Combinatorial Constructions in Testing Concurrent Programs

Rupak Majumdar

Max Planck Institute for Software Systems (MPI-SWS), Germany

Joint Work with Filip Niksic and Dmitry Chistikov
Despite Many Formal Approaches…

... practitioners test their code

... by providing random inputs

And despite our best judgment, ...

... testing is surprisingly effective in finding bugs

In this talk, we explore this unexpected effectiveness
Example: Jepsen
http://jepsen.io

- A framework for black-box testing of distributed systems by randomly inserting network partition faults

- CAP Theorem: No system has consistency, availability, and partition tolerance
Tests and Coverage

Covering Family of Tests = Set of tests covering all goals
“Small” covering family = More efficient testing
Random Testing

Pick tests at random, independently

Coverage Goals

Tests

Question: Will random testing find a small covering family?
Random Testing

Pick tests at random, independently

Fix a goal

Coverage Goals

Prob. that a random test covers this goal

Tests

Suppose $\Pr[\text{Test covers goal}] \geq p$

Goal: Characterize covering families w.r.t. p and $|G|$
Probabilistic Method

Let G be the set of goals and $\Pr[\text{Random test covers a goal}] \geq p$

Theorem. There exists a covering family of size $p^{-1} \log|G|$.

Proof.

$\Pr[\text{Random test does not cover goal } g] \leq 1 - p$

$\Pr[\text{K ind tests do not cover goal } g] \leq (1 - p)^K$

$\Pr[\text{K ind tests is not a covering family}] \leq |G| (1 - p)^K$

For $K = p^{-1} \log|G|$, this probability is < 1

Then: *There must exist K tests that is a covering family!*

Existence, not constructive!
Probabilistic Method

Let G be the set of goals and \(\Pr[\text{Random test covers a goal}] \geq p \)

Theorem. *There exists a covering family of size $p^{-1} \log |G|$.*

By repeated sampling, random testing overwhelmingly likely to find a covering family!
Tests and Coverage

1. What are the coverage goals?

Coverage Goals

2. What are tests? What is the Probability space?

Tests

3. Can we bound Pr[Test covers a goal]?
Plan

• Start with some combinatorial puzzles

• Connect these puzzles to testing
 1. Come up with coverage goals
 2. Show how the puzzles relate to coverage goals
 3. Bound the probabilities
Puzzle I:
Ninjas Training
In a dojo in Kaiserslautern, n ninjas are in training:

Round 1:

Round 2:

Training is **complete** if for every pair of ninjas, there is a round where they are in opposing teams. We’re hiring!
Ninjas in Training

Training is **complete** if for every pair of ninjas there is a round where they are in opposing teams.

How many rounds make the training complete?

Naïve: $O(n^2)$ rounds

Can you do it in log n rounds?
Ninjas in Training

Now \(n \) ninjas are practicing in \(k \)-way fights:

Round 1:

Round 2:
Ninjas in Training

Training is complete if for every choice of k ninjas there is a round where they are each in a different team.

How many rounds make the training complete?
Ninjas in Training

Example:

Round 1:
1 2 3 ...

Round 2:

n
Ninjas in Training

Example:

Round 1:

Round 2:
Ninjas in Training

Example:

Round 1:

Round 2:
Ninjas in Training

Example:

Round 1:

Round 2:
Ninjas in Training

Training is complete if for every choice of \(k \) ninjas there is a round where they are each in a different team.

How many rounds make the training complete?

Naïve: \(O(n^k) \)

Can you do it in \(O(k^{k+1} (k!)^{-1} \log n) \) rounds?

Exponentially better in \(n \), when \(k \) is constant.
Puzzle II: Ninjas Eating
Hungry Ninjas

After training, the ninjas retire to a bucolic Biergarten…

A banquet is **complete** if for every pair of ninjas \((i, j)\), there’s a course that is served to \(i\) before \(j\) and one that is served to \(j\) before \(i\)

How many courses make a banquet complete?
A Complete Banquet

Two courses suffice:

1 2 ... n

n n-1 ... 1
3-Complete Banquets

A banquet is 3-complete if for every triple of ninjas \((i, j, k)\), there’s a course served in the order \(i < j < k\).

How many courses make a banquet 3-complete?

There is a 3-complete banquet with \(n^3\) courses.

Can you do it in \(O(\exp(d) \log n)\) rounds?
Masters at the Banquet

Ninjas, of course, form a hierarchy
A master is always served before their student
Masters at the Banquet

Again, **two** courses suffice for 2-completeness:
Ninjas at the Banquet

A banquet is **3-complete** if for every triplet \((i, j, k)\), there’s a course served to ninja \(i\) before \(j\), and \(j\) before \(k\).

Naive approach with \(n^3\) courses:

Pick a course for each \(\binom{n}{3} \cdot 3!\) orders

Can be done with \(O(\log n)\) courses!
From Ninjas to Testing...
From Training Ninjas to Distributed Systems with Partition Faults

- Ninjas
- Weapons
- Rounds
- Complete training

- Nodes in a network
- Blocks in a partition
- Tests = partitions

Splitting family of partitions
Coverage Goal: Splitting Families

Given n nodes and $k \leq n$,

a partition of nodes $P = \{B_1, \ldots, B_k\}$ splits a set of nodes $S = \{x_1, \ldots, x_k\}$ if $x_1 \in B_1$, ..., $x_k \in B_k$.

A set of partitions F is a k-splitting family if for every k-subset of nodes there is a partition in F that splits it.
From Eating Ninjas to Testing Concurrent Systems

ninjas hierarchy
courses
d-complete banquet

events
partial order on events
tests = schedules/linearization
d-hitting family of schedules
Coverage Goal: Hitting Families

Given a poset of events, a schedule hits a d-tuple of events \((e_1, \ldots, e_d)\) if it executes the events in the order \(e_1 < \ldots < e_d\).

Given a poset of events, a family of schedules \(F\) is d-hitting if for every admissible d-tuple of events there is a schedule in \(F\) that hits it.
Why k-Splitting?

- Chronos: A distributed fault-tolerant job scheduler
- Works in conjunction with Mesos and Zookeeper
- Three special nodes: Chronos leader, Mesos leader, Zookeeper leader

From Jepsen https://jepsen.io
A partition isolating Chronos from the ZK leader can cause a crash #513

aphyr opened this issue on 7 Aug 2015 · 20 comments

aphyr commented on 7 Aug 2015

When a network partition isolates a Chronos node from the Zookeeper leader, the Chronos process may exit entirely, resulting in downtime until an operator intervenes to restart it.

A partition isolating Chronos from the ZK leader can *not* cause a crash #522

aphyr opened this issue on 14 Aug 2015 · 7 comments

aphyr commented on 14 Aug 2015

Per #513, Chronos is expected to crash when a leader loses its Zookeeper connection. In this test case, Chronos detects the loss of its Zookeeper connection and, instead of crashing, sleeps quietly and reconnects when the partition heals. #513 argues that to keep running would violate unspecified correctness constraints. To preserve safety, should Chronos also crash here?

air commented on 15 Aug 2015

Hi - you're referring to a statement that doesn't represent the design (it wasn't expressed carefully enough). Please disregard it and refer to the clarification in the thread. Make sense?
Why d-Hitting?

Many bugs in asynchronous programs involve a small number of events—

bug depth d

- $d = 2$: order violation
- $d = 3$: atomicity violation

[Lu et al. ASPLOS ’08] [Burckhardt et al. ASPLOS ’10] [Jensen et al. OOPSLA ’15] [Petrov et al. 2012]
Combinatorics: Bounding the Probabilities
Plan

• Start with some combinatorial puzzles
• Connect these puzzles to testing
 1. Come up with coverage goals
 2. Show how the puzzles relate to coverage goals
 3. Bound the probabilities
Small k-Splitting Families

- Fix a k-element set S
- What is the probability a random partition splits S?
- A splitting partition uniquely corresponds to a map $U\setminus S \rightarrow S$. There are $k^{(n-k)}$ such maps
- So probability $= \frac{k^{(n-k)}}{\binom{n}{k}}$

Stirling number of 2nd kind

Number of partitions of n elements into k parts
Small k-Splitting Families

- Probability that a fixed set is split = $k^{(n-k)} / \binom{n}{k}$
- Can we get rid of n?
 - Yes: $k^n \geq k! \binom{n}{k}$

All functions from n to k

All surjections from n to k

$\geq k^{-k} \cdot k!$
Small k-Splitting Families

- Pr[Random partition splits S] ≥ k!/ k^k

- From our general theorem: There is a k-splitting family of size \((k^k/k!) k \log n\)

- Turns out: uniformly sampling k-partitions is hard
 - But sampling balanced partitions is sufficient
 - The combinatorial arguments are harder

\[\binom{n}{k}^k \leq n^k \binom{n}{k}\]
Small d-Hitting Families

Probabilistic argument: Fix a tuple of d ninjas

What is the probability that a random schedule covers it?
\[\frac{1}{d!} \]

What is the probability k schedules don’t cover it?
\[(1 - \frac{1}{d!})^k \]

What is the probability k schedules are not a hitting family?
At most \((\binom{n}{3}) \cdot (1 - \frac{1}{d!})^k \)

Pick \(k > d! d \log n \)
Plan

• Start with some combinatorial puzzles

• Connect these puzzles to testing

1. Come up with coverage goals

2. Show how the puzzles relate to coverage goals

3. Bound the probabilities
Andrew Yao. *Should Tables Be Sorted?* 1981

- Uses k-splitting families to construct "**perfect hash functions**": for every k-subset S of an n-element domain there is a hash function that is 1-to-1 on S.

- Uses perfect hash functions to construct **hash tables with constant lookup**.

- Follow-up work by Fredman, Komlós, Szemerédi.
Combinatorics II: Hitting Families & Order Dimension of Posets

- Dushnik and Miller. *Partially Ordered Sets*. 1941

- Define and study **order dimension of a poset**: Number of linearizations whose intersection is the poset

- Hitting families generalize order dimension
 order dimension = size of the smallest 2-hitting family

- **d-completeness**: Not studied in the p.o. literature!
Explicit Constructions

Probabilistic method shows existence:

- k-splitting families of size: $(k^{k+1} / k!) \log n$
- d-hitting families of size: $d \cdot d! \log n$

But may not be optimal:

- 2-splitting family of size $\log n$ exists; prob. method gives $2 \log n$
- d-hitting families for trees of size h of size $O(\exp(d) \cdot h^{d-1})$

OTOH, matching explicit constructions are open:

- k-splitting families of size: $4^{\sqrt{k}} (\log_2 n)^{k-1}$ by Yao
Summary

1. What are the coverage goals?
2. What are tests?
3. Can we bound $\Pr[\text{Test covers a goal}]$?
 ⇒ If so, “small” test sets exist
Summary

Coverage Goals

1. Splitting nodes in network partitions

Tests

2. Network partitions

3. \(\Pr[\text{Test covers a goal}] \geq \exp(k) \log n \)
Summary

Coverage Goals

1. Hitting all d-tuples

Tests

2. Schedules

3. \(\Pr[\text{Test covers a goal}] \geq \exp(d) \log n \)
Summary

1. What are the coverage goals?

2. What are tests?

3. Can we bound $\Pr[\text{Test covers a goal}]$?
 \Rightarrow If so, “small” test sets exist
Thank You

1 2 3 ...

Watch out for Filip Niksic’s PhD Thesis!

Icons made by Freepik at www.flaticon.com