
Moving Fast with High
Reliability: Program
Analysis at Uber

Manu Sridharan

Software Reliability Workshop

ETH Zurich

OCTOBER 14, 2017

Uber Apps

Rider Driver Eats

iOS and Android

Uber Apps

Rider Driver Eats

iOS and Android

Rider crash: can’t get home

Driver crash: can’t earn

Using our apps involves a payment

Apps take significant time to patch

Uber cares a lot about reliability

“Transportation as reliable as
running water, everywhere, for
everyone”

Hundreds of developers working simultaneously
• Hundreds of commits per day

Millions of lines of code

Goal: Let builders build
• Let developers stay in the flow
• Let developers work independently

Uber needs to move fast

How can Uber move fast and
keep reliability high?

Modularity in Design and Analysis

App design emphasizes modularity
• Features can be developed and disabled independently
• Enables developers to move fast

Modularity in Design and Analysis

App design emphasizes modularity
• Features can be developed and disabled independently
• Enables developers to move fast

Analysis can both enforce and leverage design
• Leverage code modularity for greater scalability / precision
• Modular analysis avoids pollution from unrelated code

Modularity in Design and Analysis

App design emphasizes modularity
• Features can be developed and disabled independently
• Enables developers to move fast

Analysis can both enforce and leverage design
• Leverage code modularity for greater scalability / precision
• Modular analysis avoids pollution from unrelated code

Strong willingness to adjust design to help analysis

Modularity in Design and Analysis

Remainder of this talk

Designing for
analyzability

Remainder of this talk

Case studiesDesigning for
analyzability

Remainder of this talk

Case studiesDesigning for
analyzability

Future projects /
open problems

Remainder of this talk

Designing for Analyzability

In 2016, Uber built new rider apps
from scratch

Key goals included:
• High availability of core flows, without

slowing feature development
• Maximal decoupling of features

These goals help static analysis!

Rewritten Rider App

Plugins

Isolate core flows from other features
• Core flow: getting a ride
• Non-core: account settings

Plugins can be disabled remotely
• Reduces risk in feature experimentation

Plugins: Motivation

Plugin examples

Feed

Location 
shortcuts

Scheduled 
rides

Profiles

Core code defines plugin points
• Changes get extra manual review

Core can only reference non-core via plugins
• Enforced via naming conventions + linting

80% of code in plugins

Core flows tested with all plugins disabled

Plugins: Under the Hood

Deep Scope Hierarchies

Scoping of app state

Some state needs to be shared between features
• The map
• User account information when logged in

Scoping of app state

Some state needs to be shared between features
• The map
• User account information when logged in

Storing in global state leads to bugs
• Subtle dependencies creep in between features

Scoping of app state

Some state needs to be shared between features
• The map
• User account information when logged in

Storing in global state leads to bugs
• Subtle dependencies creep in between features

Must manage object lifetimes carefully to avoid leaks
• E.g., after trip, need to promptly discard trip state
• In old app, fragile reset() methods

Scoping of app state

Deep Scope Hierarchies

Deep Scope Hierarchies
Root

Deep Scope Hierarchies
Root

LoggedOut

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Parent creates / destroys child scopes

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Parent creates / destroys child scopes

State must be explicitly shared from parent to child
• Statically prohibited from accessing sibling state

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Parent creates / destroys child scopes

State must be explicitly shared from parent to child
• Statically prohibited from accessing sibling state

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Parent creates / destroys child scopes

State must be explicitly shared from parent to child
• Statically prohibited from accessing sibling state

Object lifetimes tied to scopes
• No more reset() methods
• Helps prevent leaks

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Parent creates / destroys child scopes

State must be explicitly shared from parent to child
• Statically prohibited from accessing sibling state

Object lifetimes tied to scopes
• No more reset() methods
• Helps prevent leaks

Based on new RIB framework
• Router-Interactor-Builder (refinement of MVC)
• Builders manage state sharing, Routers manage tree structure

Deep Scope Hierarchies
Root

LoggedOut LoggedIn

Request OnTrip

Implications

Features stay independent
• A challenge with so much shared app state

Well-defined contracts
• Between features, via RIB tree
• Between core and optional code, via plugins

Result: developers stay sane

Decoupling: Good for Moving Fast

Decoupling: Good for Analysis!

Better whole program analysis
• Less pollution from imprecise data flow

Decoupling: Good for Analysis!

Better whole program analysis
• Less pollution from imprecise data flow

Modular verification!
• Of core code, via plugins
• Of individual features, via deep scopes

Decoupling: Good for Analysis!

Better whole program analysis
• Less pollution from imprecise data flow

Modular verification!
• Of core code, via plugins
• Of individual features, via deep scopes

May require specifications at boundaries
• Can we infer them?

Decoupling: Good for Analysis!

Better whole program analysis
• Less pollution from imprecise data flow

Modular verification!
• Of core code, via plugins
• Of individual features, via deep scopes

May require specifications at boundaries
• Can we infer them?

Big opportunity!

Decoupling: Good for Analysis!

Nullness Checking for Android

Principles for bug checkers

All reports must be
addressed. 
Precision is critical

Block the build

Principles for bug checkers

All reports must be
addressed. 
Precision is critical

Block the build

Principles for bug checkers

Aim for instant IDE feedback. 
Performance is critical

Run checks early

All reports must be
addressed. 
Precision is critical

Block the build

Principles for bug checkers

Aim for instant IDE feedback. 
Performance is critical

Run checks early

Makes errors more
understandable,
analyses more
performant

Annotations are OK

Major source of Android app crashes

In mid-2015, Facebook released Infer (http://fbinfer.com/), with static
detection of NPEs

Uber aggressively adopted Infer to “eradicate” NPEs

NullPointerException Background

Exception in thread "main" java.lang.NullPointerException
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visit(JDTJava2CAstTranslator.java:1480)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visitNode(JDTJava2CAstTranslator.java:2901)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visit(JDTJava2CAstTranslator.java:1462)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visitNode(JDTJava2CAstTranslator.java:2887)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visitNodeOrNodes(JDTJava2CAstTranslator.java:2959)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.createBlock(JDTJava2CAstTranslator.java:1275)
 at com.ibm.wala.cast.java.translator.jdt.JDTJava2CAstTranslator.visit(JDTJava2CAstTranslator.java:1280)
 …

http://fbinfer.com/

Type-Based NPE Prevention

Type-Based NPE Prevention

static void log(Object x) {
 System.out.println(x.toString());
}
static void foo() {
 log(null);
}

Type-Based NPE Prevention

static void log(Object x) {
 System.out.println(x.toString());
}
static void foo() {
 log(null);
}

Error: cannot pass null to @NonNull parameter x

Type-Based NPE Prevention

static void log(@Nullable Object x) {
 System.out.println(x.toString());
}
static void foo() {
 log(null);
}

Type-Based NPE Prevention

static void log(@Nullable Object x) {
 System.out.println(x.toString());
}
static void foo() {
 log(null);
}

Error: de-referencing x may yield NPE

Type-Based NPE Prevention

static void log(@Nullable Object x) {
 if (x == null) return;
 System.out.println(x.toString());
}
static void foo() {
 log(null);
}

Type-Based NPE Prevention

static void log(@Nullable Object x) {
 if (x == null) return;
 System.out.println(x.toString());
}
static void foo() {
 log(null);
} 👍

Type-Based NPE Prevention

static void log(@Nullable Object x) {
 if (x == null) return;
 System.out.println(x.toString());
}
static void foo() {
 log(null);
} 👍

As in Eradicate (http://fbinfer.com/docs/eradicate.html), 

Checker Framework (https://checkerframework.org/)

http://fbinfer.com/docs/eradicate.html
https://checkerframework.org/

Eradicate: huge success, but significant running time
• Only ran on submit queue (final stage of CI)

Error Prone (http://errorprone.info/): custom checkers
within Java compiler

Efficient: Re-use work that compiler has already done
• E.g., AST construction, type analysis

NullAway: Eradicate-like checking in Error Prone

NullAway

http://errorprone.info/

Runs on all builds instead of just submit queue
• < 10% overhead
• Devs get much faster feedback

Found hundreds of new issues
• Greater flexibility in handling third-party jars

Open source! https://github.com/uber/NullAway

Experience with NullAway

https://github.com/uber/NullAway

Analysis is not sound
• Not even soundy! (http://soundiness.org)
• Contrast with Checker Framework

Holes: multithreading, initialization, arrays, mutation, …

In practice, gaps have been in library models

RAVE (https://github.com/uber-common/rave) ensures nullness
assumptions valid for data from disk/network

Soundness?

http://soundiness.org
https://github.com/uber-common/rave

Recent enhancement: stream handling

Recent enhancement: stream handling

class Data { int age() { ... }; }
class Person { @Nullable Data data() { ... }; }
Stream<Person> pplStream = ...;
int ageSum = pplStream
 .filter((p) -> p.data() != null)
 .mapToInt((p) -> p.data().age())
 .sum();

Recent enhancement: stream handling

class Data { int age() { ... }; }
class Person { @Nullable Data data() { ... }; }
Stream<Person> pplStream = ...;
int ageSum = pplStream
 .filter((p) -> p.data() != null)
 .mapToInt((p) -> p.data().age())
 .sum();

Error: de-referencing p.data() may yield NPE

Recent enhancement: stream handling

class Data { int age() { ... }; }
class Person { @Nullable Data data() { ... }; }
Stream<Person> pplStream = ...;
int ageSum = pplStream
 .filter((p) -> p.data() != null)
 .mapToInt((p) -> p.data().age())
 .sum();

Result: Stream<{ p | p.data() != null}>

Recent enhancement: stream handling

class Data { int age() { ... }; }
class Person { @Nullable Data data() { ... }; }
Stream<Person> pplStream = ...;
int ageSum = pplStream
 .filter((p) -> p.data() != null)
 .mapToInt((p) -> p.data().age())
 .sum();

Result: Stream<{ p | p.data() != null}>

👍

Multithreading

Multithreading

Many nasty bugs possible
• Data races
• Accessing UI off main thread

Multithreading

Many nasty bugs possible
• Data races
• Accessing UI off main thread

Most multithreading via ReactiveX
• Functional reactive programming for asynchronous

streams
• Very structured use of threads

Multithreading

Many nasty bugs possible
• Data races
• Accessing UI off main thread

Most multithreading via ReactiveX
• Functional reactive programming for asynchronous

streams
• Very structured use of threads

Multithreading

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .observeOn(MAIN)
 .subscribe(i -> display(i));

Many nasty bugs possible
• Data races
• Accessing UI off main thread

Most multithreading via ReactiveX
• Functional reactive programming for asynchronous

streams
• Very structured use of threads

Opportunity: specialized analyses!

Multithreading

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .observeOn(MAIN)
 .subscribe(i -> display(i));

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

Off-main-thread UI access

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

@UIEffect

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)
@UIEffect

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)
@UIEffect

Thread types for Observables (Checker Framework)

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)

@MainThread

@UIEffect

Thread types for Observables (Checker Framework)

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)

@MainThread
@ComputeThread

@UIEffect

Thread types for Observables (Checker Framework)

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)

@MainThread
@ComputeThread
@ComputeThread

@UIEffect

Thread types for Observables (Checker Framework)

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)

@MainThread
@ComputeThread
@ComputeThread

@UIEffect

Thread types for Observables (Checker Framework)

Error: UI effect off main thread

Rx Thread Checker

sourceObservable()
 .observeOn(COMPUTATION)
 .map(x -> expensive(x))
 .subscribe(i -> display(i));

@UIEffect
void display(i) { … }

Enforced with effect analysis (Gordon et al., ECOOP’13)

@MainThread
@ComputeThread
@ComputeThread

@UIEffect

Thread types for Observables (Checker Framework)

Error: UI effect off main thread

Actively deploying across Android
codebase

Future work: extend to enforce side-
effect freedom

Other projects /  
open problems

Performance: Speed and Memory

Micromax Spark

Need to run smoothly on all devices
• Many low-end devices in growth markets

Performance: Speed and Memory

Micromax Spark

Need to run smoothly on all devices
• Many low-end devices in growth markets

How to attack with analysis?
• Statically detect slow code on main thread
• Give visibility into UI-blocking network requests
• Reduce OutOfMemoryErrors (statically enforce scope hierarchies)

Performance: Speed and Memory

Micromax Spark

Need to run smoothly on all devices
• Many low-end devices in growth markets

How to attack with analysis?
• Statically detect slow code on main thread
• Give visibility into UI-blocking network requests
• Reduce OutOfMemoryErrors (statically enforce scope hierarchies)

A challenge with new features going in constantly!

Performance: Speed and Memory

Micromax Spark

Future of iOS development

Uber has invested heavily
• New rider app written entirely in Swift
• Google “swift with a hundred engineers”
• Same architecture! Plugins + deep scopes + Rx

Little analysis infrastructure available
• We released NEAL for linting: https://github.com/uber/NEAL

Cross-platform analyses? Swift-specific?

Infrastructure: Swift

Verification of startup code

Preventing code duplication

Test generation / selection

Dead code elimination

And more…

Need high app reliability

Need developers to move fast

Approach: modular app design + program analysis
• Analysis helps enforce design
• Design increases analysis effectiveness
• Tons of opportunities

Conclusions

Blog posts
App architecture: https://eng.uber.com/new-rider-app/
Scope hierarchies: https://eng.uber.com/deep-scope-hierarchies/
Plugins: https://eng.uber.com/plugins/

Open source
NullAway: https://github.com/uber/NullAway
NEAL: https://github.com/uber/NEAL
 

Relevant resources

https://eng.uber.com/new-rider-app/
https://eng.uber.com/deep-scope-hierarchies/
https://eng.uber.com/plugins/
https://github.com/uber/NullAway
https://github.com/uber/NEAL

Uber Programming Systems Group

Raj Barik Lazaro Clapp Murali Krishna 
Ramanathan

Manu 
Sridharan

Adam Welc Benno Stein (Intern)

First & Last Name
Thank you  
 

