PROGRAMMING ANALOG DEVICES WITH JAUNT AND ARCO

SARA ACHOUR / MIT CSAIL MARTIN RINARD / MIT CSAIL

Dynamical Systems

 $x'' + c_1 x' + c_2 x'' = 0$

$$L \cdot I'' + R \cdot I' + C^{-1} \cdot I = 0$$

$$\dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$$

$$x'' + ax' + x + ax^2 = c_3$$

Programmable Analog Devices

DYNAMICAL SYSTEMS MODEL THE PHYSICAL WORLD

$$x'' + c_1 x' + c_2 x'' = 0$$

$$L \cdot I'' + R \cdot I' + C^{-1} \cdot I = 0$$

$$\dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$$

$$x'' + ax' + x + ax^2 = c_3$$

DYNAMICAL SYSTEMS MODEL BIOLOGICAL PROCESSES

$$x'' + c_1 x' + c_2 x'' = 0$$

$$L \cdot I'' + R \cdot I' + C^{-1} \cdot I = 0$$

$$\dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$$

$$x'' + ax' + x + ax^2 = c_3$$

BIOLOGICAL DYNAMICAL SYSTEMS

$$E = E_0 - ES$$
$$S = S_0 - ES$$
$$S$$
$$\dot{E}S = k_f \cdot E \cdot S - k_r \cdot ES$$

state variables model physical quantities

BIOLOGICAL DYNAMICAL SYSTEMS

$$E = E_0 - ES$$
$$S = S_0 - ES$$
$$\dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$$

differential equations specify continuous dynamics of state variables over time

GOAL: SIMULATING BIOLOGICAL DYNAMICAL SYSTEMS

$$E = E_0 - ES \qquad E_0 = 6800$$
$$S = S_0 - ES \qquad S_0 = 4400$$
$$ES(0) = 0 \qquad \dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$$

given initial state of system: compute values of state variables over time

GOAL: SIMULATING BIOLOGICAL DYNAMICAL SYSTEMS

plot molecule counts/concentrations of compounds over time

ANALOG COMPUTING CIRCA 1950

direct mapping

- ▶ variables → current, voltage
- ▶ dynamics → circuit physics
- straightforward simulation
 - power up circuit
 - measure current, voltage over time
- 1970-2010: Age of Digital Computing
 - Analog computes out of fashion

PROGRAMMABLE ANALOG DEVICES

- same computational model
- modernized hardware
 - modern semiconductor technologies

new capabilities

- powerful, heavily optimized building blocks
- digital reprogrammability
- exploit analog noise

INTRODUCTION

PROGRAMMING CHALLENGES FOR ANALOG DEVICES

physical behavior

- voltage/current operating ranges
- circuit noise [thermal/shot/flicker]
- complex building blocks
 - non-linear, non-convex
- space limitations
 - Imitations on number of available blocks and connections

requires creativity when configuring device

11

A COMPILER FOR PROGRAMMABLE ANALOG DEVICES

Analog Devices

automatically compose complex algebraic building blocks

automatically reason about operating ranges + circuit noise

Dynamical Systems

Programmable Analog Devices automatically compose complex algebraic building blocks ¹⁴ automatically reason about operating ranges + circuit noise

 $x'' + c_1 x' + c_2 x'' = 0$ $L \cdot I'' + R \cdot I' + C^{-1} \cdot I = 0$ $\dot{ES} = k_f \cdot E \cdot S - k_r \cdot ES$ $x'' + ax' + x + ax^2 = c_3$

Dynamical Systems

Programmable Analog Devices

FUNDAMENTALLY NEW COMPILATION TECHNIQUES

TALK OUTLINE

- Background: overview of compilation problem
- Arco Compiler¹: automatically configure analog devices to simulate dynamical systems.
- Jaunt Solver²: automatically scales dynamical systems to execute analog hardware with operating range constraints.

Closing Remarks

- 1. Configuration Synthesis for Programmable Analog Devices with Arco. Sara Achour, Rahul Sarpeshkar and Martin Rinard. June 2016. PLDI 2016.
- 2. Time Dilation and Contraction for Programmable Analog Devices with Jaunt. Sara Achour and Martin Rinard. December 2017. ASPLOS 2018.

OUTLINE

18

DYNAMICAL SYSTEM SPECIFICATION

$$E = 6800 - ES$$

$$S = 4400 - ES$$

$\dot{ES} = 10^{-4} \cdot E \cdot S - 10^{-2} \cdot ES$ ES(0) = 0

inp X0, Y0, Z0 **inp** A, B **out** X, Y, Z

rel X.I = X0.I - Z.I rel Y.I = Y0.I - Z.I rel Z.I' = A.V X.I Y.I - B.V Z.I and Z.I(0) = Z0

Block Dynamics

set DAC[0].X = 0.003

•••

set DAC[5].X = 0.006

DAC Values

set DAC[0].X = 0.003
...
set DAC[5].X = 0.006

ibl ADC[0].Z = "E"
ibl ADC[1].Z = "S"
ibl ADC[2].Z = "ES"

ADC Values

set DAC[0].X = 0.003

set DAC[5].X = 0.006

b ADC[0].Z = "E"

b ADC[1].Z = "S"

b ADC[2].Z = "ES"

conn DAC[0].Z to MM[0].X0
....
conn MM[0].Y to ADC[2].X
conn MM[0].Z to ADC[3].X

Connections

BACKGROUND

TALK OUTLINE

- Background: overview of compilation problem
- Arco Compiler¹: automatically configure analog devices to simulate dynamical systems.
- Jaunt Solver²: automatically scales dynamical systems to execute analog hardware with operating range constraints.

Closing Remarks

- 1. Configuration Synthesis for Programmable Analog Devices with Arco. Sara Achour, Rahul Sarpeshkar and Martin Rinard. June 2016. PLDI 2016.
- 2. Time Dilation and Contraction for Programmable Analog Devices with Jaunt. Sara Achour and Martin Rinard. December 2017. ASPLOS 2018.

Arco performs a search over tableaus

Arco starts with an initial tableau

initial tableau : the initial state of the search

initial tableau : the initial state of the search

ES(0) = 0

initial tableau : the initial state of the search

initial tableau : the initial state of the search

analog hardware is not configured yet

new tableaus derived using transition rules

Arco searches until a solved tableau is found

solved tableau : the final state of the search

solved tableau : the final state of the search

no goals left

solved tableau : the final state of the search

remaining blocks, wires

solved tableau : the final state of the search

blocks in use

solved tableau : the final state of the search

Arco derives new tableaus using transition rules

Arco derives new tableaus using transition rules

Unify

Connect

Variable Map

UNIFICATION TRANSITION $\mathbf{F}^{\mathbf{X}} \quad E = 6800 - ES$

UNIFICATION TRANSITION

 $\mathbf{F}\mathbf{X} \quad E = 6800 - ES$

E = 6800 - ES

ΗΖ E = 6800 - ESX = X0 - Z

ES(0) = Z0

Х Y Ζ F FS S MM[0] . X0 = 6800 $MM[0] \cdot X = E$ $\Box \dot{ES} = 10^{-4}E \cdot S - 10^{-2}ES$ $MM[0] \cdot Z = ES$ $MM[0] \cdot A = 10^{-4}$ ES(0) = 0 $MM[0] \cdot B = 10^{-2}$ MM[0] . Y = S $\dot{ES} = A \cdot E \cdot Y - B \cdot ES$ MM[0] . Z0 = 0ES(0) = Z0

E

MM[0]

$$II = \frac{10^{-4} 6800 0 4400 10^{-2}}{A X0 Z0 Y0 B}$$

$$III = \frac{X Z Y}{E ES S}$$

$$III = \frac{X Z Y}{E ES S}$$

$$IIII = \frac{10^{-4} 6800 0 4400 10^{-2}}{M}$$

65

$$Figure S = 10^{-4} = 6800 - ES$$

$$Figure S = 10^{-4} = 6800$$

$$Figure S = 4400 - ES$$

$$Figure S = 10^{-2}$$

 10^{-2}

В

UNIFICATION TRANSITION

UNIFICATION TRANSITION

Arco derives new tableaus using transition rules

Unify

Connect

Variable Map

CONNECTION TRANSITION

CONNECTION TRANSITION

CONNECTION TRANSITION

ARCO COMPILER OVERVIEW

Arco derives new tableaus using transition rules

Unify

Connect

Variable Map

Arco starts with an initial tableau

derives new tableaus using transition rules

until a solved tableau is found

analog device configuration in solved tableau

analog device configuration in solved tableau

ALGEBRAICALLY EQUIVALENT TO DYNAMICAL SYSTEM

creative use of available analog blocks to model dynamics

respects connectivity, block instance constraints

CASE STUDY 1: PERK-4

<u>Task</u>: model PERK⁻⁴ using analog hardware that does not directly support exponentiation.

0 :	$= \frac{M}{((A+B+C)\cdot K^{-1}+1)^n}$
0 =	$= \frac{1}{((PERK + (-1) + 0) \cdot 1^{-1} + 1)^4}$
	PERK-4

PERK -1 $\begin{array}{ccc} \mathsf{A} & \mathsf{B} & \mathsf{C} \\ O = A + B + C \end{array}$ iadd 1 4 S Κ Μ n $\frac{M}{K^{-1}+1)^n}$ switch PERK-4

analog device configuration in solved tableau

doesn't take into consideration PHYSICAL LIMITATIONS OF HARDWARE

analog device configuration in solved tableau

doesn't take into consideration PHYSICAL LIMITATIONS OF HARDWARE OPERATING RANGE CONSTRAINTS SAMPLING RATES OF ADCS/DACS

UNIFORMLY SCALED ANALOG DEVICE CONFIGURATION

UNIFORMLY SCALED ANALOG DEVICE CONFIGURATION

DOES NOT WORK!

UNIFORMLY SCALED ANALOG DEVICE CONFIGURATION

DOES NOT WORK!

SCALED SIGNAL CHANGES SIMULATION

ORIGINAL SIMULATION NOT RECOVERABLE

TALK OUTLINE

- Background: overview of compilation problem
- Arco Compiler¹: automatically configure analog devices to simulate dynamical systems.
- Jaunt Solver²: automatically scales dynamical systems to execute analog hardware with operating range constraints.

Closing Remarks

- 1. Configuration Synthesis for Programmable Analog Devices with Arco. Sara Achour, Rahul Sarpeshkar and Martin Rinard. June 2016. PLDI 2016.
- 2. Time Dilation and Contraction for Programmable Analog Devices with Jaunt. Sara Achour and Martin Rinard. December 2017. ASPLOS 2018.

JAUNT SOLVER

physically realizable: signals within port operating ranges

<u>recoverable</u>: recover original simulation at ADCs

Analog Device Configuration

Scaled Analog Device Configuration

ANALOG DEVICE CONFIGURATION

101

multiply parameters by scaling factors

physically realizable: signals in port operating ranges

- Recover Simulation:
 - divide ADC samples by a13-a15
 - multiply hardware time by T

JAUNT SOLVER

- Objective: Find numerical assignments for scaling factors that produces fastest simulation
 - Scaling Factors: T,a1, ..., a15
 - Values: real numbers > 0

JAUNT SOLVER

- Objective: Find numerical assignments for scaling factors that produces fastest simulation
 - Scaling Factors: T,a1, ..., a15
 - Values: real numbers > 0
- Geometric Program: Convex optimization problem

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

given block with scaled input signals:

→ original output signal is recoverable from scaled output signal

FACTOR CONSTRAINTS

$$a_{12} \cdot Z = \int [a_6 a_{11} a_{13} \cdot A \cdot X \cdot Y - a_9 a_{12} \cdot B \cdot Z] \tau^{-1} \cdot dt$$

FACTOR CONSTRAINTS

$$a_{12} \cdot Z = \int a_6 a_{11} a_{13} \cdot [A \cdot X \cdot Y - B \cdot Z] \tau^{-1} \cdot dt$$

 $a_6 a_{11} a_{13} = a_9 a_{12}$

FACTOR CONSTRAINTS

$$a_6 a_{11} a_{13} \tau^{-1} [Z = \int \cdot [A \cdot X \cdot Y - \cdot B \cdot Z] \cdot dt]$$

 $a_6 a_{11} a_{13} = a_9 a_{12} \qquad \qquad a_6 a_{11} a_{13} \tau^{-1} = a_{12}$

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

given DAC/ADC:

→ ensure simulation is executed slowly enough for adequate sampling

TEXT

SAMPLE CONSTRAINTS

2 sample/su ≤ 1 sample/hu $\cdot \tau^{-1}$

minimum number of samples / simulation time unit

113

SAMPLE CONSTRAINTS

2 sample/su ≤ 1 sample/hu $\cdot \tau^{-1}$

number of samples in one hardware time unit

SAMPLE CONSTRAINTS

2 sample/su ≤ 1 sample/hu $\cdot \tau^{-1}$

number of samples in one hardware time unit

115

SU

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

given a connection:

→ ensure signal is scaled equally on both sides of connection

CONNECTION CONSTRAINTS

$a_1 = a_6$ $a_2 = a_7$ $a_3 = a_8$

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

given an input/output port:

→ ensure signal stays within the operating range of the port

OPERATING RANGE RANGE CONSTRAINTS

 $0 \le a_7 \cdot 6800 \le 1000$

GEOMETRIC PROGRAM GENERATION

- Maximize **T** subject to:
 - Factor Constraints
 - Sampling Constraints
 - Connection Constraints
 - Operating Range Constraints

GEOMETRIC PROGRAM GENERATION

SCALED ANALOG DEVICE CONFIGURATION

gene network that generates oscillations "synthetic genetic clock"

reference simulation

simulation using unscaled configuration saturates, loses oscillations

simulation using scaled configuration

executes 2.839x faster than unscaled configuration

simulation using scaled configuration

scaling samples and time recovers original simulation

TALK OUTLINE

- Background: overview of compilation problem
- Arco Compiler¹: automatically configure analog devices to simulate dynamical systems.
- Jaunt Solver²: automatically scales dynamical systems to execute analog hardware with operating range constraints.

Closing Remarks

- 1. Configuration Synthesis for Programmable Analog Devices with Arco. Sara Achour, Rahul Sarpeshkar and Martin Rinard. June 2016. PLDI 2016.
- 2. Time Dilation and Contraction for Programmable Analog Devices with Jaunt. Sara Achour and Martin Rinard. December 2017. ASPLOS 2018.

OUTLINE

WHAT NEXT?

SENDYNE HYBRID DIGITAL-ANALOG COMPUTATION CHIP

129

CLOSING REMARKS

WHAT IS THE DIFFERENCE BETWEEN THESE CIRCUITS?

ADC

2X

WHAT IS THE DIFFERENCE BETWEEN THESE CIRCUITS? NOISE BEHAVIOR!

LOW NOISE

2X

HIGH NOISE

WHAT IS THE DIFFERENCE BETWEEN THESE CIRCUITS? NOISE BEHAVIOR!

IS THIS BAD?

inherent variance in physical systems

SDES

other stochastic processes

circuit noise = stochastic behavior

IS THIS BAD?

uncertainty in modeling physical systems

unmodeled dynamics

empirically derived models

circuit noise <= uncertainty</pre>

TECHNIQUES FOR MANIPULATING NOISE

Option 1: Rearrange circuit to reduce noise

[noise-aware circuit generation]

Noise

Signal

135

TEXT

TECHNIQUES FOR MANIPULATING NOISE

Option 2: Increase dynamic range of X

Signal

[noise-aware parameter scaling]

Noise

TEXT

TEXT

137

Legno: noise-aware configuration generation

noise-aware scaling transforms

automated filter generation

ranked configuration generation

BACKUP SLIDES

SARPSHKAR GROUP PROTEIN CHIP

CLOSING REMARKS

The Search Algorithm

- Frontier (F): Tableau
 configurations to explore
- choose: chooses the tableau t in F to explore.
- select: chooses the set of transitions to apply to t

Algorithm:

F = initial tableau while **F**, choose **t** in **F**: if **t** is terminal return **Z** otherwise: select **T**: set of t' where **t**→t' remove **t** from **F**, add **T** to **F**

Search Optimizations

Search Heuristics

- <u>choose</u> lowest complexity tableau configuration.
- <u>select</u> a simple goal, and prioritize transitions that solve it.

Algorithm:

F = initial tableau while **F**, <u>choose</u> **t** in **F**: if **t** is terminal return **Z** otherwise: <u>select</u> **T**: set of t' where **t**→t' remove **t** from **F**, add **T** to **F**

Search Optimizations

- Component Aggregation: aggregate instances of the same component
 - **Pro**: smaller search space
 - Con: instance constraints must be handled separately
- Partial Configuration Caching
- Compact Search Tree Data Structure
1. Transitions Over Tableau

$$\frac{\underset{\mathbf{r} \in \overline{\mathbf{R}} \cup \dot{\mathbf{R}}}{\operatorname{\bar{\mathbf{r}} \in \overline{\mathbf{R}} \cup \dot{\mathbf{R}}}} \underbrace{\tilde{\mathbf{r}} \in \widetilde{\mathbf{R}} \quad \operatorname{unify}(\mathbf{r}, \mathbf{\bar{\mathbf{r}}}, \mathbf{\bar{\mathbf{R}}}, \mathbf{\bar{\mathbf{R}}}) = \langle \overline{\mathbf{R}}', \mathbf{\dot{\mathbf{R}}}', \mathbf{\bar{\mathbf{R}}}' \rangle}{\langle \overline{\mathbf{R}}, \dot{\mathbf{R}}, \mathbf{W}, \mathbf{\tilde{\mathbf{R}}}, \mathbf{Z} \rangle \rightarrow \langle \overline{\mathbf{R}}', \dot{\mathbf{R}}', \mathbf{W}, \mathbf{\tilde{\mathbf{R}}}', \mathbf{Z} \rangle} \\
\left\langle \overline{R} \quad \dot{R} \quad \dot{R} \quad W \quad \widetilde{R} \quad Z \rangle \\
W_D = U_I \quad \langle B, U \rangle \quad S = 2 \cdot T \\
Z_I = X_D \quad \langle C, U \rangle \\
B_I = 2 \cdot A_I \quad \langle Z, A \rangle \\
C_I = \frac{A_I}{2} \\
F_I = \frac{E_I}{4}$$
145

1. Transitions Over Tableau

$$\begin{array}{l} \text{CONNECT} \\ \widetilde{r}: \, \overline{i}_q = \overline{o}_q \in \widetilde{R} \\ \hline \overline{R}, \, \dot{R}, \, W, \, \widetilde{R}, \, Z \rangle \rightarrow \langle \overline{R}, \, \dot{R}, \, W - \{w\}, \, \widetilde{R} - \{\overline{r}\}, \, Z \cup \{\overline{o} \bullet \overline{i}\} \rangle \end{array}$$

1. Transitions Over Tableau

$$\frac{\text{INPUT-VAR-MAP}}{\widetilde{r}: \overline{i}_{d} = \widehat{i} \in \widetilde{R}} \qquad \widehat{i} \in \widehat{I} \qquad \overline{i} @ \overline{c} \qquad \overline{c} \in \overline{IC} \\
\overline{\langle \overline{R}, \dot{R}, W, \widetilde{R}, Z \rangle} \rightarrow \langle \overline{R}, \dot{R}, W, \widetilde{R} - \{\overline{r}\}, Z \cup \{\widehat{i} \mapsto \overline{i}_{d}\} \rangle$$

Geometric Programming Problem

monomial m_i

minimize s_{opt}

$$m_i \leq 1, i = 1, ..., n$$

$$s_j = 1, j = 1, ..., m$$

$$m_i = c_i \tau^{x_{i,\tau}} \prod_{p \in P} a_p^{x_{i,p}}$$

posynomial pi

$$s_i = \sum_i c_i \tau^{x_{i,\tau}} \prod_{p \in P} a_p^{x_{i,p}}$$

Analog Hardware Components

selection of analog components from collaborators, textbooks and publications

Component	Quantity	Description	Relation		
iin	25	current input	$Z_{I} = X_{D}$		
vin	125	voltage input	$Z_V = X_D$		
outi	10	current output	$Z_D = X_I$		
vout	75	voltage output	$Z_D = X_V$		
vgain	40	voltage gain	$O_V = (X_V \cdot Z_V) / (Y_V \cdot 25)$		
iadd	30	current adder	$O_{I} = A_{I} + B_{I} + C_{I} + D_{I}$		
vadd	35	voltage adder	$\partial O2_V / \partial t = 0.1 (A_V + B_V - C_V - D_V \cdot O2_V)$		
			$O1_V = 0.1(A_V + B_V - C_V - D_V)$		
vtoi	30	voltage to current converter	$O_I = X_V/K_V$		
itov	30	current to voltage converter	$O_I = K_V \cdot X_I$		
ihill	8	hill function for activation/repression	$S_{I} = M_{V}(S_{I}/K_{I})^{n_{V}}/((S_{I}/K_{I})^{n_{V}} + 1)$		
			$R_I = M_V / ((S_I / K_I)^{n_V} + 1)$		
igenebind	8	gene binding	$O_{I} = M_{I}/(1 + K_{I} \cdot T_{I})$		
switch	15	genetic switch	$O_{I} = M_{I} / (S_{I} / K_{I} + 1)^{n_{V}}$		
mm	2	Michaelis-Menten dynamics	$X_V = Xt_V - XY_V$		
			$Y_V = Yt_V - XY_V$		
			$\partial XY_V / \partial t = K_I \cdot X_V \cdot Y_V - R_I \cdot XY_V$		

G. Cowan, R. Melville, and Y. Tsividis. A VLSI analog computer/digital computer accelerator. *Solid-State Circuits, IEEE Journal of*, 41(1):42–53, Jan 2006. ISSN 0018-9200. doi: 10.1109/JSSC.

R. Daniel, S. S. Woo, L. Turicchia, and R. Sarpeshkar. Analog transistor models of bacterial genetic circuits. In Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE, IEEE, 2011.

R. Sarpeshkar. Ultra Low Power Bioelectronics: Funda- mentals, Biomedical Applications, and Bio-Inspired Systems. Cambridge University Press, 2010. ISBN 0521857279.

J. J. Y. Teo, S. S. Woo, and R. Sarpeshkar. Synthetic biology: A unifying view and review using analog circuits. *IEEE Trans. Biomed. Circuits and Systems*, 9(4):453–474, 2015.

S. S. Woo, J. Kim, and R. Sarpeshkar. A cytomorphic chip for quantitative modeling of fundamental bio-molecular circuits. *IEEE Trans. Biomed. Circuits and Systems*, 9(4):527–542, 2015.

Dynamical Systems Benchmarks

selection of published artifacts from well-cited computational biology papers from Biomodels database

Benchmark	Parameters	Functions	Differential Equations
menten	3	0	4
gentoggle	9	3	2
repr	7	3	6
OSC	16	16	9
apop	87	48	27

- <u>menten</u>: Michaelis-Menten equation reaction. D. R. F. PhD. Biochemistry (Lippincott Illustrated Reviews Series). LWW, 2013. ISBN 1451175620.
- gentoggle: genetic toggle switch in E.col. T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch in escherichia coli. *Nature*, 403(6767): 339–342, 2000.
- repri: synthetic oscillatory network of transcriptional regulators. M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. *Nature*, 403(6767):335–338, 2000.
- **osc**: circadian oscillation utilizing activator / repressor. J. M. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-resistance in genetic oscillators. *Proceedings of the National Academy of Sciences*, 99(9):5988–5992, 2002
- <u>apop</u>: protein stress response. K. Erguler, M. Pieri, and C. Deltas. A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis. *BMC systems biology*, 7(1):16, 2013.

https://www.ebi.ac.uk/biomodels-main/

Arco Runtime

Geometric Programming Problem

monomial m_i

minimize s_{opt}

$$m_i \leq 1, i = 1, ..., n$$

$$s_j = 1, j = 1, ..., m$$

$$m_i = c_i \tau^{x_{i,\tau}} \prod_{p \in P} a_p^{x_{i,p}}$$

posynomial pi

$$s_i = \sum_i c_i \tau^{x_{i,\tau}} \prod_{p \in P} a_p^{x_{i,p}}$$

Correctness+Speedup Results

benchmark	speedup	No Jaunt	Jaunt	
smol	0.50x		\checkmark	
sconc	1.00x		\checkmark	
mmrxnp	77.48x		\checkmark	
repri	2.839x		\checkmark	
bont	5.00x	\checkmark^{\star}	\checkmark	
epor	0.142x		\checkmark	
gtoggle	0.1x		\checkmark	

Simulation Speed Analysis

bmark	$\min \tau \max \tau \text{ slow } \text{fast}$		fast	slow	fast	
			(hu)	(hu)	(s)	(s)
smol	0.010x	0.500x	1000 hu	20 hu	2s	0.004s
sconc	0.0001x	1.000x	25000 hu	25 hu	50s	0.05s
mmrxn	0.0001x	77.482x	6 · 10 ⁶ hu	77 hu	3h20m	0.155s
gtoggle	0.099x	0.100x	100 hu	100 hu	0.2s	0.2s
repri	0.0001x	2.839x	10 ⁶ hu	352 hu	32m40s	0.704s
bont	0.0001x	5.000x	25 · 10 ⁴ hu	50 hu	8m20s	0.1s
epor	0.0001x	0.142x	10 ⁶ hu	704 hu	3m20s	1.408s

 Table 4. Jaunt Time Scaling Factors.

Jaunt Execution Times

bmark	exec	total (s)	solver (s)	probs	succ	fail	# vars
smol	std	18.18	0.573	14	11	3	4
	nmt	25.51	7.32	16	10	6	25
sconc	std	17.14	0.833	17	14	3	4
	nmt	21.93	8.665	12	10	2	25
mmrxn	std	150.97	6.26	50	50	0	20
	nmt	152.33	23.38	50	50	0	76
gtoggle	std	199.00	4.74	56	56	0	15
	nmt	227.66	45.84	56	54	2	63
repri	std	384.27	12.06	95	87	8	34
	nmt	458.61	95.89	106	95	11	129
bont	std	112.20	4.13	56	49	7	18
	nmt	126.41	21.65	58	49	9	81
epor	std	295.90	9.42	96	81	15	25
	nmt	334.48	71.82	81	76	5	122

Table 6. Jaunt Execution times.