
Evaluating Design Tradeoffs in
Numeric Static Analysis for Java

Shiyi Wei, Piotr Mardziel, Andrew Ruef,
Jeffrey S. Foster, and Michael Hicks

Lab for Programming Languages Research
at the University of Maryland

Carnegie Mellon,University of Texas at Dallas,Work done while
all authors at

Real leader of
this effort!

Numeric Static Analysis (for Java)

•Prove numeric properties about programs, to show

■ array indexes in bounds,

■ division never by zero,

■ running times do not exceed limit, etc.

-Previous work: Use numeric analysis to compute running times,
and see if they depend on a secret’s value (PLDI’17)

■ Often framed as abstract interpretation

•Challenge: Analyzer that works for full Java
■ Aim to be sound(y), precise, scalable

2

The Problem

•No prior analysis/paper soundily models

■ the heap,

■ method calls, and

■ numeric domains

■ in a way that scales, and requires few/no annotations

•Many design choices in building such an analysis

■ Lots of folklore about these choices

-Possibly overfit to evaluation target programs?

■ Most papers consider only single choices

-Not their interactions
3

Prior Work

•PAGAI: numeric analysis, but no heap

•Fu (2014) considers both, but no method calls

•Ferrara; Magill; McCloskey et al; Chang and Rival:
Sophisticated numeric+heap invariants but

■ not scalable, requires annotations, may be missing
language features (e.g., method calls or loops)

•Little work analyzes interacting tradeoffs

■ ASTREE has many ideas, but not considered
systematically (just final result indicated in paper)

■ Some one-offs; eg., polyhedra vs. intervals
4

Our work

•We built a Java analysis tool that has multiple
implementations of five analysis components

■ numeric domain (2)

■ heap abstraction (3)

■ abstract object representation (3)

■ interprocedural analysis order (3)

■ level of context sensitivity (3)

•Ran each on DaCapo, measured performance and
precision on proving array indexes in bounds

•Analyzed data to understand tradeoffs
5

162 configurations

Analysis Methodology

•Multiple linear (and logistic) regression

■ Predict precision and performance (dependent vars) as
a linear function of analysis options (independent vars)

-Programs are indep. vars, to isolate effects of size, complexity, …

-Also considered two-way interactions of options as indep. vars

■ Assuming a good model fit, doing this helps understand
the complex space of possible options

•Visualization plotting precision vs. performance,
per program, for all options

■ To see local variations, sanity-check trends

6

Results

•Results clarify tradeoffs among analysis options

■ Yes, convex polyhedra are more precise, but slower,
than intervals; but our results say how much,

■ and how these tradeoffs relate to that of varying the
heap model (e.g., summary objects vs. access paths)

•General: Need more empirical work

■ Research often focuses on novelty, and math

■ Need as much or more work on engineering and
measurement

■ Our methodology can help show the way

7

Learn More

•Paper at https://arxiv.org/abs/1802.08927

■ Longer version of paper from ESOP’18

•Code at https://github.com/plum-umd/JANA

8

Overview: Analysis Configurations

9

Numeric Domain

10

[x == 1]
x = 1;
y = x;
assert(y == 1)[y == 1]

[x == T]

[y == T]

x = [console input];
y = x;
assert(y == x)

non-relational numeric domain
(e.g., intervals)

Numeric Domain

11

[x == 1]
x = 1;
y = x;
assert(y == 1)[y == 1]

x = [console input];
y = x;
assert(y == x)

[x == T]

[x == T, y == x]

relational numeric domain
(e.g., convex polyhedra)

Tradeoff I: Numeric Domain

12

Convex polyhedra vs. Intervals

More Precise

More Efficient

Adding the Heap: Points-to Analysis

•Use points-to analysis to reason about aliasing
■ Doing x.f=3 could affect y.f if x and y are aliases

•Compute Pt: Path ⟶ P(Loc) where
■ Path: a variable z or access path x.f and

■ Loc o represents an abstract location

-The name o represents one or more run-time values

■ Hence Pt(p) ∩ Pt(q) ≠ ∅ implies p and q may alias

•Using Pt, we define a heap abstraction to
integrate with our numeric domain

13

Access Paths [De and De’Souza ECOOP’12, Wei and Ryder ECOOP’14]

•Treat x.f as a numeric “variable”

■ Allow strong updates to it

■ But weakly update paths y.f where y may alias x

14

Strong update:
replace current abstraction

Weak update:
extend/overapprox current abstraction

x = 1;
x = 2;[x == 1]

[x == 2]

[x == ⊥] [x == ⊥]
[x == 1]
[1 ≤ x ≤ 2]

Access Paths Example

15

Circle x = new Circle();
Circle w = x;
x.radius = 1;
w.radius = 2;
y = w.radius;
assert(y == 2)

[x.radius == 1]
[w.radius == 2,

1 ≤ x.radius ≤ 2]
[y == 2]

x

o
w

Pt:

weak update

Summary Objects [Gopan et al, TACAS’04]

•Model o.f as a “summary” numeric object

■ When assigning to x.f, weakly update path o.f for all o
∈ Pt(x)

•Harms and helps precision

■ No strong updates, hurts precision

■ But: Global nature of points-to analysis allows summary
objects to account for effects across method calls

■ And makes expressible invariants like o.f < o.g

•Harms performance: many objects in abstract
state; weak updates slow (due to joins)

16

Summary Objects Example

17

Circle x = new Circle();
Circle w = x;
x.radius = 1;
w.radius = 2;
y = w.radius;
assert(y == 2)

[x.radius == 1]
[w.radius == 2,

1 ≤ x.radius ≤ 2]
[y == 2]

x

o
w

[o.radius == 1]

[1 ≤ o.radius ≤ 2]

[1 ≤ y ≤ 2]

False Positives!

Pt:
Combination of the

AP and SO also
possible

weak update

Tradeoff II: Heap Abstraction

18

Access Paths vs. Summary Objects

More Precise

More Efficient

Recall: Pt: Path ⟶ P(Loc).

How should we represent Loc, i.e., abstract objects?

19

Tradeoff III: Abstract Object Representation
(AOR)

20

L1: Circle x = new Circle();
L2: Circle w = new Circle();

x oL1

w oL2
x != wPt:

Allocation site-based AOR

21

L1: Circle x = new Circle();
L2: Circle w = new Circle();

x

oCircle

w

x != w
or

x == w

Pt:

Class-based AOR

22

Circle x = new Circle();
Circle w = new Circle();
x.radius = 1;
w.radius = 2;
y = x.radius;
assert(y == 1)

[x.radius == 1]

[x.radius == 1]

[y == 1]

[x.radius == 1]

[1 ≤ x.radius ≤ 2]

[1 ≤ y ≤ 2] False Positive!

class-based

x

oCircle

w
Pt:

allocation-based

x oL1

w oL2
Pt:

AOR Effect on Access Paths

No weak update
to x since x != w

Weak update to x
since x ?= w

AOR also affects summary object representation

Tradeoff III: Abstract Object Representation

23

Allocation-based vs. Smush-string vs. Class-based

More Precise

More Efficient

• The smush-string option is a hybrid
• all Java String instances use a single abstract object
• other objects uses allocation-based approach

Tradeoff IV: Context Sensitivity

24

void foo() {
Circle x = new Circle();
Circle z = new Circle();
x.radius = 1;
z.radius = 2;
int i = bar(x);
int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

Tradeoff IV: Context Sensitivity

25

void foo() {
L1: Circle x = new Circle();
L2: Circle z = new Circle();
x.radius = 1;
z.radius = 2;
L3: int i = bar(x);
L4: int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

Tradeoff IV: Context Sensitivity

26

void foo() {
L1: Circle x = new Circle();
L2: Circle z = new Circle();
x.radius = 1;
z.radius = 2;
L3: int i = bar(x);
L4: int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

x oL1

z oL2

p

context insensitivity

Tradeoff IV: Context Sensitivity

27

void foo() {
L1: Circle x = new Circle();
L2: Circle z = new Circle();
x.radius = 1;
z.radius = 2;
L3: int i = bar(x);
L4: int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

x oL1

z oL2

p
L3

call-site sensitivity
(1CFA)

p
L4

Also affects precision of call graph and
the way method summaries are stored

Tradeoff IV: Context Sensitivity

28

void foo() {
L1: Circle x = new Circle();
L2: Circle z = new Circle();
x.radius = 1;
z.radius = 2;
L3: int i = bar(x);
L4: int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]
[i == 2]

[x.radius == 1, z.radius == 2,
pL3 != z]

[ret == 2]

[j == 3]

Tradeoff IV: Context Sensitivity

29

void foo() {
L1: Circle x = new Circle();
L2: Circle z = new Circle();
x.radius = 1;
z.radius = 2;
L3: int i = bar(x);
L4: int j = bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]
[i == 2]

[x.radius == 1, z.radius == 2,
pL3 != z]

[ret == 2]

[j == 3]

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]

[i == 2 or i ==3]

[j ==2 or j == 3]

[x.radius == 1, z.radius == 2,
p == z or p == x]
[ret == 2 or ret ==3]

False Positives!

Tradeoff IV: Context Sensitivity

30

Context Sensitivity vs. Type Sensitivity vs. Context Insensitivity

More Precise

More Efficient

• Type-sensitive analysis distinguishes the function calls based on
the type of the receiver

•Top-down interprocedural analysis
■ Analyzes each method starting at main, following the

call graph down; carries forward access paths

•Precise analysis of each call
■ Boosted by context sensitivity if enabled

•But may reanalyze same method many times
■ But: we cache a summary of a method’s analysis,

indexed by facts about its arguments

■ Reuse summary if subsequent calls’ arguments’
abstractions covered by those of previous analysis

31

Tradeoff V: Inter-procedural Analysis Order

Tradeoff IV: Inter-procedural Analysis Order

32

void foo() {
Circle x = new Circle();
Circle z = new Circle();
x.radius = 1;
z.radius = 2;
int i = L3:bar(x);
int j = L4:bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]
[i == 2]

[pL3.radius == 1]
[ret == 2]

[j == 3]

•Bottom-up analysis
■ Analyzes each method starting at leaves, generating a

summary that can be used at each caller

•No re-analysis, amenable to parallelization
■ Context sensitivity requires multiple summaries for

each method (one per context)

•May lose precision depending on summary format
■ Convex polyhedra permit expressing relationships

between arguments and return value; but not intervals

•Complicated by use of summary objects
■ Harms performance and precision

33

Tradeoff V: Inter-procedural Analysis Order

Tradeoff IV: Inter-procedural Analysis Order

34

void foo() {
Circle x = new Circle();
Circle z = new Circle();
x.radius = 1;
z.radius = 2;
int i = L3:bar(x);
int j = L4:bar(z);
assert (i + j == 5);

}
int bar(Circle p) {
return p.radius + 1;

}

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]
[i == 2]

[ret == 2]

[j == 3]

Sum(barL3) = [ret = pL3.radius + 1]
Sum(barL4) = [ret = pL4.radius + 1]

[x != z]
[x.radius == 1, x != z]

[x.radius == 1, z.radius == 2]

[i == 2]

[j == 3]

[pL3.radius == 1]

Tradeoff V: Inter-procedural Analysis Order

35

Top-down vs. Hybrid Top-down+Bottom-up vs. Bottom-up

More Precise

More Efficient

• Hybrid TD+BU option performs
• bottom-up analysis for the Java library methods and
• top-down analysis for the application code

Our tool: JANA (Java Numeric Analyzer)

https://github.com/plum-umd/JANA

•WALA Java analysis framework

■ To parse bytecode to IR

■ To perform points-to analysis, CFG construction

•Numeric domain backends

■ APRON for Intervals

■ ELINA for Convex Polyhedra

•14K lines of Scala code

36

Experimental Evaluation

•RQ1: performance

■ How does the configuration affect running time?

•RQ2: precision

■ How does the configuration affect precision?

•RQ3: tradeoffs

■ How does the configuration affect the
precision/performance tradeoff?

37

Note: a configuration is one combination of the analysis configuration options.

Evaluation: Setup

•Analysis client: array index-out-of-bound analysis

•DaCapo benchmark suite

■ most popular Java benchmark

38

Program Size (# IR
instructions)

Checks

antlr 55734 1526
bloat 150197 4621
chart 167621 7965
eclipse 18938 1043
fop 33243 1337
hsqldb 19497 1020
jython 127661 4232
luindex 69027 2764
lusearch 20242 1062
pmd 116422 4402
xalan 20315 1043

Evaluation: Setup

•Analysis client: array index-out-of-bound analysis

•DaCapo benchmark suite

■ most popular Java benchmark

■ 11 real-world programs (some very large)

•162 analysis configurations

■ vary each of the analysis options

■ 3 runs for each configuration on each program

•Timeout: 1 hour per run

■ 1 week to run the whole thing on one machine

39

Setup Caveats

•Results may change with different analysis client

■ Or benchmark suite

•Three trials may be insufficient

■ Average variance ((max-min)/median) of all runs: 4.2%

-most runs differ by at most 4 mins (outlier: 32 mins, eclipse)

•Our implementation may have flaws

■ Though we used time-tested libraries and tools and
tried to follow best practice

40

Evaluation: Data Analysis

•Multiple linear regression

■ dependent variables: performance and/or whether run
times out (RQ1) and precision (RQ2)

■ independent variables

-configuration options (and their two-way interactions)

-benchmark program: allow us roughly factor out program-
specific sources of performance or precision gain/loss (e.g., size)

•Used Akaike Information Criterion (AIC) to drop
insignificant variables from the model

•Model R2: Performance: 0.72, precision: 0.98

■ Good fit 41

Timeouts

•In performance analysis, timed out runs are
counted as if taking 1 hour

■ Thus indicate a lower bound of the true cost

•In precision analysis, timed out runs ignored

■ Too little data means lower statistical significance

•Separate timeout analysis in paper

■ How likely are particular options to induce timeout?

■ Teaser: Using AP rather than SO reduces timeout
likelihood by 40,000 times (!)

42

(Follows advice of Arcuri and Briand (ICSE’11))

RQ1: Performance

43(Lower is better)

baseline

baseline

baseline

baseline

baseline

minutes contributed to running time

Green rows
are statistically
significant
differences
from baseline
(p < 0.05)

delta
delta

delta
delta

delta
delta

delta
delta

delta

95% confidence interval

RQ1: Performance

•Summary objects incur a significant slowdown

■ (AP is 37.6 minutes faster)

44(Lower is better)

RQ1: Performance

•The polyhedral domain is slow, but not as slow as
summary objects

45(Lower is better)

(Lower is better)

RQ1: Performance

•Heavyweight CS and OR settings hurt performance,
particularly when using summary objects

46

RQ1: Performance

•Bottom-up analysis does not provide a
performance advantage

47(Lower is better)

RQ2: Precision

48(Higher is better)

indexes proved in bounds

RQ2: Precision

•Access paths are critical to precision

49(Higher is better)

(Higher is better)

RQ2: Precision
•Bottom-up analysis harms precision overall,
especially for SO (only)

50

RQ2: Precision
•The relational domain improves precision some

51(Higher is better)

RQ2: Precision
•More precise OR improves precision, but not CS
(not in model)

52(Higher is better)

RQ3: Tradeoffs: Best and Worst

53

54

RQ3: Tradeoffs: Best and Worst

RQ3: Tradeoffs: Best and Worst

55

RQ3: Tradeoffs

56

Each dot is one
configuration
for one program

Dots are
plotted
according to a
particular
option; here
heap abstraction

Best case:
upper left

(fast and precise)

Worst case:
lower right
(slow and
imprescise)

(More graphs in paper than I can show now)

RQ3: Tradeoffs

•Access paths improve precision with good
performance; summary objects slow and imprecise

57

RQ3: Tradeoffs

•Top-down analysis is preferred: bottom-up is less
precise and does little to improve performance

58

RQ3: Tradeoffs - Interactions

•AP&POLY generally better than AP&INT

59

RQ3: Tradeoffs - Interactions

•But AP+SO&INT better than AP+SO&POLY (fewer
timeouts)

60

Results Summary

•Access paths are always a good idea

■ Add significant precision at little performance cost

•Summary objects + access paths add precision

■ But adds significant performance overhead, often
resulting in timeouts

•Polyhedra improve precision

■ But time out with AP+SO abstraction

-Intervals and AP+SO would work better

•Top-down more than precise bottom up

■ And loses little in performance
61

Methodology Summary

•Static analysis tools are complex, with many
interacting options

•Need experimental work to understand tradeoffs

•Our work is a template for future work

■ Measure effects of various options on good benchmark

■ Use MLR to understand impact of options, generally

■ And visualization to see local effects

62

Empirical Evaluations: Advice

•SIGPLAN Guidelines for
Empirical Evaluations

•Set up as a checklist to
help design a good
evaluation

63http://sigplan.org/Resources/EmpiricalEvaluation/

