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Intelligent Machines

How well can we

T h e Da r k Sec ret at t he Al programs exhibit racial and gender get along with

biases, research reveals machines that
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e unpredictable

and

No one really knows how the most advanced algorithms do )
inscrutable?

what they do. That could be a problem.

European Union regulations on algorithmic decision-making and a "right to explanation™

How Al detectives are cracking open the black box of B B B
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How good (robust) is your neural net?

Neural networks are not robust to input perturbations
(e.g., image rotation / change of lighting)
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Misclassifications in neural networks deployed in self-driving cars [1]
In each picture one of the 3 networks makes a mistake...

[1] Pei et. al., DeepXplore: Automated Whitebox Testing of Deep Learning Systems, SOSP 2017



Attacks on Machine Learning...

Slight Street Sign Modifications Can
Completely Fool Machine Learning
Algorithms

By Evan Ackerman
Posted 4 Aug 2017 | 18:00 GMT

Attacking Machine Learning

with Adversarial Examples

Adversarial examples are inputs to machine learning
models that an attacker has intentionally designed to
cause the model to make a mistake; they're like optical
illusions for machines. In this post we’ll show how
adversarial examples work across different mediums,
and will discuss why securing systems against them
can be difficult.
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Wanted: Automated and scalable analysis to verify realistic NNs

Useful in:
 Ensuring correctness of a larger (CPS) system that uses the NN
* Proving robustness of the NN (beyond finding adversarial examples)
 Learning interpretable specs of the NN

* Comparing NNs

(joint work with Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri)



Problem Statement and Challenges

Neural Network Analysis Problem

Given

- aneural network N

- a property over inputs @

- a property over outputs Y

check whether Vi € I.i = ¢ = N(i) = 1 holds

Challenges:
- The property ¢ over inputs usually captures an unbounded set of inputs
- Existing symbolic solutions do not scale to large networks (e.g. conv nets)



Key Observation: Al for Al

Deep Neural Nets:
Affine transforms + Restricted non-linearity

+

Abstract Interpretation:
Scalable and Precise Numerical Domains
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Al%: Abstract Interpretation for NNs
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Al%: Abstract Interpretation for NNs
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Al%: Abstract Interpretation for NNs
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/onotope Abstract Domain

An abstract neuron is captured in an affine form. Example for two concrete neurons n and m:

Y
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/onotope Abstract Domain

An abstract neuron is captured in an affine form. Example for two concrete neurons n and m:

k
n =a," + 2 a™ € Example: 3
=1
K The meaning [y ] is a polytope
n - - centered around a,"* and a,™
m =a," + Z a €
i=1

e; : noise terms ranging [-1,1] shared between abstract neurons
a." : real number that controls magnitude of noise

Closed under affine transforms, e.qg., 7 +m
Not closed under joins and meets, e.g.,: 7 || m, n 3z m



Al%: Abstracting Neurons SR
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Al%: Abstracting Neurons SR
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Al%: Abstracting Neurons SR

powerset of
zonotopes

Po

Captures a set
of images
Robustness specification ¢,
xO = O

x; = 0.975 + 0.025¢;
x, = 0.125

x784 S 0938 + 0.0626784
Vi.e; € [0,1] =33



Al%: Abstracting Neurons SR

powerset of

zonotopes

Po P1 Pn-1

. » %43

of images
Robustness specification ¢, Output constraint ¢,

Captures all
possible output
vectors
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Vi.e; € [0,1] =33 Vi.e; € [0,1]



Al%: Abstracting Neurons SR

powerset of
zonotopes

Po

Captures a set
P ] Captures all
of images ;
e s : possible output
Robustness specification ¢, Output constraint ¢, vectors
xo == O xO == O
x; = 0.975 + 0.025¢, x; = 2.60 + 0.015¢, + 0.023¢, + 5.181¢, + -
x, = 0.125 x, = 4.63 — 0.005¢, — 0.006€; + 0.023¢; + -

Xpgs = 0.938 + 0.062¢g, Xo = 0.12 — 0.125€, + 0.102€; + 3.012€; + -
Vi.e; € [0,1] =33 Vi.e; € [0,1]

Label i is possible iff: @, M {Vj.x; = x;} #1



Abstract Neuron Transformers

a=0.2n+ 0.4m

02 \ Z = ReLU(a)

% b =011+ 0.5m

\ g = ReLU(Db)
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Abstract Neuron Transformer

. . A Activation function: z = ReLU(a) = max(0,a)
a=0.2n+ 0.4m P A

0.2 \ zZ = ReLU(a)

% b =011+ 0.5m

0.5



Abstract Neuron Transformer

. . A Activation function: z = ReLU(a) = max(0,a)
a=0.2n+0.4m P A
. 0.2 \ z= RBLU(a)
n
a#
. %, b =015 + 0.5 RelLU abstract transformer:
~ #  _ o# #
\ frReru = fic @0 fA
g = ReLU(b
i 1 el @) = @ N g = 0) U g
0.5 T,

_ {xp[xi — 0] If @n{x <0} =#L
Yo =

L otherwise



The Al System

Supports neural networks with:

Layers: Fully-connected, convolutional, max-pooling, flattening
Activation functions: RelLU

Supported numerical domains:

Intervals, Zonotopes, Polyhedra, Bounded powerset domain



Experimental Results

MNIST ConvNet 6 layers, 15K neurons CIFAR-10 ConvNet 6 layers, 57K neurons
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Intelligent Machines

The Dark Secret at the
Heart of Al

No one really knows how the most advanced algorithms do
what they do. That could be a problem.

AlZ: Al for Al
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Handles Convolutional Nets
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