Explaining Privacy and Fairness Violations in Data-Driven Systems

Matt Fredrikson Carnegie Mellon University

Joint effort

Emily Black

Piotr Mardziel

Gihyuk Ko

Shayak Sen

Klas Leino

Sam Yeom

Anupam Datta

Data-driven systems are ubiquitous

Data-driven systems are opaque

Opacity and privacy

...able to identify about 25 products that, when analyzed together, allowed him to assign each shopper a "pregnancy prediction" score.

Take a fictional Target shopper who ... bought cocoabutter lotion, a purse large enough to double as a diaper bag, zinc and magnesium supplements and a bright blue rug.

There's, say, an 87 percent chance that she's pregnant

Inappropriate information use

Both problems can be seen as inappropriate use of protected information

- Fairness/discrimination
 - Use of race or gender for employment decisions
 - Business necessity exceptions
- Privacy
 - Use of health or political background for marketing
 - Exceptions derive from contextual information norms

This is a type of bug!

Agenda

Methods for dealing with inappropriate information use

- Detecting when it occurs
- Providing diagnostic information to developers
- Automatic repair, when possible

Remaining talk:

- Formalize "inappropriate information use"
- Show how it applies to classifiers
- Generalize to continuous domain
- Nonlinear continuous models & applications

Explicit use via causal influence [Datta, Sen, Zick Oakland'16]

Example: Credit decisions

Conclusion: Measures of association not informative

Causal intervention

Challenge: Indirect (proxy) use

Need to determine when information type is inferred and then used

What do we mean by proxy use?

1. Explicit use is also proxy use

- 1. Explicit use is also proxy use
- 2. "Inferred use" is proxy use

- 1. Explicit use is also proxy use
- 2. "Inferred use" is proxy use
 - Inferred values *must be influential*

- 1. Explicit use is also proxy use
- 2. "Inferred use" is proxy use
 - Inferred values *must be influential*
 - Associations must be two-sided

One- and two-sided associations

What happens if we allow one-sided association?

Consider this model:

- Uses postal code to determine state
- Zip code can predict race
- ...but not the other way around

This is a benign use of information that's associated with a protected information type

- 1. Explicit use is also proxy use
- 2. "Inferred use" is proxy use
 - Inferred values must be influential
 - Associations must be two-sided
- 3. Output association is unnecessary for proxy use

Towards a formal definition: axiomatic basis

- (Axiom 1: Explicit use) If random variable Z is an influential input of the model A, then A makes proxy use of Z.
- (Axiom 2: Preprocessing) If a model A makes proxy use of Z, and A'(x) = A(x, f(x)), then A' also makes proxy use of Z.
 - Example: A' infers a protected piece of info given directly to A
- (Axiom 3: Dummy) If A'(x,x') = A(x) for all x and x', then A' has proxy use of Z exactly when A does.
 - Example: feature never touched by the model.
- (Axiom 4: Independence) If Z is independent of the inputs of A, then A does not have proxy use of Z.
 - Example: model obtains no information about protected type

Extensional proxy use axioms are inconsistent

Key Intuition:

- Preprocessing forces us to preserve proxy use under function composition
- But the rest of the model can **cancel out** a composed proxy
- Let X, Y, Z be pairwise independent random variables, and $Y = X \oplus Z$
- Then A(Y, Z)= Y⊕ Z makes proxy use of Z (explicit use axiom)
- So does $A'(Y, Z, X) = Y \oplus Z$ (dummy axiom)
- And so does $A''(Z, X) = A'(X \oplus Z, Z, X)$ (preprocessing axiom)
- But $A''(Z, X) = X \oplus Z \oplus Z = X$, and X, Z are independent...

Syntactic relaxation

- We address this with a syntactic definition
- Composition is tied to how the function is represented as a program
- Checking for proxy use requires access to program internals

Models as Programs

- Expressions that produce a value
- No loops or other complexities
- But often very large

 $\langle exp \rangle ::= R | True | False | var$ | op($\langle exp \rangle$, ..., $\langle exp \rangle$) | if ($\langle exp \rangle$) then { $\langle exp \rangle$ } else { $\langle exp \rangle$ }

Operations:

arithmetic operations: +, -, *, etc. boolean connectives: or, and, not, etc. relations: ==, <, \leq , >, etc.

Modeling Systems | Probabilistic Semantics

Expression semantics: [[exp]] : Instance → Value

l is a random variable over dataset instances $[exp]: I \rightarrow V$

V is a random variable over the expression's value

Joint over input instance (*I*) and expression values (V_i) for each expression exp_i.

marginals: conditionals: Pr[$I, V_0, V_1, ..., V_9$] Pr[V_4 = True, V_0 = Ad₁] Pr[V_4 = True | V_0 = Ad₁]

Program decomposition

Decomposition

Given a program p, a decomposition (p_1, X, p_2) consists of two programs p_1 , p_2 , and a fresh variable X such that replacing X with p_1 inside p_2 yields p_2 .

Characterizing **proxies**

Proxy

Given a decomposition (p_1, X, p_2) and a random variable Z, p_1 is a **proxy** for Z if $[[p_1]](I)$ is associated with Z.

*p*₁ is a proxy for "gender = Female"

Characterizing use

Influential Decomposition

A decomposition (p_1, X, p_2) is influential if X can change the outcome of p_2

Putting it all together

Proxy Use

A program *p* has **proxy use** of random variable *Z* if there exists an influential decomposition (p_1, X, p_2) of *p* that is a proxy for *Z*.

This is close to our intuition from earlier

Formally, it satisfies similar axioms:

- Dummy and independence axioms remain largely unchanged
- Explicit use, preprocessing rely on program decomposition instead of function composition

Quantitative proxy use

A decomposition (p_1, X, p_2) is an (ε, δ) -proxy use of Z when

- The association between p_1 and Z is $\geq \varepsilon$, and
- p_1 's influence in p_2 , $\iota(p_1, p_2) \ge \delta$

A program has (ε, δ) -proxy use of Z when it admits a decomposition that is an (ε, δ) -proxy use of Z

Quantifying decomposition influence

- 1. Intervene on p_1
- 2. Compare the behavior:
 - With intervention
 - As the system runs normally
- 3. Measure divergence:

 $\iota(p_1, p_2) = \mathsf{E}_{X,X'}[\llbracket p \rrbracket(X) \neq \llbracket p_2 \rrbracket(X, \llbracket p_1 \rrbracket(X'))]$

Algorithmics

 Does system have an (ε, δ)proxy-use of a protected variable?

• How do we remove (ε, δ) -proxy-use violation?

- Basic algorithm O(S*N²)
 - S # expressions
 - N # dataset instances

- Naive algorithm
 - Replace Exp_i with a constant
 - O(1) // any constant O(N * M) // best constant, M – # possible values

Using Witnesses

Demonstration of violation in the system Localize where scrutiny/human eyeballs need to be applied Determine what repair should be applied

Experiments: Benchmark datasets (CCS'17)

model accuracy: 83.6 % after repair: 81.7%

model accuracy: 61.2 % after repair: 52.1 %

Agenda

Methods for dealing with inappropriate information use

- Detecting when it occurs
- Providing diagnostic information to developers
- Automatic repair, when possible

Remaining talk:

- Formalize "inappropriate information use"
- Show how it applies to classifiers
- Generalize to continuous domain
- Nonlinear continuous models & applications

Proxies in linear regressors [NIPS'18]

$$Y(X) = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

Recall our definition of decomposition influence:

$$\iota(p_1, p_2) = \mathsf{E}_{X, X'}[\llbracket p \rrbracket(X) \neq \llbracket p_2 \rrbracket(X, \llbracket p_1 \rrbracket(X'))]$$

We generalize to regression by defining:

 $\iota(p_1, p_2) = \mathsf{E}_{X, X'}[([p]](X) - [p_2]](X, [[p_1]](X')))^2]$

Proxies in regressors [NIPS'18]

$$Y(X) = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

What are the decompositions?

- Just individual terms $a_n X_n$? Or groups like $a_1 X_1 + a_2 X_2$?
- What about $0.5^*a_1X_1 + a_2X_2$?

Component $P(X) = \beta_1 a_1 X_1 + \beta_2 a_2 X_2 + ... + \beta_n a_n X_n$ for $\beta_1, ..., \beta_n \in [0, 1]$ Proxies in regressors [NIPS'18]

$$\mu(p_1, p_2) = \mathbf{E}_{X,X'}[(Y(X) - Y(X, P(X')))^2] \propto \operatorname{Var}(P(X))$$

 $Asc(Y, Z) \propto Cov(Y, Z)$

Optimize to find proxies!

Find $\max_{\beta} \| A\beta \| c^{T}\beta (for \| A\beta \| \le c^{T}\beta)$ such that $|Asc(A\beta, Z)| \ge \varepsilon$ where $A^{T}A = Cov(X, X)$

Agenda

Methods for dealing with inappropriate information use

- Detecting when it occurs
- Providing diagnostic information to developers
- Automatic repair, when possible

Remaining talk:

- Formalize "inappropriate information use"
- Show how it applies to classifiers
- Generalize to continuous domain
- Nonlinear continuous models & applications

Distributional Influence: proxies in neural nets

Problems with neural nets: stereotyping

basketball (73%)

ballplayer (90%)

See [Stock & Sisse, 2018] for more examples like this

Problems with neural nets: bias amplification

Image source: [Zhao et al., EMNLP 2018]

In training data, 33% of "cooking" images have men in them In predictions, 16% of "agent" roles in cooking images are labeled "man"

Explaining stereotype predictions

basketball (73%)

top 5% most influential features

top 25% most influential features

Intrinsic bias amplification

Prediction bias from inductive bias

Larger weights \approx More influence

Simple fix: kill weak features

most positive-influential
 features to keep

Bias of resulting classifier

$$\alpha^*, \beta^* = \underset{\alpha,\beta}{\operatorname{arg\,min}} \left| B_{\mathcal{D}}(g^{\alpha}_{\beta}) \right| \text{ subject to } L_S(g^{\alpha}_{\beta}) \leq L_S(g)$$

most negative-influential
features to keep

Don't increase the emprical loss

Early results

dataset	p^*	asymm. (%)	$B_{\mathcal{D}}(h_S)$	$B_{\mathcal{D}}(h_S)$ (post-fix)			acc (%)	acc. (%) (post-fix)		
				par	exp	ℓ_1	<i>ucc.</i> (<i>10</i>)	par	exp	ℓ_1
CIFAR10	50.0	52.0	1.8	1.7	0.4	n/a	93.0	93.1	94.0	n/a
CelebA	50.4	50.2	7.7	7.7	0.2	n/a	79.6	79.6	79.9	n/a
arcene	56.0	57.7	2.7	0.6	1.2	1.7	68.9	69.0	74.2	69.4
colon	64.5	51.0	23.1	22.9	22.6	35.5	58.5	58.7	58.7	64.5
glioma	69.4	54.8	17.4	17.4	12.2	17.0	76.3	76.3	76.7	75.44
micromass	69.0	54.1	0.68	0.66	0.69	0.68	98.4	98.4	98.4	98.4
pc/mac	50.5	60.6	1.6	1.6	1.4	1.6	89.0	89.0	88.0	89.0
prostate	51.0	44.4	47.3	47.2	10.0	28.1	52.7	52.8	90.2	71.3
smokers	51.9	50.4	47.4	45.4	8.0	33.0	50.0	50.7	59.0	51.2
synthetic	50.0	99.9	24.1	17.2	23.6	5.7	74.9	77.9	74.8	71.4

Summary

Methods for dealing with inappropriate information use

- Detecting when it occurs
- Providing diagnostic information to developers
- Automatic repair, when possible

Progress:

- Formalize "inappropriate information use" as proxy use
- Generalized to continuous domain and neural networks
- Algorithms for detection and diagnosis
- Explanation-based repair methods