hidden underneath a uniform, object-oriented interface.

JavaBDD includes a 100% Java implementation. It can also interface with the JDD = library, or with three popular BDD
libraries written in C via a JNI interface: BuDDy @, CUDD =, and CAL @. JavaBDD provides a uniform interface to all of these
libraries, so you can easily switch between them without having to make changes to your application.

JavaBDD is designed for high performance applications, so it also exposes many of the lower level options of the BDD library,
like cache sizes and advanced variable reordering.

© 2003-2007, John Whaley

ZScala

Architecture

JavaBDD

prop secure
forall (user) forall (file)

access (user, file) -> Formula_secure Formula {
. 35 3 = declareVariables(
[login (user), logout (user))
& evaluate():

) = build(
build(
(

[open (file),close(file))

(8)))

).0
bu;ld(

Scala parser b“l}d)(
combinators (%
).
).
).

(5)))
))

build
(
(
(

forAll(

(

).isZero

Array.fill(

)
Array.fill(11)

Apache commons CSV
(Comma Separated Value format)
parser

***x Property secure violated on event number 5:
access (John, tel)

dejavu <specFile> <logFile> [<bitsPerVariable>]

Grammar:
<spec> ::= <prop> ... <prop>
<prop> ::= 'prop' <id> ':' <form>
<form> ::= 'true' | 'false'
| <id> ['(' <param> ',' ... ',' <param> ")']

| <form> <binop> <form>

| '[' <form> ',' <form> ')

| <unop> <form>

| ('exists' | 'forall') <id> '.' <form>
| '(' <form> ')

<binop> ce= '_>! | 1 | 1 | ' | g
<unop> e= ' | |@| | P! | "H'
<param> ::= <id> | <string> | <integer>

prop p: forall f . close(f) — exists m. P open(f,m)

class Formula p extends Formula {

var pre: Array[BDD] = Array. fill (6)(False)
var now: Array[BDD] = Array. fill (6)(False)
var tmp: Array[BDD] = null

val var f :: var m: Nil =

}

declareVariables("£", "m")

override def evaluate(): Boolean = {

}

now(5) = build("open™)(V("£"),V("m"))

now(4) = now(5).or(pre(4))
now(3) = now(4).exist(var_m)
now(2) = build("close™)(V("£"))
now(1) = now(2).not().or(now(3))

now(0) = now(1).forAll (var_f)
tmp = now; now = pre; pre = tmp
Itmp(0).isZero

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)
close, out

0 : forall f . close(f) -> exists m . P open(f,m)

2
Q 1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f,m)

'

5 : open(f,m)

input, read
OGRS Rl [— prop p: forall f . close(f) — exists m. P open(f,m)
close, out

0 : forall f . close(f) -> exists m . P open(f,m)

2
Q 1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f,m)

'

5 : open(f,m)

input, read
open,output,write

close, out

prop p: forall f

. close(f) — exists m. P open(f,m)

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)

close, out

TRUE 0 : forall f . close(f) > exists m . P open(f,m)

'

TRUE 1 : close(f) -> exists m . P open(f,m)

AN

FALSE | 2:close(f) 3 : exists m . P open(fm)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read

open,output,write — prop p: forall f . close(f) — exists m. P open(f,m)
close, out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
open,output,write — prop p: forall f . close(f) — exists m. P open(f,m)
close, out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
open,output,write — prop p: forall f . close(f) — exists m. P open(f,m)
close, out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
open,output,write — prop p: forall f . close(f) — exists m. P open(f,m)

close, out

TRUE 0 : forall f . close(f) > exists m . P open(f,m)

'

TRUE 1 : close(f) -> exists m . P open(f,m)

AN

FALSE | 2:close(f) 3 : exists m . P open(fm)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)
2 close,out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

\ FALSE 5 : open(f,m)

open, input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)
2 close,out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

1 0 / 4 : P open(f,m)

'

5 : open(f,m)

open, input, read
open,output,write
2 close,out

prop p: forall f

. close(f) — exists m. P open(f,m)

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)
2 close,out

0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

open, input, read
ERPCIR YR [— propp: forall f . close(f) — exists m. P open(f,m)
2 close,out

FALSE 0 : forall f . close(f) > exists m . P open(f,m)

'

1 : close(f) -> exists m . P open(f,m)

AN

2 : close(f) 3 : exists m . P open(f,m)

'

4 : P open(f;m)

'

5 : open(f,m)

Evaluation Properties in QTL

prop access : forall u . forall f .
access(u,f) — [login(u),logout(u)) & [open(f),close(f))

prop file : forall f .
close(f) — exists m. @ [open(f,m),close(f))

prop fifo : forall x .
(enter(x) — | @ P enter(x)) &
(exit(x) — ! @ P exit(x)) &
(exit(x) — @ P enter(x)) &
(forall y . (exit(y) & P (enter(y) & @ P enter(x))) — @ P exit(x))

Evaluation Properties in MonPoly

/x access x/ FORALL u. (FORALL f.
(access(u,f) IMPLIES
(((NOT logout(u)) SINCE login(u)) AND (NOT close(f) SINCE[0,x] open(f)))))

/ file */ FORALLf.
(close(f) IMPLIES (EXISTS m . PREVIOUS (NOT close(f) SINCE[0,*] open(f,m))))

/x fifo x/ FORALL x. (
(enter(x) IMPLIES NOT PREVIOUS ONCE[0,*] enter(x)) AND
(exit (x) IMPLIES NOT PREVIOUS ONCE[0,x] exit(x)) AND
(exit (x) IMPLIES PREVIOUS ONCEJ0,x] enter(x)) AND
FORALL y.
((exit(y) AND ONCE[O0,*] (enter(y) AND PREVIOUS ONCEJ0,*] enter(x)))
IMPLIES PREVIOUS ONCE exit(x)))

Evaluation Results

Table 1: Evaluation of QTL and MONPOLY

Property|Trace length MONPOLY (sec) QTL (sec)
bits per var.: 20 (40, 60)
11,006 1.9 3.1(3.3,3.2)
ACCESS 110,006 241.9 6.1 (9.1, 10.9)
1,100,006 58,455.8 36.8 (61.9, 88.8)
11,004 61.1 2.8 (2.8, 3.0)
FILE 110,004 7,348.7 6.3 (6.5, 8.6)
1,100,004 DNF 30.3 (43.9, 59.5)
FIEO 5,051 158.3 195.4 (OOM, ?)
10,101 1140.0 ERR (?, ?)

Pros

* Compact.
 With k bits we can represent 2k values
* V values can be represented by log,(V) bits

* We expect to pay little for “surplus” bits.
* We can extend the BDDs with additional bits dynamically if needed.
* Complementation is efficient (just switching the 0 and 1 leaves).

 Values not yet seen are represented by unused bit patterns (avoid
using all bit patterns).

Cons

* We cannot compare variables beyond equality

* We cannot perform computations on values

Prop allAnswersOk :

forall t, . forall a .

answer(t,,a) ->
exists t, . exists q .

N P questlon (t;,a) A
>

(\}%\&\ t, <t, A rightAnswer(q) = a

TraceContract

An internal Scala DSL for monitoring

generation of logs

COMMAND (" STOP_CAMERA",1,22:50.00)

COMMAND ("ORIENT_ANTENNA_ TOWARDS_GROUND", 2,22:50.10)
QSUCCESS ("ORIENT_ANTENNA_TOWARDS_GROUND", 3,22:52.02)
COMMAND (" STOP_CAMERA", 4, 22:55.01)

SUCCESS ("ORIENT_ ANTENNA_TOWARDS GROUND",5,22:56.19)
COMMAND (" STOP_ALL",6,23:01.10)
FAIL("ORIENT ANTENNA_TOWARDS_GROUND",7,23:02.02)

requirements
relating events
across time

Nel:@ Scope

@

CommandMustSucceed:

“An issued command must succeed, without a failure to
occur before then”.

monitor CommandMustSucceed {
always {
Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(hame,number) => ok

}

}

user reaction

excellent

* | read the manual and was up an
running, all before lunch

* my first spec had no errors and
just worked

but (2 days later)

* can | define a function and call it
in a formula?

* is it possible to re-use formulas?

external versus internal DSL

DejaVu
DSL
LogScope
parser
ps. | TraceContract
programming programming
language language

external DSL internal DSL

pros and cons for
internal DSL

pros

» decreases development effort
* increases expressiveness

* allows use of existing IDE,
debuggers, etc.

cons

* steep learning curve for non-Scala
programmers

* limited analyzability (for shallow
internal DSLs)

Modeling in Scala: a high-level unifying language

Object-oriented + functional programming features
Strongly typed with type inference

Script-like, semicolon inference

Sets, list, maps, iterators, comprehensions

Lots of libraries

Compiles to JVM

A "better Java"

TraceContract

events

abstract class Event

case class Command(name: String, nr: Int) extends Event
case class Success (name: String, nr: Int) extends Event
case class Fail (name: String, nr: Int) extends Event

val trace : List[Event] =

/\ List(

N ("STOP_DRIVING", 1),
event ("TAKE_P|CTURE", 2),
event ("TAKE_P|CTURE", 2),

("TAKE_PICTURE", 2)

event

{

monitor CommandMustSucceed {
lways LogScope
Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {

W require {
\/- case Command(n,x) => RequireSuccess(n,x)
} /

def RequireSuccess(name: String, number: Int) =
hot {
case Fail('’name’, ‘'number’) => error

case Success('name’, ‘number’) => ok

}

TraceContract |

monitor CommandMustSucceed {
lways LogScope
Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {
Fail(name,number) => error
Success(name,number) => ok

}
}

class CommandMustSucceed extends Monitor[Event] {

W require {
\/- case Command(n, x) =>

hot {
case Fail('n’, 'x’) => error
case Success('n’, 'x') => ok

}

TraceContract

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {

Fail(name,number) => error
Success(name,number) => ok

}
}

LogScope

USING SOME LINEAR TEMPORAL LOGIC

pattern LTL formula

< 4

TraceContract

-

class CommandMustSuccee extends Monitor[Event] {
require {
case Command(n, x) >
not(Fail(n, x)) until (Success(n, x))

monitor CommandMustSucceed {
always {

Command(n,x) => RequireSuccess(n,x)

}

hot RequireSuccess(name,number) {

Fail(name,number) => error
Success(name,number) => ok

}
}

LogScope

USING ALL LINEAR TEMPORAL LOGIC

LTL formula LTL formula

< 4

TraceContract

/

class ACommandMustSuccegd extends Monitor[Event] {
property {

globally(
Command("A",42) implies
not(Fail("A", 42)) until (Success("A", 42))

monitor CommandMustSucceed { LogSCOPQ

first 10 commands must succeed

class CommandMustSucceed extends Monitor[Event] {

W var count =0
____,- require {

case Command(n, x) if count < 10 =>
count +=1
not(Fail(n, x)) until (Success(n, x))

TraceContract

TraceContract

the state function

CommandMustSucceed:

“An issued command can succeed at most once”.

class MaxOneSuccess extends Monitor[Event]
require {
case Success(_, number) =>
state {
case Success(_, ‘number’) => error

}
}
}

COMMAND("TURNON", "KA", _,)

state machines

class TWTA_Ka extends Monitor[Event] {
property { Init }

COMMAND("TURNON", "KA", kaTime, _)

def Init: Formula =

D("TURNOFF", "TWTA", _,)

COMMAND["TURNON", "TWTA", time,)

where (time,kaTime) within (300 seconds)

state {
case Command("TURNON", "TWTA", time, _) => On(time)
case Command("TURNON", "KA", ,) =>error

}

def On(time: Int): Formula =
state {
case Command("TURNOFF", "TWTA", ,) => Init
case Command("TURNON", "KA", kaTime,)
if (time,kaTime) within (300 seconds) => error

TraceContract

TraceContract

rule-based system
for expressing past time logic

Success Has a Reason:

“A command success must be caused by an issued command”.

class SuccessHasAReason extends Monitor[Event] {
case class Commanded(name: String, nr: Int) extends Fact

require {
case Command(n,x) => Commanded(n,x) +
case Success(n,x) =>Commanded(n,x) ?-
}

}

TraceContract

analyzing a trace

class Requirements extends Monitor[Event] { compose
monitor(
new CommandMustSucceed,
new MaxOneSuccess

run

object Apply {
def readlLog(): List[Event] ={...}

def main(args: Array[String]) {
val monitor = new Requirements
val log = readLog()
monitor.verify(log)

}
}

TraceContract

result

Monitor: CommandMustSucceed

Frror trace:
l=Command(STOP_DRIVING,l)

Monitor: MaxOneSuccess

Error trace:
Z2=Command (TAKE PICTURE, 2)
3=Success (TAKE PICTURE, 2)
4=Success (TAKE PICTURE, 2)

800 tracecontract 1.0 AP|
nu + 9 file:///Users/khavelun/Desktop/tracecontract/target/scala_2.8.0/doc/main/api/index.html

[| Qr Google

display packages only [c \ Monitor

hide focus

@ DataBase

@ Error class Monitor[Event] extends DataPase with Formulas[Event]

@ ErrorTrace

O Formulas This class offers all the features of TraceContract. The user is expected to extend this class. The class is parameterized with the event type.
O LivenessError See the the explanation for the iracecontract package for a full explanation.

@ Monitor The following example illustrates the definition of a monitor with two properties: a safety property and a liveness property.

@ MonitorResult

@ PropertyResult

O SafetyError class Requirements extends Monitor[Event] {

reguirement ('CommandMustSucceed) {
case COMMAND(x) =>
hot {
case SUCCESS(x) => ok
3
}

reguirement('CommandAtMostOnce) {
case COMMAND(x) =>

state {
case COMMAND({ x~) => error
1]
}
}
Event the type of events being monitored.

[=0 B Hide All - Show all | Formulas DataBase

VT Public

Instance constructors

new Momitor()
Type Members

type Block = PartialFunction[Event, Formula]
Defines the type of transitions out of a state.
class BooleanOps extends AnyRef
Generated by implicit conversion from Boolean.
class ElsePart extends AnyRef
The Eise part of an If (condition) Then formulal Else formula2.
class EventFormulaOps extends AnyRef
Target if implicit conversion of events.
class Fact extends AnyRef
Facts to be added to and removed from the fact database.
class FactOps extends AnyRef
Operations on Facts.
class Formula extends AnyRef
Each different kind of formula supported by TraceContract is represented by an object or class that extends this class.
class IntOps extends AnyRef
Generated by implicit conversion from integer.
class IntPairOps extends AnyRef
Generated by implicit conversion from integer pair.
class ThenPart extends AnyRef
The Then part of an If (condition) Then formulat Else formula2.
type Trace = List[Event]

<ol

. - '

def eventuallyGt{n: Int){formula: Formula): Formula
Eventually true after n steps.
def eventuallyLe(n: Int){formula: Formula): Formula
Eventually true in maximally n steps.
def eventuallyLt(n: Int)(formula: Formula): Formula
Eventually true in less than n steps.
def factExists(pred: PartialFunction[Fact, Boolean]): Boolean
Tests whether a fact exists in the fact database, which satisfies a predicate.
def getMonitorResult: MonitorResult[Event]
Returns the result of a trace analysis for this monitor.
def getMonitors: List[Monitor[Event]]
Returns the sub-monitors of a monitor.
def globally(formula: Formula): Formula
Globally true (an LTL formula).
def hot({m: Int, n: Int)(block: PartialFunction[Event, Formula]): Formula
A hot state waiting for an event to eventually match a transition (required) between m and n steps.
def hot(block: PartialFunction[Event, Formula]): Formula
A hot state waiting for an event to eventually match a transition (required). The state remains active until the incoming event & matches the
block, that is, until block.isDefinedAtf{e) == true, in which case the state formula evaluates to block(e).
At the end of the trace a hot state formula evaluates to False.
As an example, consider the following monitor, which checks the property: "a command x eventually should be followed by a success"™

class Reguirement extends Monitor[Event] {
require {
case COMMAND(x) =>

hot {
case SUCCESS(" x™) => ok
}
}
}
block partial function representing the transitions leading out of the state
returns the hot state formula.

definition classes: Formulas

def informal(name: Symbeol)(explanation: String): Unit
Used to enter explanations of properties in informal language.
def informal({explanation: String): Unit
Used to enter explanations of properties in informal language.
def matches({predicate: PartialFunction[Event, Boolean]): Formula
Matches current event against a predicate.
def monitor{monitors: Monitor[Event]#®*}: Unit
Adds monitors as sub-monitors to the current monitor.
def never(formula: Formula): Formula
Mever true (an LTL-inspired formula).

TraceContract

IMPLEMENTATION

how does it work?

TraceContract

formulas

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this

d
apply(a) > C

TraceContract

basic formulas (single time point)

case object True extends Formula {
override def apply(event: Event): Formula = this

}

case class Now(expectation: Event) extends Formula {
override def apply(event: Event): Formula =
if (expectation == event) True else False

}

;;.ot(FaiI(n, X)) until (Success(n, x))

implicit def Event2Formula(event: Event): Formula = Now(event)

TraceContract

and

case class And(formulal: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =
And(formulal(event), formula2(event)).reduce()

override def reduce(): Formula = {

(formulal, formula2) match {
case (False,) => False
case (_, False) => False
case (True,) => formula2
case (_, True) => formulal
case (f1, f2) if f1 ==f2 =>f1
case _ => this

TraceContract

until

f1 Uf2=f2 \% (fl N O(f1 Ufz))

case class Until(formulal: Formula, formula2: Formula) extends Formula {
override def apply(event: Event): Formula =
Or(formula2(event), And(formulal(event), this).reduce()).reduce()

TraceContract

states
state e e’#e :stay € ! :
. hot e’#e :stay
at end : ok I at end : error
e € ’
weak e'2e - error strong J_—) e’#ze :error
i j ok at end : error

atend :

case class State(block: Block) extends Formula { // Hot the same
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

case class Weak(block: Block) extends Formula { // Strong the same
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else False

TraceContract

at the end

def end(formula: Formula): Boolean =
formula match {
case State() => true
case Hot() => false

case Weak() =>true
case Strong(_) => false

case Until(_,) =>false

case And(formulal, formula2) => end(formulal) && end(formula2)

observations

* high expressive power, easy to develop
* hard to analyze, learning curve for non-Scala programmers

what events
are enabled?

what state

in?
are We = class CommandMustSucceed extends Monitor[Event] {

\ require {

case Command(n,x) => RequireSuccess(n,x)

def RequireSuccess(name: String, number: Int) =
hot {
case Fail('name’, 'number’) => error
case Success('name’, ‘number’) => ok

}

THANKS!

