
Combinatorial Constructions in

Testing Concurrent Programs

Max Planck Institute for Software Systems (MPI-SWS), Germany

Joint Work with Filip Niksic and Dmitry Chistikov

Rupak Majumdar

Despite Many Formal

Approaches…

… practitioners test their code

… by providing random inputs

And despite our best judgment, …

… testing is surprisingly effective in finding bugs

In this talk, we explore this unexpected effectiveness

Example: Jepsen

• A framework for black-box testing of
distributed systems by randomly
inserting network partition faults

• CAP Theorem: No system has
consistency, availability, and partition
tolerance

http://jepsen.io

etcd

Postgres

Redis

Riak

MongoDB

Cassandra

Chronos

Kafka

RabbitMQ

Consul

Elasticsearch

Aerospike

Zookeeper

n/w
n/w n/w

Tests and Coverage

Coverage Goals Tests

Covering Family of Tests = Set of tests covering all goals

“Small” covering family = More efficient testing

Random Testing

Coverage Goals Tests

Pick tests at random, independently

Question: Will random testing find a small covering family?

Random Testing

Coverage Goals Tests

Pick tests at random, independently

Suppose Pr[Test covers goal] ≥ p

Fix a goal Prob. that a

random test

covers this goal

Goal: Characterize covering families w.r.t. p and |G|

Probabilistic Method
Let G be the set of goals and Pr[Random test covers a goal] ≥ p

Theorem. There exists a covering family of size p-1 log|G|.

Proof.

Pr[Random test does not cover goal g] ≤ 1 – p

Pr[K ind tests do not cover goal g] ≤ (1 – p)K

Pr[K ind tests is not a covering family] ≤ |G| (1 – p)K

For K = p-1 log|G|, this probability is < 1

Then: There must exist K tests that is a covering family!

Existence, not constructive!

Probabilistic Method
Let G be the set of goals and Pr[Random test covers a goal] ≥ p

Theorem. There exists a covering family of size p-1 log|G|.

By repeated sampling, random testing overwhelmingly likely to

find a covering family!

Tests and Coverage

Coverage Goals Tests

1. What are the

coverage goals?

2. What are tests?

What is the

Probability space?

3. Can we bound Pr[Test covers a goal]?

Plan

• Start with some combinatorial puzzles

• Connect these puzzles to testing

1. Come up with coverage goals

2. Show how the puzzles relate to coverage goals

3. Bound the probabilities

…

Puzzle I:

Ninjas Training

Ninjas in Training

In a dojo in Kaiserslautern, n ninjas are in training:

…

1 2 n

Round 1:

3

…

Round 2:
…

Training is complete if for every pair of ninjas, there

is a round where they are in opposing teams

We’re hiring!

Ninjas in Training

Training is complete if for every pair of ninjas there is

a round where they are in opposing teams

How many rounds make the training complete?

Naïve: O(n2) rounds

Can you do it in log n rounds?

Ninjas in Training

Now n ninjas are practicing in k-way fights:

…

1 2 n

Round 1:

3

…

Round 2:
…

Ninjas in Training

Training is complete if for every choice of k ninjas

there is a round where they are each in a different

team

How many rounds make the training complete?

Ninjas in Training

Example:

…

1 2 n

Round 1:

3

…

Round 2:
…

Ninjas in Training

Example:

…

1 2 n

Round 1:

3

…

Round 2:
…

Ninjas in Training

Example:

…

1 2 n

Round 1:

3

…

Round 2:
…

Ninjas in Training

Example:

…

1 2 n

Round 1:

3

…

Round 2:
…

Ninjas in Training

Training is complete if for every choice of k ninjas

there is a round where they are each in a different

team

How many rounds make the training complete?

Naïve: O(nk)

Can you do it in O(kk+1 (k!)-1 log n) rounds?

Exponentially better in n, when k is constant

Puzzle II:

Ninjas Eating

Hungry Ninjas

After training, the ninjas retire to a bucolic Biergarten…

How many courses make a banquet complete?

…

1 2 n

A banquet is complete if for every pair of ninjas (i, j),

there’s a course that is served to i before j

and one that is served to j before i

A Complete Banquet

Two courses suffice:

…

1 2 n

…

n n-1 1

3-Complete Banquets

A banquet is 3-complete if

for every triple of ninjas (i, j, k),

there’s a course served in the order i<j<k

How many courses make a banquet 3-complete?

There is a 3-complete banquet with n3 courses

Can you do it in O(exp(d) log n) rounds?

…

1 2 n

Masters at the Banquet

1

2 3

4 5 6 7

Ninjas, of course, form a hierarchy

A master is always served before their student

Masters at the Banquet

Again, two courses suffice for 2-completeness:

421 5 3 6 7

731 6 2 5 4

ldfs

rdfs

Ninjas at the Banquet

A banquet is 3-complete if for every triplet (i, j, k),

there’s a course served to ninja i before j, and j before k

Naive approach with n3 courses:

Pick a course for each nC3 . 3! orders

Can be done with O(log n) courses!

From Ninjas

to Testing…

From Training Ninjas to

Distributed Systems with Partition Faults

ninjas

weapons

rounds

complete training

nodes in a network

blocks in a partition

tests = partitions

splitting family of partitions

Coverage Goal:

Splitting Families

Given n nodes and k ≤ n,

a partition of nodes P = {B1, …, Bk} splits

a set of nodes S = {x1, …, xk} if x1∈B1, …, xk∈Bk.

A set of partitions F is a k-splitting family if for every

k-subset of nodes there is a partition in F that splits it.

From Eating Ninjas to

Testing Concurrent Systems

ninjas

hierarchy

courses

d-complete banquet

events

partial order on events

tests = schedules/linearization

d-hitting family of schedules

Coverage Goal:

Hitting Families

Given a poset of events, a family of schedules F is

d-hitting if for every admissible d-tuple of events there is

a schedule in F that hits it.

Given a poset of events, a schedule hits a d-tuple of

events (e1,…,ed) if it executes the events in the order

e1<…<ed.

Why k-Splitting?

• Chronos: A distributed fault-tolerant job scheduler

• Works in conjunction with Mesos and Zookeeper

• Three special nodes: Chronos leader, Mesos

leader, Zookeeper leader

Chronos

leader

Mesos

leader

Zookeeper

leader

From Jepsen

https://jepsen.io

Why d-Hitting?

Many bugs in asynchronous programs involve small number of events

—bug depth d
[Lu et al. ASPLOS ’08] [Burckhardt et al. ASPLOS ’10] [Jensen et al. OOPSLA ’15] [Petrov et al. 2012]

d = 2: order violation d = 3: atomicity violation

Combinatorics:

Bounding the

Probabilities

Plan

• Start with some combinatorial puzzles

• Connect these puzzles to testing

1. Come up with coverage goals

2. Show how the puzzles relate to coverage goals

3. Bound the probabilities

Small k-Splitting Families

• Fix a k-element set S

• What is the probability a random partition splits S?

• A splitting partition uniquely corresponds to a map

U\ S → S. There are k(n-k) such maps

• So probability = k(n-k) / {n P k} Stirling number of 2nd kind

=

Number of partitions of n

elements into k parts

Small k-Splitting Families

• Probability that a fixed set is split = k(n-k) / {n P k}

• Can we get rid of n?

• Yes: kn ≥ k! {n P k}

All functions

from n to k

All surjections

from n to k
≥ k-k . k!

Small k-Splitting Families

• Pr[Random partition splits S] ≥ k!/ kk

• From our general theorem: There is a k-splitting

family of size (kk /k!) k log n

• Turns out: uniformly sampling k-partitions is hard

• But sampling balanced partitions is sufficient

• The combinatorial arguments are harder

Problem 11957 AMM 2017

Small d-Hitting Families

Probabilistic argument: Fix a tuple of d ninjas

What is the probability that a random schedule covers it?

What is the probability k schedules don’t cover it?

What is the probability k schedules are not a hitting

family?

Pick k > d! d log n

…

1 2 n

1/d!

(1 - 1/d!)k

At most (n C 3) . (1 - 1/d!)k

Plan

• Start with some combinatorial puzzles

• Connect these puzzles to testing

1. Come up with coverage goals

2. Show how the puzzles relate to coverage goals

3. Bound the probabilities

Combinatorics I:

Splitting Families & Perfect Hashing

• Andrew Yao. Should Tables Be Sorted? 1981

• Uses k-splitting families to construct “perfect hash

functions”: for every k-subset S of an n-element

domain there is a hash function that is 1-to-1 on S

• Uses perfect hash functions to construct hash

tables with constant lookup

• Follow-up work by Fredman, Komlós, Szemerédi

Combinatorics II:

Hitting Families &

Order Dimension of Posets

• Dushnik and Miller. Partially Ordered Sets. 1941

• Define and study order dimension of a poset:

Number of linearizations whose intersection is the poset

• Hitting families generalize order dimension

order dimension = size of the smallest 2-hitting family

• d-completeness: Not studied in the p.o. literature!

Explicit Constructions
Probabilistic method shows existence:

• k-splitting families of size: (kk+1 / k!) log n

• d-hitting families of size: d d! log n

But may not be optimal:

• 2-splitting family of size log n exists; prob. method gives 2 log n

• d-hitting families for trees of size h of size O(exp(d)·hd-1)

OTOH, matching explicit constructions are open:

• k-splitting families of size: 4sqr(k) (log2 n)k-1 by Yao

Summary

Coverage Goals Tests

1. What are the

coverage goals?
2. What are tests?

3. Can we bound Pr[Test covers a goal]?

⇒ If so, “small” test sets exist

Summary

Coverage Goals Tests

1. Splitting nodes

in network partitions
2. Network partitions

3. Pr[Test covers a goal] ≥ exp(k) log n

Summary

Coverage Goals Tests

1. Hitting all d-tuples 2. Schedules

3. Pr[Test covers a goal] ≥ exp(d) log n

Summary

Coverage Goals Tests

1. What are the

coverage goals?
2. What are tests?

3. Can we bound Pr[Test covers a goal]?

⇒ If so, “small” test sets exist

Thank You
…

1 2 n

Icons made by Freepik at www.flaticon.com

Watch out for Filip Niksic’s PhD Thesis!

http://www.flaticon.com/authors/freepik
http://www.flaticon.com/

