Understanding and Generating Source Code
.. with Deep Learning

Marc Brockschmidt - MSR Cambridge

u @mmjb86

=" Microsoft

Understanding and Generating Source Code
.. with Deep Learning

Marc Brockschmidt - MSR Cambridge

u @mmjb86

& MSR collaborators

& MSR Interns =. MicrOSOft

& VS IntelliCode Team

Personal History: Termination Proving

Personal History: Termination Proving

public class Flatten {
public static IntList flatten (TreeList list) {

TreeList cur = list ;
IntList result = null;
while (cur != null) {
Tree tree = cur.value;
if (tree != null) {
IntList oldIntList = result;
result = new IntList ();
result .value = tree.value;
result .next = oldIntList ;
TreeList oldCur = cur;
cur = new TreeList ();
cur.value = tree.left ;
cur.next = oldCur;
oldCur.value = tree.right ;
} else cur = cur.next;

}

Personal History: Termination Proving

final class List A{
List n;
public void appE(int i) A
if (n == null) {
if (i <= 0) return;
n = new List();
1--;
}
n.appE(i);
+}

Personal History: Termination Proving

public class Loop {
public static void main(Stringl[] a){
int 1 = 0;
int j = a.length;
while (i < j) {
i += al[il.length(); }}}

Personal History: Termination Proving

void iterate () {
L3 x = this.n;
while (x '= this)
X = x.n; }}

Personal History: Termination Proving

while i > 0 do
i=1i-—1

X=x+1
done
while x > 0 do

Personal History: Termination Proving

System.out.println(“Hello World!”)

Learning proofs from data

procedure insertion sort(lst: Node)
requires lseg(lst, null) * 1lst != null
{
var prv := null;
var srt := 1lst;
while (srt != null) {
var curr := srt.next;
var min := srt;
while (curr '= null) {
1if (curr.data < min.data)
min := curr;
curr := curr.next;
}
var tmp := min.data;
min.data := srt.data;
srt.data := tmp;
prv := srt;
srt := srt.next;

Learning proofs from data

procedure insertion sort (lst: Node) procedure insertion sort (lst: Node)
requires lseg(lst, null) * 1lst != null requires lseg(lst, null) * 1st != null
{ ensures lseg(lst, null) * 1st != null
var prv := null; {
var srt := 1st; var prv := null;
while (srt != null) { var srt := 1lst;
var curr := srt.next; while (srt != null) {
var min := srt; invariant (prv == null * srt == lst
while (curr '= null) { * 1seg(lst, null))
if (curr.data < min.data) ‘ || (lseg(lst, prv) * prv.next = srt
min := Curr; * 1seg(srt, null))
curr := curr.next; var curr := srt.next;
} var min := srt;
var tmp := min.data; while (curr '= null) {
min.data := srt.data; invariant lseg(srt, min)
srt.data := tmp; * lseg(min, curr)
prv := srt; * lseg(curr, null)
srt := srt.next; * min !'= null
} 1f (curr.data < min.data)
} min := curr;

curr := curr.next;

Team Overview

Program
Structure

Team Overview

v’ Interpretable
v' Generalisation verifiable

Program

Structure - Manual effort
- Limited to specialists

Team Overview

Deep
Learning

Program
Structure

Understands images/language/speech
Finds patterns in noisy data

Requires many samples
Handling structured data is hard

Interpretable
Generalisation verifiable

Manual effort
Limited to specialists

Team Overview

Deep
Learning

Procedural
Artificial

Intelligence

Program
Structure

Understands images/language/speech
Finds patterns in noisy data

Requires many samples
Handling structured data is hard

Interpretable
Generalisation verifiable

Manual effort
Limited to specialists

Team Overview

Understanding Programs
Deep

Learning

Procedural
Artificial

Intelligence

Program
Structure

Team Overview

Understanding Programs
Deep

Learning

Procedural
Artificial Program-structured

ML models

Intelligence

Program
Structure

Team Overview

Deep
Learning

Procedural
Artificial
Intelligence

Program
Structure

Understanding Programs

Program-structured
ML models

Generating Programs

Team Overview

Deep
Learning

Procedural
Artificial
Intelligence

Program
Structure

Understanding Programs

Generating Programs

The Big Picture

Learning from Programs

Big Code: Potential

Learning from Programs

Big Code: Potential

Code
Patterns

Learning from Programs

Big Code: Potential

Natural
Language

Code
Patterns

Learning from Programs

Big Code: Potential

Code Natural Development
Patterns Language Histories

d

MA

= Microsoft

O

/ Code Review \

Continuous Integration Documentation
/ Pp Edit Code \/
Issue Reporting VS
Debug Build \/
Analytics Release Management

‘\ Production /

Learning from Programs

@ Visual Studio IntelliCode

private static string NormalizePath(string path)

{
path = path.Replace('\\', '/");

if (path.)

@ % StartsWith -~
& X Length

¥ * Replace

Sl * EndsWith bool string.EndsWith(string value)

© % Contains (+3 overloads)

Determines whether the end of this string inst...
% IntelliCode suggestion based on this context

return pa

i Aggregate<>

D All<>

' Any<>

i Append<> v

F o 9

Learning from Programs

9 Visual Studio IntelliCode

private
{
pat
if
ret
}

}

public static i

{

double x1 = b.Left - padding.Left;

double x2 = b.Right + padding.Right;

if (x1 < x2)

{
double yl1 = b.TextTop - padding.Top;
double y2 = b.TextBottom + padding.Bottom;

newBounds .Add(new Rect(x1, yl, x2 - x1, y2 -)=

return new:

@ IntelliCode

Did you mean to use y1 instead of x1? Suggested
based on analysis of code patterns in this repo.

if (rectani Apply Fix
return
Active Vv

/ / gpf "n ‘(."P..Y‘T‘.‘..'.HY.'.‘,"‘.""P?’r.v ooo

2

xt

Rel

Learning from Programs

@ Visual Studio IntelliCode

loss = tf.reduce sum(tf.square(linear model - y))
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

init = tf.
global variables initializer global variables in
Session
train Returns an Op that initi
initialize all variables This is just a shortcut f
trainable variables variables initial
) abs

' accumulate n Returns:
l acos An Op that initializes

acosh graph.

T G

Learning from Programs

@ Visual Studio IntelliCode

editorcontig” = x [

6 #Core editorconfig formatting - indentation

.

8 #use soft tabs (spaces) for indentation

9 indent_style = space

10

11 #Formatting - indentation options

12

13 #indent switch case contents.

14 c¢sharp_indent_case_contents = true

15 #indent switch labels

16 c¢sharp_indent_switch_labels = true

17

18 #Formatting - new line options

19

20 #place catch statements on a new line

21 csharp _new _line before catch = true

22 #place else statements on a new line

23 csharp_new_line_before_else = true

24 #require finally statements to be on a new line after the closing brace
25 csharp_new_line_before_finally = true

26 #require braces to be on a new line for methods, types, lambdas, accessors, properties, object_collection, a
27 csharp_new_line_before_open_brace = methods, types, lambdas, accessors, properties, object_collection, contr
28

Understanding Programs

Learning from Programs

Task: Detecting Variable Misuse

Given location in program code, identify which variable should be used:

var clazz=classTypes["Root"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (clazz);

var first=classTypes["RecClass"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (ﬁ) ;

Assert.Equal ("string", first.Properties["Name"].Name);
Assert.False (clazz.Properties["Name"].IsArray);

Learning from Programs

Task: Detecting Variable Misuse

Given location in program code, identify which variable should be used:

var clazz=classTypes["Root"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (clazz);

var first=classTypes["RecClass"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (ﬁ) ;

Assert.Equal ("string", first.Properties["Name"].Name);
Assert.False (clazz.Properties["Name"].IsArray);

Possible type-correct options: clazz, first

Learning from Programs

Task: Detecting Variable Misuse

Given location in program code, identify which variable should be used:

var clazz=classTypes["Root"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (clazz);

var first=classTypes["RecClass"].Single () as JsonCodeGenerator.ClassType;
Assert.NotNull (clazz);

Assert.Equal ("string", first.Properties["Name"].Name);
Assert.False(clazz.Properties["Name"].IsArray);

Possible type-correct options: clazz, first

A Not easy to catch with static analysis tools.

Learning from Programs

Task: Suggesting Good Variable Names

int SumkEven(int[] arr, int 1lim) {

int - o
for (int 1 = 0; 1 < lim; i++)
if (arr[i] % 2 == 0)

B += arr[i];

return -,
¥

=)

Sum

Of

Even

Learning from Programs

Analysing Code: PL View

Learning from Programs

Analysing Code: PL View

Approach 1: Proving Software Correct
 Needs Specifications
 Limited Domains
 Limited Size

Approach 2: Finding Software Bugs
 Manual Error Pattern Definitions
 Hard to Configure

Learning from Programs

Analysing Code: ML View

Learning from Programs

Analysing Code: ML View

Approach 1.1: Sequence or tree of words

Learning from Programs

Analysing Code: ML View

Approach 1.1: Sequence or tree of words (re-using NLP ideas)

Programs are different from natural language:
 Semantics for keywords already known
 Many words (APIs, local methods) only used seldomly
* Long-distance dependencies common

Approach 2: Graphs
* Nodes labelled by semantic information
* Edges for semantic relationships

Learning from Programs

Analysing Code: ML View

Approach 1.1: Sequence or tree of words (re-using NLP ideas)

Programs are different from natural language:
 Semantics for keywords already known
 Many words (APIs, local methods) only used seldomly
* Long-distance dependencies common

Approach 2: Graphs
* Nodes labelled by semantic information

* Edges for semantic relationships } From Static Analysis

Learning from Programs

Programs as Graphs: Syntax

Assert.NotNull(clazz);

B

Learning from Programs

Programs as Graphs: Syntax

Assert.NotNull(clazz);

——> Next Token

- 8

Learning from Programs

Programs as Graphs: Syntax

Assert.NotNull(clazz); ExpressionStatement

———> Next Token
InvocationExpression

—> AST Child

MemberAccessExpression ArgumentList

Assert . NotNull

Learning from Programs

Programs as Graphs: Data Flow

(X) y) = FOO()3

while (x > 0)

X =X +Y,

Learning from Programs

Programs as Graphs: Data Flow

Foo();
—_— | ast Write

X > 0)

Learning from Programs

Programs as Graphs: Data Flow

Foo();

—_— L ast Write
while (x > 0)

)

X + Y,

— | ast Use

Learning from Programs

Programs as Graphs: Data Flow

Foo();

while (x > 0)

)

=X"+_Y,;

~~— A

—_— | ast Write

— | ast Use

—3> Computed From

Learning from Programs

Programs as Graphs: Node Representation

Label: outFilePrefix
Type: string

Learning from Programs

Programs as Graphs: Node Representation

out, file, prefix

(\5
4‘6
S

<§“@

Label: outFilePrefix
Type: string

Learning from Programs

Programs as Graphs: Node Representation

out, file, prefix ‘H H E

/ Embed
S
et
xO
o %
8o

sQ\'\‘&O

Label: outFilePrefix
Type: string

Learning from Programs

Programs as Graphs: Node Representation

out, file, prefix ‘H H E

Embed
S
et
S\)‘O’&O %
O eg@

Label: outFilePrefix
Type: string

string, object, ..
1/'0@5‘

Learning from Programs

Programs as Graphs: Node Representation

out, file, prefix ‘H H E

/ Embed
S
et
RO %
O eg@
Label: outFilePrefix
\
O
4

Type: string
E— W
v, String, object, .. "gnped B,

1/'098

Learning from Programs

Programs as Graphs: Node Representation

out, file, prefix ‘H H E

/ Embed
S
et
RO j:::....‘
O eg@
Label: outFilePrefix
\
O
4

Type: string
E— W
v, String, object, .. "gnped B,

l/,o@s

Concat

Learning from Programs

Programs as Graphs

Foo();

while (x > 0)

)

=X"+_Y,;

~~— A

In practice: ~3000 nodes/graph, ~10000 edges/graph

Learning from Graphs

Graph Neural Networks: Extending RNNs

Learning from Graphs

Graph Neural Networks: Extending RNNs

Chain structured data
(e.g. text)

Learning from Graphs

Graph Neural Networks: Extending RNNs

Chain structured data
(e.g. text)

A—o—A—o—A—o—A oA A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

the

A—o—A—o—A—o—A oA A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

Y MA o 'z," o 'z'i o 'z" o 'z," A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

AN A A0 A A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

AN A A0 A A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

A—o—sA—o—SA A0 A A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

A—o—sA—o—SA A0 A A Recurrent unit

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data
(e.g. text)

the

A—0—sA A Recurrent unit
&

I———o—/x

M = A, &)

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data

the
(e.g. text)
A—o—A—o—A—o—A oA A Recurrent unit
™M
let recurrent _unit state input = .. in

foldl recurrent_unit init state seq

M = A, &)

Learning from Graphs

Graph Neural Networks: Extending RNNs

embed(‘the’) =

Chain structured data

the
(e.g. text)
A—o—A—o—A—o—A oA A Recurrent unit
™M
let recurrent _unit state input = .. in

foldl recurrent_unit init state seq

M = A, &)
let A N N = .. in

foldl A M M, .,M]

Learning from Graphs

Graph Neural Networks: States

Learning from Graphs

Graph Neural Networks: States

Label Embedding
-7 12 .18 -9 . .32

Learning from Graphs

Graph Neural Networks: States

Label Embedding
-7 12 .18 -9 . .32

Learning from Graphs

Graph Neural Networks: States

Label Embedding
-7 12 .18 -9 . .32

Learning from Graphs

Graph Neural Networks: States

B Edge Type 1/ NN,

Learning from Graphs

Graph Neural Networks: States

B Edge Type 1/ NN,
O Edge Type 2 /NN,

Learning from Graphs

Graph Neural Networks: Propagation

B NN,
o NN,
A Recurrent unit

Learning from Graphs

Graph Neural Networks: Propagation

B NN,
o NN,
A Recurrent unit

Learning from Graphs

Graph Neural Networks: Propagation

B NN,
o NN,
A Recurrent unit

Learning from Graphs

Graph Neural Networks: Propagation

B NN,
o NN,
A Recurrent unit

Learning from Graphs

Graph Neural Networks: Propagation

B NN,
o NN,
A Recurrent unit

= = A,) &)

Learning from Graphs

Graph Neural Networks: Unrolling

Learning from Graphs

raph Neural Networks: Unrolling

\
\
|
1
1
1
1

-

N_—_————

Learning from Graphs

Graph Neural Networks: Uses

Learning from Graphs

Graph Neural Networks: Uses
Gated Graph Sequence Neural Networks. In ICLR’16.

Neural Message Passing for Jet Physics

Interaction Networks for Learning about Objects, .
Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghun Cho, Kyle Cranme
Relations and Physics Center for Data Science

New York University

Situation Recognition with Graph Neural Networks

Peter W, Battaglia Razvan Pascanu Matthew Lal
Google DeepMind Google DeepMind Google DeepMind
Loadon, UK NIC 4AG London, UK N1C 4AG London, UK NIC 4AG Ruiyu Li', Makarand Tapaswi®, Renjie Liao®, Jiaya Jia'®, Raquel Urntasun®*>_ Sanja Fidler*®
peterbattagliagoogle.com razo@google.com mattheviai@gooxle.con -)

lhe Chinese Unmiversity of Hong Kong. *Umiversity of Toroato, *Youtu Lab, Tencent
‘Uber Advanced Technologies Group, *Vector Institute

Extraction of Airways using Graph Neural Networks

Learning to Verify the Heap

Raghavendra Selvan Thomas Kipfl Max Welling
University of Copenhagen University of Amsterdam University of Amsterdam
raghavedi . ku,dk t.n. kipfQuva.nl CIFAR®
m.vellingOuva.nl Marc Brockschmidt®, Yuxin Chen?, Byron Cook®, Pushmeet Kohli!, Siddharth

Krishna®. Daniel Tarlow’. and He Zhu®

Adversarial Attack on Graph Structured Data Graph-Structured Representations for Visual Question Answering

Hanjun Dai ' Hui Li® Tias Tian ' Xin Huang * Lin Wang * Jun Zhe ' LeSong'* Damien Teney Linggiao Liu Anton van den Hengel

Australian Centre for Visual Technologies

e, a8 & s, & A2 B2 =8 *

Learning from Graphs

Graph Neural Networks: Implementation

0 ‘ Pull requests Issues Marketplace Explore A 4+~ ,,Qv

.= Microsoft / gated-graph-neural-network-samples © Unwatch~ 21 uUnstar 209 YFork 58

Learning from Graphs

Graph Neural Networks: Implementation

Pull requests Issues Marketplace Explore

Microsoft / gated-graph-neural-network-samples © Unwatch~ 21 uUnstar 209 YFork 58

Train Performance:

On Titan X: 250 000 nodes/s (80 graphs/s)

On V100: 750 000 nodes/s (250 graphs/s)
Test Performance:

On Titan X: 660 000 nodes/s (220 graphs/s)

On V100: 1 350 000 nodes/s (450 graphs/s)

Learning from Programs

Detecting Variable Misuse

Learning from Programs

Detecting Variable Misuse

var clazz=classTypes["Root"].Single() as JsonCodeGenerator.ClassType;
Assert.NotNull (clazz);

var first=classTypes["RecClass"].Single () as JsonCodeGenerator.ClassType;
Assert.NotNull (ﬁ

’

Assert.Equal ("string", first.Properties["Name"].Name);
Assert.False (clazz.Properties["Name"].IsArray);

Learning from Programs

Detecting Variable Misuse

var clazzggclassTypes["Root"].Single() as JsonCodeGenerator.ClassType;

Assert. NotNdTTTtiaz%J

H.......
Ny
var firstE@Iass¥ es4"Res§lass"] SIngieil as JsonCodeGenerator.ClassType;
Assert.NotNull &

’

———

f

—————

Assert. Equal("strlng", ﬁis&tﬂ??opertles["Name"] Name) ;
Assert.False (clazz. ?ropertles[“Name"] IsArray);

Learning from Programs

Detecting Variable Misuse

var clazzgclassTypes["Root"].Single() as JsonCodeGenerator.ClassType;

Assert. NotNu‘l‘l‘('elwa.L%,)

H.......
Ny
var first=EIassT es%"Rechass“] SIngieil as JsonCodeGenerator.ClassType;
Assert.NotNull &

’

——
’ -
——

Assert.Equal ("strlng", ﬁj_r_s-t-‘P’ropertles ["Name"] . Name) ;
Assert.False (clazz. 'Propertles["Name"] IsArray);

Objective: Given representation of SLOT, choose between “first” and “clazz”

Learning from Programs

Variable Naming: Quantitative Results

Sequence Seq.+Dataflow Graph
Seen Projects 44.0 50.1 65.8
Unseen Projects 30.6 32.0 62.0

Seen Projects: 24 F/OSS C# projects (2060 kLOC): Used for train and test
Unseen Projects: 3 F/OSS C# projects (228 kLOC): Used only for test

Learning from Programs

Variable Misuse: Quantitative Results

Accuracy (%) Sequence Seq.+Dataflow Graph
Seen Projects 50.0 73.7 86.5
Unseen Projects 28.9 60.2 82.0

Seen Projects: 24 F/OSS C# projects (2060 kLOC): Used for train and test
Unseen Projects: 3 F/OSS C# projects (228 kLOC): Used only for test
3.8 type-correct alternative variables per slot (median 3, o= 2.6)

Learning from Programs

Variable Misuse: Quantitative Results

Accuracy (%) Sequence Seq.+Dataflow

Seen Projects 50.0 73.7 86.5
Unseen Projects 28.9 60.2 82.0
255 Proj. — Seen - - 91.8

255 Proj. —Unseen - - 89.4

Learning from Programs

Task: Extracting Best Practices

Objective: Given many commits, extract common kinds of changes

Learning from Programs

Task: Extracting Best Practices

Objective: Given many commits, extract common kinds of changes

emps.Where(e => m.ReportsTo == e.EmployeeID).FirstOrDefault(); sources = sources == null ? new object[@] : sources.ToArray();
emps.FirstOrDefault(e => m.ReportsTo == e.EmployeelD); sources = sources?.ToArray() ?? new object[0];

typ = source == null ? typeof(object) : source.GetType(); users.Where(u => u.Iteml == username && u.Item2 == password).FirstOrDefault();
typ = source?.GetType() ?? typeof(object); users.FirstOrDefault(u => u.Iteml == username && u.Item2 == password);

Learning from Programs

Task: Extracting Best Practices

Objective: Given many commits, extract common kinds of changes
Idea: Learn to embed similar diffs nearby in vector space (as in word2vec)

emps.Where(e => m.ReportsTo == e.EmployeeID).FirstOrDefault(); sources = sources == null ? new object[@] : sources.ToArray();
emps.FirstOrDefault(e => m.ReportsTo == e.EmployeelD); sources = sources?.ToArray() ?? new object[0];

AN /
- "

e \
typ = source == null ? typeof(object) : source.GetType(); users.Where(u => u.Iteml == username && u.Item2 == password).FirstOrDefault();
typ = source?.GetType() ?? typeof(object); users.FirstOrDefault(u => u.Iteml == username && u.Item2 == password);

Learning from Programs

Task: Extracting Best Practices

Objective: Given many commits, extract common kinds of changes
Idea: Learn to embed similar diffs nearby in vector space (as in word2vec)

emps.Where(e => m.ReportsTo == e.EmployeeID).FirstOrDefault(); sources = sources == null ? new object[@] : sources.ToArray();
emps.FirstOrDefault(e => m.ReportsTo == e.EmployeelD); sources = sources?.ToArray() ?? new object[0];

-

Use .FirstOrDefault(COND) Use ?. and ??

typ = source == null ? typeof(object) : source.GetType(); users.Where(u => u.Iteml == username && u.Item2 == password).FirstOrDefault();
typ = source?.GetType() ?? typeof(object); users.FirstOrDefault(u => u.Iteml == username && u.Item2 == password);

Learning from Programs

Learning From Programs: Key Points

Insight: GNNs successful at learning with code semantics

Outcomes:

* Machinery can be re-used for many tasks

e Learns “soft” rules from data, no rule definitions required
* Found number of bugs in mature code

Generating Programs

Generating Programs

Task: Filling in Blanks

Given location in program code, generate expression:

int methParamCount = O;
if (paramCount > 0) {
IParameterTypeInformation[] moduleParamArr =
GetParamTypeInformations (Dummy.Signature, paramCount);
methParamCount = moduleParamArr.Length;

}
if () o

IParameterTypeInformation[] moduleParamArr =
GetParamTypeInformations (Dummy.Signature,
paramCount - methParamCount) ;

Generating Programs

Task: Filling in Blanks

Given location in program code, generate expression:

int methParamCount = O;
if (paramCount > 0) {
IParameterTypeInformation[] moduleParamArr =
GetParamTypeInformations (Dummy.Signature, paramCount);
methParamCount = moduleParamArr.Length;

}

if (|paramCount > methParamCount |) {

IParameterTypeInformation[] moduleParamArr =
GetParamTypeInformations (Dummy.Signature,
paramCount - methParamCount) ;

Generating Programs

Overview of Approach

= Context
s Representation

Program
with hole

Generating Programs

Overview of Approach
AST Node
£ Context Initialization

g Representation

Program
with hole

Overview of Approach

= Context
s Representation

Program
with hole

Initialization

AST Node

Generating Programs

uolleloauob) 9aJ]|

Overview of Approach

= Context
s Representation

Program

with hole 2 In-scope
B Variable 1

In-scope
Variable 2

In-scope
Variable 3

Initialization

Choice

AST Node

Variable

Generating Programs

uolleloauob) 9aJ]|

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

..

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

..

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

@ Expression l - I Expression
)

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

@ Expression l - I Expression
()

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

| i l Expre55|on Expressmné

Generating Programs

Generating Trees

lllllllllllllllllllllllllllllll

Variables in scope

| i l Expre55|on Expressmné
g

Generating Trees

Variables in scope

lllllllllllllllllllllllllllllll

Generating Programs

Expressmn

lllllllllllllll Illllllllllllll’

@

@

Generating Programs

Generating Graphs

Variables in scope

lAST Child

Generating Programs

Generating Graphs

Variables in scope

AST Child

Next Token

Generating Programs

Generating Graphs

Variables in scope

AST Child

Next Token

Next Use

Generating Programs

Generating Graphs (with Attribute Grammars)

e,

Variables in scope

3

AST Child

Next Token

Next Use

Generating Programs

Generating Graphs (with Attributeq@rammars)

Variables in scope

AST Child iAST Parent

Next Token

Next Use

Generating Programs

Generating Graphs (with Attributeq@rammars)

Variables in scope

AST Child iAST Parent

| Next Token | Next Sibling

Next Use

Learning from Programs

Filling in Blanks: Quantitative Results

Seq —» NAG 8.38 40.4 15.8
Graph — Tree 5.37 41.2 19.9 36.8
Graph — Syntax Networks 3.03 74.7 324 48.1
Graph — Sequentalised Tree 3.48 84.5 36.0 52.7
Graph — Neural Attr. Gram. 3.07 84.5 38.8 57.0

Training data: 479 C# projects from GitHub
Test data: 114 C# projects from GitHub (~100 000 samples)

UX Lessons Learned

Generating Programs

Dogfooding Tales: The Good

// Create or update the document.
var newDocument = await cosmosClient.UpsertDocumentAsync(cosmosDbCollectionUri, document);

if (updateRecord)

{
logger.Writelog($"Updated {existingDocument} to {newDocument}");
}
else
{
logger.WritelLog($"Added {existingDocument}");
G smartbot@microsoft.com 1/31/2018 Update 1 1 Resolved v
Based on this repo's code patterns, did you intend to use 'newDocument’ (confidence 92%) rather than

‘existingDocument’ (confidence 7%) here? Review is recommended by Research bot's Variable Misuse
analysis.

@ John Keech 1/31/2018

+1

Generating Programs

Dogfooding Tales: The Good

newBounds.Add(new Rect(x1l, yl, x2 - x1, y2 :JEib);

return new:
} 9 IntelliCode

}

Did you mean to use y1 instead of x1? Suggested

Rect> rectar
based on analysis of code patterns in this repo.

public static
{

if (rectan; ~Ppl T
return
Active Vv

// Set un ‘rmerrrrrrart-vermeTrTv

Generating Programs

Dogfooding Tales: The Strange

111 + 3

112 +

113 + string activeRepo = this.gitExt.ActiveRepositories[@].RepositoryPath;

114 + string relativePath = PathHelper.MakeRelative(activeRepo, sourceFileName)
115 + Directory.CreateDirectory(Path.GetDirectoryName(compositePath));

116 +

117 +* try

smartbot@microsoft.com 21 minutes ago »
Based on this repo’s code patterns, did you intend to use ‘compositePath’ (confidence 72%) rather than
‘'sourceFileName’ (confidence 11%) here? Review is recommended by Research bot’s Variable Misuse analysis.

Kenny Young 25 minutes ago

relativePath is correct here, though | understand why this code path is a bit tricky for the bot - here we are
building the path to pass to the Git APl to read the older version of the file. compositePath is the output path,
appended with the hash.

Kenny Young 18 minutes ago
Oops. | meant “sourceFileName is correct here”. Same argument. Does the Variable Misuse analyzer search PR

comments? @

Kenny Young 10 minutes ago

I'm actually going to take this comment to mean “hey, this code is hard to read” and move the CreateDirectory
line above this code, so that like variables are used together. That will surely unconfuse the bot and be easier to
read as well.

Generating Programs

Dogfooding Tales: The Bad

C# UnhandledExceptionReporterTests.cs

1/31/201
/test/Services/Cascade. | est.Services Core/Support/UnhandledExceptionReporterlests.cs /31/2018
A 71 + [Fact]
72 + public async Task ExceptionHandler_validate_Production_Returns_Empty()
73 0+ {
(] 74 + using (var telemetryWriter = new StringWriter(new StringBuilder(), Culturelnfo.InvariantCulture))
75 + {
76 + var logger = DiagnosticslLogger.New(new LogValueSet(), telemetrylWriter);
v 77 % var errorMessage = "ThisIsATest";
g smartbot@microsoft.com 1/31/2018 Resolved v

Research Bot suggests renaming telemetryWriter as w with confidence 79%.

Understanding and Generating Source Code

Question: How to learn from code with semantics?

Hypothesis: Code is natural, targets people and machines

Our Solution: Graphs representing all modalities

Understanding and Generating Source Code

Question:

Hypothesis:

Our Solution:

Marc Brockschmidt

u @mmjb86

How to learn from code with semantics?
Code is natural, targets people and machines

Graphs representing all modalities

=" Microsoft

