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Abstract. We present a type-based program analysis capable of infer-
ring expressive invariants over array programs. Our system combines
dependent types with two additional key elements. First, we associate
dependent types with effects and precisely track effectful array updates,
yielding a sound flow-sensitive dependent type system that can capture
invariants associated with side-effecting array programs. Second, without
imposing an annotation burden for quantified invariants on array indices,
we automatically infer useful array invariants by initially guessing very
coarse invariant templates, using test suites to exercise the functionality
of the program to faithfully instantiate these templates with more precise
(likely) invariants. These inferred invariants are subsequently encoded
as dependent types for validation. Experimental results demonstrate the
utility of our approach, with respect to both expressivity of the invariants
inferred, and the time necessary to converge to a result.

1 Introduction

A program invariant describes valid behaviors a program is expected to produce,
and can often be derived by a fixpoint construction over an over-approximation
of program states [4]. However, applying such a strategy to discover useful prop-
erties of values stored in unbounded collections of heap cells is nontrivial.

Dependent type systems [22,17] have been proven to be successful in auto-
mated verification of complex invariants for data structures, even when there
are an unbounded number of heap locations under consideration [23]. In these
systems, decidability is achieved, however, at the loss of flow-sensitivity, i.e., a
strong update to a concrete location (e.g. a single array cell) must be subsumed
by the whole data structure (e.g. the whole array). As a result, it is not obvious
how existing dependent type systems can be extended to verify useful functional
properties (e.g. a sorting procedure will sort only a part of the elements in an in-
put array) that are beyond the scope of global invariants (e.g. a general memory
safety properties).

In this paper, we address these issues by introducing a new dependent type
system for array programs that can discharge complex flow-sensitive array in-
variants naturally characterized in terms of quantifiers on array indices. The
dependent type system is effectful because it can tolerate side-effecting array
updates. Built on top of a standard type system, our system refines basic type
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Abstract

We extend the data-driven approach to inferring precondi-
tions for code from a set of test executions. Prior work re-
quires a fixed set of features, atomic predicates that define
the search space of possible preconditions, to be specified
in advance. In contrast, we introduce a technique for on-
demand feature learning, which automatically expands the
search space of candidate preconditions in a targeted man-
ner as necessary. We have instantiated our approach in a
tool called PIE. In addition to making precondition infer-
ence more expressive, we show how to apply our feature-
learning technique to the setting of data-driven loop invari-
ant inference. We evaluate our approach by using PIE to in-
fer rich preconditions for black-box OCaml library functions
and using our loop-invariant inference algorithm as part of
an automatic program verifier for C++ programs.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Tools; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Validation;
F.3.1 [Theory of Computation]: Specifying and Verifying
and Reasoning about Programs—Invariants, Mechanical
verification, Specification techniques

Keywords Precondition Inference, Loop Invariant Infer-
ence, Data-driven Invariant Inference

1. Introduction

In this work we extend the data-driven paradigm for pre-
condition inference: given a piece of code C along with a
predicate Q, the goal is to produce a predicate P whose sat-
isfaction on entry to C is sufficient to ensure that Q holds
after C is executed. Data-driven approaches to precondition

inference [21, 42] employ a machine learning algorithm to
separate a set of “good” test inputs (which cause Q to be
satisfied) from a set of “bad” ones (which cause Q to be fal-
sified). Therefore, these techniques are quite general: they
can infer candidate preconditions regardless of the complex-
ity of C and Q, which must simply be executable.

A key limitation of data-driven precondition inference,
however, is the need to provide the learning algorithm with
a set of features, which are predicates over the inputs to C
(e.g., x > 0). The learner then searches for a boolean com-
bination of these features that separates the set G of “good”
inputs from the set B of “bad” inputs. Existing data-driven
precondition inference approaches [21, 42] require a fixed
set of features to be specified in advance. If these features
are not sufficient to separate G and B, the approaches must
either fail to produce a precondition, produce a precondition
that is known to be insufficient (satisfying some “bad” in-
puts), or produce a precondition that is known to be overly
strong (falsifying some “good” inputs).

In contrast, we show how to iteratively learn useful fea-
tures on demand as part of the precondition inference pro-
cess, thereby eliminating the problem of feature selection.
We have implemented our approach in a tool called PIE
(Precondition Inference Engine). Suppose that at some point
PIE has produced a set F of features that is not sufficient to
separate G and B. We observe that in this case there must be
at least one pair of tests that conflict: the tests have identical
valuations to the features in F but one test is in G and the
other is in B. Therefore we have a clear criterion for fea-
ture learning: the goal is to learn a new feature to add to F

that resolves a given set of conflicts. PIE employs a form of
search-based program synthesis [1, 50, 51] for this purpose,
since it can automatically synthesize rich expressions over
arbitrary data types. Once all conflicts are resolved in this
manner, the boolean learner is guaranteed to produce a pre-
condition that is both sufficient and necessary for the given
set of tests.

In addition to making data-driven precondition inference
less onerous and more expressive, our approach to feature
learning naturally applies to other forms of data-driven in-
variant inference that employ positive and negative exam-
ples. To demonstrate this, we have built a novel data-driven
algorithm for inferring provably correct loop invariants. Our
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Abstract. We formalize the problem of program verification as a learn-
ing problem, showing that invariants in program verification can be re-
garded as geometric concepts in machine learning. Safety properties de-
fine bad states: states a program should not reach. Program verification
explains why a program’s set of reachable states is disjoint from the set
of bad states. In Hoare Logic, these explanations are predicates that form
inductive assertions. Using samples for reachable and bad states and by
applying well known machine learning algorithms for classification, we
are able to generate inductive assertions. By relaxing the search for an
exact proof to classifiers, we obtain complexity theoretic improvements.
Further, we extend the learning algorithm to obtain a sound procedure
that can generate proofs containing invariants that are arbitrary boolean
combinations of polynomial inequalities. We have evaluated our approach
on a number of challenging benchmarks and the results are promising.

Keywords: loop invariants, verification, machine learning

1 Introduction

We formalize the problem of verification as a learning problem, showing that loop
invariants can be regarded as geometric concepts in machine learning. Informally,
an invariant is a predicate that separates good and bad program states and once
we have obtained strong invariants for all the loops, standard techniques can be
used to generate program proofs. The motivation for using machine learning for
invariant inference is twofold: guarantees and expressiveness.

Standard verification algorithms observe some small number of behaviors
of the program under consideration and extrapolate this information to (hope-
fully) get a proof for all possible behaviors of the program. The extrapolation
is a heuristic and systematic ways of performing extrapolation are unknown,
except for the cases where they have been carefully designed for a particular
class of programs. Slam [6] generates new predicates from infeasible counter-
example traces. Interpolant based techniques [37] extrapolate the information
obtained from proving the correctness of finite unwindings of loops. In abstract
interpretation [21], fixpoint iterations are performed for a few iterations of the
loop and this information is extrapolated using a widening operator. In any of
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Abstract. We introduce ICE, a robust learning paradigm for synthesizing invari-
ants, that learns using examples, counter-examples, and implications, and show
that it admits honest teachers and strongly convergent mechanisms for invariant
synthesis. We observe that existing algorithms for black-box abstract interpre-
tation can be interpreted as ICE-learning algorithms. We develop new strongly
convergent ICE-learning algorithms for two domains, one for learning Boolean
combinations of numerical invariants for scalar variables and one for quantified
invariants for arrays and dynamic lists. We implement these ICE-learning algo-
rithms in a verification tool and show they are robust, practical, and efficient.

1 Introduction
The problem of generating adequate inductive invariants to prove a program correct
is at the heart of automated program verification. Synthesizing invariants is in fact the
hardest aspect of program verification—once adequate inductive invariants are synthe-
sized [1–5], program verification reduces to checking validity of verification conditions
obtained from finite loop-free paths [6–8], which is a logic problem that has been highly
automated over the years.

Invariant generation techniques can be broadly classified into two kinds: white-box
techniques where the synthesizer of the invariant is acutely aware of the precise pro-
gram and property that is being proved and black-box techniques where the synthesizer
is largely agnostic to the structure of the program and property, but works with a partial
view of the requirements of the invariant. Abstract interpretation [1], counter-example
guided abstraction refinement, predicate abstraction [9, 10], the method of Craig inter-
polants [11, 12], IC3 [13], etc. all fall into the white-box category. In this paper, we are
interested in the newly emerging black-box techniques for invariant generation.
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- - -Learning Invariants: One prominent black-

box technique for invariant generation is the
emerging paradigm of learning. Intuitively
(see picture on the right), we have two com-
ponents in the verification tool: a white-box teacher and a black-box learner. The
learner synthesizes suggestions for the invariants in each round. The teacher is com-
pletely aware of the program and the property being verified, and is responsible for two
things: (a) to check if a purported invariant H (for hypothesis) supplied by the learner
is indeed an invariant and is adequate in proving the property of the program (typi-
cally using a constraint solver), and (b) if the invariant is not adequate, to come up with
concrete program configurations that need to be added or removed from the invariant
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Abstract. We describe a general framework c2i for generating an in-
variant inference procedure from an invariant checking procedure. Given
a checker and a language of possible invariants, c2i generates an inference
procedure that iteratively invokes two phases. The search phase uses ran-
domized search to discover candidate invariants and the validate phase
uses the checker to either prove or refute that the candidate is an actual
invariant. To demonstrate the applicability of c2i, we use it to generate
inference procedures that prove safety properties of numerical programs,
prove non-termination of numerical programs, prove functional specifi-
cations of array manipulating programs, prove safety properties of string
manipulating programs, and prove functional specifications of heap ma-
nipulating programs that use linked list data structures.

1 Introduction

In traditional program verification, a human annotates the loops of a given pro-
gram with invariants and a decision procedure checks these invariants by proving
some verification conditions (VCs). We explore whether decision procedures can
also be used to infer the loop invariants; doing so helps automate one of the
core problems in verification (discovering appropriate invariants) and relieves
programmers from a significant annotation burden.

The idea of using decision procedures for invariant inference is not new [28,
16]. However, this approach has been applied previously only in domains with
some special structure, e.g., when the VCs belong to theories that admit quan-
tifier elimination, such as linear rational arithmetic (Farkas’ lemma) or linear
integer arithmetic (Cooper’s method). For general inference tasks, such theory-
specific techniques do not apply, and the use of decision procedures for such tasks
has been restricted to invariant checking: to prove or refute a given manually
provided candidate invariant.

We describe a general framework c2i that, given a procedure for checking
invariants, uses that checker to produce an invariant inference engine for a given
language of possible invariants. We apply c2i to various classes of invariants; we
use it to generate inference procedures that prove safety properties of numer-
ical programs, prove non-termination of numerical programs, prove functional
specifications of array manipulating programs, prove safety properties of string
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Abstract. We describe a Guess-and-Check algorithm for computing
algebraic equation invariants of the form ∧ifi(x1, . . . , xn) = 0, where
each fi is a polynomial over the variables x1, . . . , xn of the program. The
“guess” phase is data driven and derives a candidate invariant from data
generated from concrete executions of the program. This candidate in-
variant is subsequently validated in a “check” phase by an off-the-shelf
SMT solver. Iterating between the two phases leads to a sound algo-
rithm. Moreover, we are able to prove a bound on the number of decision
procedure queries which Guess-and-Check requires to obtain a sound
invariant. We show how Guess-and-Check can be extended to generate
arbitrary boolean combinations of linear equalities as invariants, which
enables us to generate expressive invariants to be consumed by tools that
cannot handle non-linear arithmetic. We have evaluated our technique on
a number of benchmark programs from recent papers on invariant gen-
eration. Our results are encouraging – we are able to efficiently compute
algebraic invariants in all cases, with only a few tests.

Keywords: Non-linear, loop invariants, SMT.

1 Introduction

The task of generating loop invariants lies at the heart of any program verifica-
tion technique. A wide variety of techniques have been developed for generating
linear invariants, including methods based on abstract interpretation [8,13] and
constraint solving [7,11], among others.

Recently, researchers have also applied these techniques to the generation of
non-linear loop invariants [23,17,21,22,18]. These techniques discover algebraic
invariants, that is, invariants of the form

∧ifi(x1, . . . , xn) = 0

⋆ This work was supported by NSF grant CCF-0915766.
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ABSTRACT
Program invariants are important for defect detection, pro-
gram verification, and program repair. However, existing
techniques have limited support for important classes of in-
variants such as disjunctions, which express the semantics
of conditional statements. We propose a method for gener-
ating disjunctive invariants over numerical domains, which
are inexpressible using classical convex polyhedra. Using
dynamic analysis and reformulating the problem in non-
standard “max-plus” and “min-plus” algebras, our method
constructs hulls over program trace points. Critically, we
introduce and infer a weak class of such invariants that bal-
ances expressive power against the computational cost of
generating nonconvex shapes in high dimensions.

Existing dynamic inference techniques often generate spu-
rious invariants that fit some program traces but do not gen-
eralize. With the insight that generating dynamic invariants
is easy, we propose to verify these invariants statically us-
ing k-inductive SMT theorem proving which allows us to
validate invariants that are not classically inductive.

Results on di�cult kernels involving nonlinear arithmetic
and abstract arrays suggest that this hybrid approach e�-
ciently generates and proves correct program invariants.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; F.3.1 [Logics and Meanings of Pro-

grams]: Specifying, Verifying and Reasoning about Pro-
grams—Invariants; F.4.1 [Mathematical Logic and For-

mal Language]: Mathematical Logic—Mechanical theorem

proving

General Terms
Algorithms, Experimentation, Verification, Theory
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1. INTRODUCTION
Program invariants are logical properties that hold at cer-

tain program locations. Invariants are important for defect
detection (e.g., [3,13,22]), program verification (e.g., [10,14,
29]), and even program repair (e.g., [42,43]). Invariants can
be found using static or dynamic program analyses. Static
reasoning about source code can generate invariants without
executing the program, but is often expensive and therefore
considers relatively simple forms of invariants. In contrast,
dynamic analyses infer invariants from execution traces [19].
The quality and completeness of these traces determine the
accuracy of the inferred invariants. As a result, dynamic
analyses often produce spurious invariants that match some
observations but are not sound with respect to general pro-
gram behavior. However, dynamic analyses are generally
more e�cient and can be targeted to discover more complex
forms of invariants.

Existing invariant inference techniques tend to focus on
conjunctive, polynomial and convex invariants. Polynomial
invariants, which are relations among polynomials over nu-
merical program variables, are particularly important for
many applications. As one example, polynomial inequalities
are used to represent pointer arithmetic and other memory
related properties [10]. Inspired by abstract interpretation
approaches in static analysis [8, 11], recent dynamic analy-
sis methods use geometric shapes to represent polynomial
invariants [31, 32]. Although these convex shapes capture
conjunctions of polynomial relations, they cannot represent
disjunctive program properties.

Disjunctive invariants, which represent the semantics of
branching, are more di�cult to analyze but crucial to many
programs. For example, after if (p) {a=1;} else {a=2;}
neither a = 1 nor a = 2 is an invariant, but (p ^ a = 1) _
(¬p^a = 2) is a disjunctive invariant. Disjunctive invariants
thus capture path-sensitive reasoning, such as those found
in most sorting and searching tasks, as well as functions like
strncpy in the C standard library.

Existing approaches thus su↵er from the twin problems of
soundness and expressive power: Sound static approaches
are too ine�cient to target complex and expressive invari-
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Abstract. In this work we present a new sampling-based “black box”
inference approach for learning the behaviors of a library component. As
an application, we focus on the problem of automatically learning com-
mutativity specifications of data structures. This is a very challenging
problem, yet important, as commutativity specifications are fundamen-
tal to program analysis, concurrency control and even lower bounds.

Our approach is enabled by three core insights: (i) type-aware sam-
pling which drastically improves the quality of obtained examples, (ii)
relevant predicate discovery critical for reducing the formula search space,
and (iii) an efficient search based on weighted-set cover for finding for-
mulas ranging over the predicates and capturing the examples.

More generally, our work learns formulas belonging to fragments
consisting of quantifier-free formulas over a finite number of relation
symbols. Such fragments are expressive enough to capture useful specifi-
cations (e.g., commutativity) yet are amenable to automated inference.

We implemented a tool based on our approach and have shown that it
can quickly learn non-trivial and important commutativity specifications
of fundamental data types such as hash maps, sets, array lists, union find
and others. We also showed experimentally that learning these specifica-
tions is beyond the capabilities of existing techniques.

1 Introduction

In this work we present a new and scalable “black box” technique for learning
complex library specifications. Our technique is based on sampling of library
behaviors, is fully automatic, and quickly learns succinct and precise specifica-
tions of complex interactions beyond the reach of current techniques. Concretely,
our approach learns specifications in fragments of the quantifier-free formulas
over a finite number of relation symbols. Such fragments are expressive enough
to capture useful specifications yet are amenable to automated inference. Note
that even though the fragment is quantifier-free, the relations in the fragment
can be defined using quantifiers and hence the learned formulas may include
quantifiers.

We have instantiated our approach to learning commutativity specifications of
data structures, a hard yet practically important problem as these specifications
are fundamental to concurrency (e.g., program analysis [4], concurrency control
[9,13,14,23], and lower bounds [1]). This is the first automatic approach that

c⃝ Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 307–323, 2015.
DOI: 10.1007/978-3-319-21690-4 18

From Tests to Proofs

Ashutosh Gupta1, Rupak Majumdar2, and Andrey Rybalchenko1

1 Max Planck Institute for Software Systems
2 University of California, Los Angeles

Abstract. We describe the design and implementation of an automatic invariant
generator for imperative programs. While automatic invariant generation through
constraint solving has been extensively studied from a theoretical viewpoint as
a classical means of program verification, in practice existing tools do not scale
even to moderately sized programs. This is because the constraints that need to
be solved even for small programs are already too difficult for the underlying
(non-linear) constraint solving engines. To overcome this obstacle, we propose
to strengthen static constraint generation with information obtained from static
abstract interpretation and dynamic execution of the program. The strengthening
comes in the form of additional linear constraints that trigger a series of sim-
plifications in the solver, and make solving more scalable. We demonstrate the
practical applicability of the approach by an experimental evaluation on a col-
lection of challenging benchmark programs and comparisons with related tools
based on abstract interpretation and software model checking.

1 Introduction

Programmers make mistakes, and much time and effort is spent on finding and fixing
these mistakes. While it has long been known that program invariants are the key to
proving a program correct with respect to a safety property [10, 17], their applicability
has been limited in practice since they often require explicit and expensive programmer
annotations. To circumvent this problem, there has been considerable research effort
in program analysis for automatic inference of program invariants [1, 2, 4, 16, 27]. In
these algorithms, a set of constraints is generated from the program text whose solution
provides an inductive invariant proof of program correctness.

In the abstract interpretation based approach [4, 7, 24] to inductive invariant infer-
ence, one computes the fixpoint of the program semantics relative to an abstract domain.
In case the abstract domain has infinite height (for example, the domain of polyhe-
dra), termination of the fixpoint computation is enforced by a widening operator. In the
counterexample-guided abstraction refinement (CEGAR) approach [1, 16], one starts
with a set of predicates, and uses spurious counterexamples produced by model check-
ing to dynamically discover new predicates that serve as building blocks for the proof of
program correctness. Finally, in the constraint-based approach [5, 14, 27], a paramet-
ric representation of an invariant map serves a starting point. Then, inductiveness and
safety conditions are encoded as constraints on the parameters. Once these constraints
have been determined, any satisfying assignment is guaranteed to yield an inductive
invariant of the program. For example, an invariant template in linear arithmetic will
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ABSTRACT
We present a method for static program analysis that leverages tests
and concrete program executions. State abstractions generalize the
set of program states obtained from concrete executions. A theo-
rem prover then checks that the generalized set of concrete states
covers all potential executions and satisfies additional safety prop-
erties. Our method finds the same potential errors as the most-
precise abstract interpreter for a given abstraction and is potentially
more efficient. Additionally, it provides a new way to tune the per-
formance of the analysis by alternating between concrete execution
and theorem proving. We have implemented our technique in a
prototype for checking properties of C# programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing; D.2.4 [Software Engi-
neering]: Software/Program Verification—abstract interpretation

General Terms
reliability, verification

Keywords
program analysis, testing, abstraction, theorem prover, abstract in-
terpretation, software fault injection, fabricated states, adequacy
criteria, coverage, state-based coverage

1. INTRODUCTION
Recently, there has been much interest in combining dynamic

and static methods for analyzing programs [28, 16, 8, 29]. Dy-
namic analysis (or testing) is based on concrete program execu-
tions and underapproximates the set of program behaviors. That
is, if BP denotes the set of all behaviors of a program P then dy-
namic analysis explores a finite subset of BP . Static analysis is
based on the abstract interpretation [6] of program behavior and
typically overapproximates the set of program behaviors. That is,
∗This research was supported by The Israel Science Foundation
(grant No 304/03).
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static analysis has the effect of analyzing a superset of BP , which
may include infeasible behaviors that cannot be exhibited by the
program.
The pros and cons of the two techniques are clear. If dynamic

analysis detects an error then the error is real. However, dynamic
analysis cannot provide a proof of the absence of errors. On the
other hand, if static analysis does not find an error (of a particular
kind) in the superset ofBP thenBP clearly cannot contain an error
(of that same kind). However, if static analysis detects an error, it
may be a false error as the behavior that induces the error may lie
outside BP .
We show how to perform static analysis using a novel combina-

tion of dynamic analysis, abstraction, and an automated theorem
prover. Our technique is oriented towards finding a proof rather
than detecting real errors. As a result, it has the pros and cons of
a static analysis, but leverages dynamic analysis as its execution
vehicle.
Our method uses state abstractions to generalize the set of pro-

gram states gathered by monitoring concrete executions of a pro-
gram P . An automated theorem prover is used to check that the
generalized set of concrete states covers all potential executions of
P (essentially the set BP ) and satisfies additional safety proper-
ties. If this check succeeds, we have a proof that all executions of
the program satisfy the given properties.
However, if this check fails, our technique creates a fabricated

concrete state from which we continue concrete program execution.
We use a model generator (a theorem prover that can produce con-
crete counterexamples) to create a fabricated state so as to increase
the coverage. Under some standard assumptions (detailed later)
our method is guaranteed to converge and obtain the same result as
a standard abstract interpretation of the program P . In particular,
our method produces the same amount of false alarms as a stan-
dard abstract interpretation (over the same abstract domain). It is
noteworthy that we can make this guarantee even if we prematurely
halt concrete execution in order to perform the coverage check. In
this way, we can control the amount of time spent executing the
program vs. the amount of time spent calling the theorem prover.
We make the following contributions:

• We explain the result of abstract interpretation in terms of
concrete executions and abstraction. This sheds some light
on the trade-offs that arise when combining dynamic and sta-
tic analyses.

• The result of our method is sound and as precise as the re-
sult of the most-precise abstract interpreter (over the same
abstract domain).

• We implemented our method in two platforms: the TVLA
system for generating shape analyses [24] and the XRT sys-
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Abstract

Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely
program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert
statements, documentation, and formal specifications. Examples include being constant (x = a), non-zero (x 6= 0), being in a
range (a  x  b), linear relationships (y = ax + b), ordering (x  y), functions from a library (x = fn(y)), containment (x 2 y),
sortedness (x is sorted), and many more. Users can extend Daikon to check for additional invariants.

Dynamic invariant detection runs a program, observes the values that the program computes, and then reports properties that
were true over the observed executions. Dynamic invariant detection is a machine learning technique that can be applied to arbitrary
data. Daikon can detect invariants in C, C + +, Java, and Perl programs, and in record-structured data sources; it is easy to extend
Daikon to other applications.

Invariants can be useful in program understanding and a host of other applications. Daikon’s output has been used for gen-
erating test cases, predicting incompatibilities in component integration, automating theorem proving, repairing inconsistent data
structures, and checking the validity of data streams, among other tasks.

Daikon is freely available in source and binary form, along with extensive documentation, at http://pag.csail.mit.edu/daikon/.
c� 2007 Elsevier B.V. All rights reserved.

Keywords: Daikon; Dynamic analysis; Dynamic invariant detection; Inductive logic programming; Inference; Invariant; Likely invariant; Program
understanding; Specification; Specification mining

1. Introduction

This paper presents Daikon — a full featured and robust implementation of dynamic invariant detection. Invariants
explicate data structures and algorithms and are helpful for manual and automated programming tasks, from design
to maintenance. For example, they identify program properties that must be preserved when modifying code. Despite
their advantages, invariants are usually missing from programs. An alternative to expecting programmers to fully
annotate code with invariants is to automatically infer likely invariants from program executions. For certain important
tasks, dynamically-inferred properties are preferable to a human-written specification.

⇤ Corresponding author.
E-mail addresses: mernst@csail.mit.edu (M.D. Ernst), jhp@csail.mit.edu (J.H. Perkins).
URL: http://pag.csail.mit.edu/daikon/ (Daikon invariant detector distribution).
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and Implication Counterexamples
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Abstract

Inductive invariants can be robustly synthesized using a learning
model where the teacher is a program verifier who instructs the
learner through concrete program configurations, classified as pos-
itive, negative, and implications. We propose the first learning al-
gorithms in this model with implication counter-examples that are
based on machine learning techniques. In particular, we extend
classical decision-tree learning algorithms in machine learning to
handle implication samples, building new scalable ways to construct
small decision trees using statistical measures. We also develop a
decision-tree learning algorithm in this model that is guaranteed to
converge to the right concept (invariant) if one exists. We implement
the learners and an appropriate teacher, and show that the resulting
invariant synthesis is efficient and convergent for a large suite of
programs.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs: Invariants; D.2.4 [Software Engineering]: Soft-
ware/Program Verification: Correctness proofs

Keywords Invariant synthesis, machine learning, decision trees,
ICE learning

1. Introduction

Automatically synthesizing invariants, in the form of inductive
pre / post conditions and loop invariants, is a challenging problem
that lies at the heart of automated program verification. If an
adequate inductive invariant is found or given by the user, the
problem of checking whether the program satisfies the specification
can be reduced to logical validity of verification conditions, which is
increasingly tractable with the advances in automated logic solvers.

In recent years, the black-box or learning approach to finding
invariants, which contrast white-box approaches such as interpolants,
methods using Farkas’ lemma, IC3, etc. [14, 18, 28, 29, 31, 37],
have gained popularity [24, 25, 49, 51, 52]. In this data-driven
approach, we split the synthesizer of invariants into two parts (see
figure to the right). One component is a teacher, which is essentially
a program verifier that can verify the program using a conjectured

invariant and generates counter-examples; it may also have other
ways of generating configurations that must or must not be in the
invariant (e.g., dynamic execution engines, bounded model-checking
engines, etc.). The other component is a learner, which learns from
counter-examples given by the teacher to synthesize the invariant.
In each round, the learner proposes an invariant hypothesis H ,
and the teacher checks if the hypothesis is adequate to verify the
program against the specification; if not, it returns concrete program
configurations that are used in the next round by the learner to
refine the conjecture. The most important feature of this framework
is that the learner is completely agnostic of the program and the
specification (and hence the semantics of the programming language,
its memory model, etc.). The learner is simply constrained to learn
some predicate that is consistent with the sample configurations
given by the teacher.

ICE Learning Model: The simplest way for the teacher to refute
an invariant is to give positive and negative program configurations,
S+ and S�, constraining the learner to find a predicate that includes
S+ and excludes S�. However, this is not always possible. In
a recent paper, Garg et al. [25] note that if the learner gives a
hypothesis that covers all states known to be positive by the teacher
and excludes all states known to be negative by the teacher, but yet is
not inductive, then the teacher is stuck and cannot give any positive
or negative counter-example to refute the hypothesis.

Garg et al. [25] define a new learning model, which they call
ICE (for implication counter-examples) that allows the teacher to
give counter-examples of the form (x, y), where both x and y are
program configurations, with the constraint that the learner must
propose a predicate such that if the predicate includes x, then it
includes y as well. These implication counter-examples can be
used to refute non-inductive invariants: if H is not inductive, then
the teacher can find a configuration x satisfying H such that x
evolves to y in the program but y is not satisfied by H . This
learning model forms a robust paradigm for learning invariants,
including loop invariants, multiple loop invariants, and nested loop
invariants in programs [25]—the teacher can be both honest (never
give an example classification that precludes an invariant) and make
progress (always be able to refute an invariant that is not inductive
or adequate). This is in sharp contrast to learning only from positive
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Interpolants as Classifiers
?

Rahul Sharma1, Aditya V. Nori2, and Alex Aiken1

1 Stanford University, {sharmar, aiken}@stanford.edu
2 Microsoft Research India, adityan@microsoft.com

Abstract. We show how interpolants can be viewed as classifiers in
supervised machine learning. This view has several advantages: First,
we are able to use o↵-the-shelf classification techniques, in particular
support vector machines (SVMs), for interpolation. Second, we show
that SVMs can find relevant predicates for a number of benchmarks.
Since classification algorithms are predictive, the interpolants computed
via classification are likely to be invariants. Finally, the machine learning
view also enables us to handle superficial non-linearities. Even if the
underlying problem structure is linear, the symbolic constraints can give
an impression that we are solving a non-linear problem. Since learning
algorithms try to mine the underlying structure directly, we can discover
the linear structure for such problems. We demonstrate the feasibility of
our approach via experiments over benchmarks from various papers on
program verification.

Keywords: Static analysis, interpolants, machine learning

1 Introduction

Problems in program verification can be formalized as learning problems. In
particular, we show how interpolants [4,17,11] that are useful heuristics for com-
puting “simple” proofs in program verification can be looked upon as classifiers
in supervised machine learning. Informally, an interpolant is a predicate that
separates good or positive program states from bad or negative program states
and a set of appropriately chosen interpolants forms a program proof. Our main
technical insight is to view interpolants as classifiers that distinguish positive
examples from negative examples. This view allows us to make the following
contributions:

– We are able to use state-of-the-art classification algorithms for the purpose
of computing interpolants. Specifically, we show how to use support vector
machines (SVMs) [21] for binary classification to compute interpolants.

– Since classification algorithms are predictive, the interpolants we compute
are relevant predicates for program proofs. We show that we can discover
inductive invariants for a number of benchmarks. Moreover, since SVMs are
routinely used in large scale data processing, we believe that our approach
can scale to verification of practical systems.

? This work was supported by NSF grant CCF-0915766 and the Army High Perfor-
mance Computing Research Center.

• What is the language in which specifications are expressed?
★  Decidability

•  How do we generate samples?
★ Coverage

• How do we generalize from samples?
★  Turn postulated invariants to true invariants

★  Soundness

• How do we infer inductive invariants?
★Necessary for automated verification

• How do we guarantee progress?
★  Relate number of observations to quality of inference

• How do we ensure convergence?
★  Will we eventually learn a true invariant?

• Quality of specifications (simplicity, minimality, ….)



A A Programmer’s Day ...

type ‘a list = 
 | Nil
 | Cons ‘a * 
        ‘a list

type ‘a tree =
 | Leaf
 | Node ‘a * 
        ‘a tree * 
        ‘a tree

Defining data structures ...

// flat: ‘a list -> ‘a tree -> ‘a list
let rec flat accu t =
 match t with
  | Leaf -> accu
  | Node (x, l, r) -> 
    flat (x::(flat accu r)) l 

// elements: ‘a tree -> ‘a list
let elements t = flat [] t

Writing functions ...

No assertions /
      loop invariants 
      pre-conditions /
      post-conditions!



A A Programmer’s Day ...

Testing code ...

x4

x2 x5

x1 x3

x1 x2 x3 x4 x5

t l

// elements: ‘a tree -> ‘a list
let elements t = flat [] t

l = elements t

≡

Implicitly discovers:
// specification:
// elements: ‘a tree -> ‘a list
// l = elements t

in-order(t) forward-order(l)
//
//



A Features of Data Structures ...

t : 4 . 1

// elements: ‘a tree -> ‘a list
let elements t = flat [] t

l = elements t

t : 3 x5

t 99K 5

l : 1 ! 3 l : 3 ! 5

l 99K 5

t

4

2 5

1 3

1 2 3 4 5l

Containment

Reachability

Hypothesis Domain over 
data structure features:
t 99K u

t : u xv
t : u . v

t : u & v

l : u ! v
l 99K u



t : u . v

t : u & v

t : u xv

t 99K u

t 99K v

A From features to specifications  ...

input 
features

output 
features

Predict truth of output features using a 
Boolean combination of input features ...

l : u ! v

l 99K u

// elements: ‘a tree -> ‘a list
let elements t = flat [] t

l = elements t

^

_

=)

(=

Classification

^

_

=)

(=



l:list = elements (t:tree)

// specification:
// in-order of t ≡ forward-order of l 

A Specifications of Data Structures ...

t

l��
u

v u

v
u

v
vu

(8u v, t : u & v _
t : v . u _

() l : u ! v)

t : u xv



A Feature Extraction ...

type ‘a tree =
 | Leaf
 | Node ‘a * ‘a tree * ‘a tree

t : u . v

Node

‘a tree ‘a tree

v
root node left subtree right subtree

val

l r

t

t : u & v

The remainder of the paper provides an overview of our
specification language (Sec. 2); explains the synthesis mech-
anism through a detailed example (Sec. 3); provides details
about type system, verification procedure, as well as sound-
ness and progress results (Sec. 4); and describes generaliza-
tions of the core technique, presents implementation results,
related work and conclusions (Secs. 5, 6, and 7).

2. Specification Language

The search space of our data-driven learning procedure in-
cludes shape properties defined in terms of atomic predicates
stating either the containment of a certain value in a data
structure, or relations establishing ordering between two ele-
ments found within the structure. These predicates define the
concept class from which specifications are generated [2].
We discuss the basic intuition for how these predicates are
extracted for the data types defined in our running example
in Fig. 1 below.

We first consider possible containment predicates for
trees. We are interested in knowing if a certain value u is
present in a tree t. By observing the type definition of ’a

tree in Fig. 1, we know that only the constructor Node

contains a value of type ’a as its first argument. Therefore
we can deduce that if u is present in t then either t = Node

(u, lt, rt), or t = Node (v , lt, rt) and u is contained within
lt or rt (with u 6= v). A similar argument can be made about
lists. Containment predicates like these are denoted with a
dashed horizontal arrow (⌫ 99K u and t 99K u) as shown in
the first two rows of Fig. 2a.

A more interesting predicate class is one that establishes
ordering relations between two elements of a data structure,
u and v . Recall that in the tree definition only Node con-
structors contain values. However, since Node contains two
inductively defined subtrees, there are several cases to con-
sider when establishing an ordering relation among values
found within a tree t. If we are interested in cases where the
value u appears “before” (according to a specified order) v ,
we could either have that: (i) the value v occurs in the first
(left) subtree from a tree node containing u, described by the
notation t : u . v in Fig. 2, (ii) the value v occurs in the
second (right) subtree, described by the notation t : u & v ,
(iii) or both values are in the tree, but u is found in a subtree
that is disjoint from the subtree where v occurs. Suppose
there exists a node whose first subtree contains u and whose
second subtree contains v . This is the last case of Fig. 2a, and
it is denoted as t : u xv . The symmetric cases are obvious,
and we do not describe them. Notice that in this description
we have exhausted all possible relations between any two
values in a tree. The same argument can be made for list ,
which renders either the forward-order if the value u comes
before v in a list l as l : u ! v , or the backwards-order for
the symmetric case. Thus, our ordering predicates consider
all relevant applications of constructors in which u and v are
supplied as arguments.

list l = Nil l = Cons (u0, l0)

l 99K u false u = u0 _ l0 99K u
l : u ! v false (u = u0 ^ l0 99K v) _ l0 : u ! v

tree t = Leaf t = Node (u0, tl, tr)

t 99K u false u = u0 _ tl 99K u _ tr 99K u

t : u . v false
(u = u0 ^ tl 99K v) _

tl : u . v _ tr : u . v

t : u & v false
(u = u0 ^ tr 99K v) _
tl : u & v _ tr : u & v

t : u xv false
(tl 99K u ^ tr 99K v) _
tl : u xv _ tr : u xv

Table 1: Ordering and containment for list and tree.

The inductive definitions of the predicates obtained for
lists and trees are presented in Tab. 1. For lists, the contain-
ment predicate l 99K u recursively inspects each element of
a list l and holds only if u can be found in the list. The order-
ing predicate l : u ! v relates a pair (u, v) to l if u appears
before v in l. Similar definitions are given for trees. For ex-
ample, the predicate t : u xv is satisfied only if the tree
t contains a subtree (including t itself) whose left subtree
contains u and right subtree contains v .

To enable verification using off-the-shelf SMT solvers,
our specification language disallows quantifier alternations
(specifications are in prenex normal form, with universal
quantification only permitted at the top-level), but nonethe-
less retains expressivity by allowing arbitrary Boolean com-
binations of the predicates. For example, we can specify
elements ( Fig. 1) with the following two specifications:

�
8u, ⌫ 99K u () t 99K u

�

�
8u v , ⌫ : u ! v ()

0

@
t : v . u _
t : u xv _
t : u & v

1

A� (1)

where the free variables u, v of Fig. 2a are universally quan-
tified. In words, the specifications state that: (i) the values
contained in the input tree t and the output list ⌫ are exactly
the same and (ii) for any two values u and v that appear in the
forward-order in the output list ⌫, they are in the in-order of
the input tree and vice versa. These specifications accurately
capture the intended behavior of the function.

The full power of our specification language is realized
in a practical extension (Sec. 5.2) that combines shape pred-
icates with relational data ordering constraints, which are
binary predicates, resulting in what we refer to as shape-
data properties. For example, the following specification
describes the characteristics of a binary search tree (BST),
such as the instantiation (tree t) given in Fig. 2b:
�
8u v , (t : u . v ) u > v) ^ (t : u & v ) u < v)

�

() ((u = val ^ r 99K v) _ r : u & v _ l : u & v)

t : u xv

t : u xv () (l 99K u ^ r 99K v) _ l : u xv _ r : u xv

((u = val ^ l 99K v) _ l : u . v _ r : u . vt : u . v ()

l

val

r

t
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1 2 3 4 5

A Learner ...

input features output features

t : u . v t : u & v t : u xv t 99K u t 99K vt : v . u t : v & u t : v xu l : u ! v

. . .

(1,2) 
(4,5) 
(2,5) 
(3,1) 
(3,2) 
(4,1) 

(u, v)

t

l

(u, v)
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u

Sample space

// elements: ‘a tree -> ‘a list
let elements t = flat [] t

l = elements t
v

pos

neg

0              0               0                    1              0                  0              1            1               1     (1,2)
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A Learner ...
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A Learner ...

pos

t : u . v t : u & v t : u xv t 99K u t 99K vt : v . u t : v & u t : v xu l : u ! v

neg

(u, v)

• Optimization task: 
• Constraint solvers

Truth Table



A Learner ...
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If and only if specifications are nice, but …
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No classifier!
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let rec insert x t =
 match t with
 | Leaf -> Node (x, Leaf, Leaf)
 | Node (y, l, r) ->
    if x < y then 

Node (y, insert x l, r)
 else if y < x then

Node (y, l, insert x r)
 else t

4

2

x=3t 4

2

3

r

Problem:
Samples are not separable 
with existing features
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t : u . v
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t 99K u
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u = x

v = x

input features output features

r = insert 3 t
A Binary Search Tree Insertion ...
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A Binary Search Tree Insertion ...



A Verification
Encode candidate specifications as refinements in a refinement 
type system (LiquidTypes)

spec(B,  ) = {⌫ : B |  }
spec(D,  ) = {⌫ : D |  }

spec({x : ⌧1 ! ⌧2},  ) = {x : ⌧1 ! spec(⌧2, )}
specType(�f , f, ) = spec(HM(�f , f), )

Here we assume the existence a Hindley-Milner type check-
ing oracle HM(�f , f) which returns the unrefined type of a
function f . The auxiliary function spec pushes a specifica-
tion  of f into the result type of f because  is assumed to
capture the input-output relations of f .

4.2 Refinement Type System

An excerpt of our refinement type system is given in Fig. 7.
The type system is an extension of LIQUID TYPES [30, 50].
The basic typing judgment is of the form � ` e : P ,
where the typing environment � comprises type bindings
mapping program variables to refinement types (eg. x : P ),
and refinement predicates constraining the variables bound
in �. The judgment means that under the environment �,
where the values in the bound variables are assumed to
satisfy the constraints contained in �, the expression e has
the refinement type P . To ease the exposition, we show
only the most salient rules, and in particular, we only show
instances of the general rules for the list data structure.8

The LIST MATCH rule stipulates that the entire expres-
sion has type P if the body of each of the match cases
has type P under the type environment extended with the
variables bound by the matched pattern, where the variables
bound assume types as defined by the constructor definition.
Moreover, we unfold the inductive definitions of the atomic
predicates from our hypothesis domain ⌦ in the environ-
ment, exploiting the fact that we know the structure of the
matched pattern (c.f. the case considered), thus allowing us
to use the variables bound in the matched pattern to instanti-
ate the variables of the recursive unfolding of the predicate.
For instance, in the Cons (x, xs) case, we use x and xs to
stand for the existential variables u0 and l0 in the definition
of Tab. 1. In summary, the guard predicates unfold the in-
ductive definitions introduced in Tab. 1.

The FUNCTION rule for recursive functions has a subtyp-
ing constraint associated with function abstractions:

�; x : Px ` Pe <: P

which establishes a constraint on the post-condition P of the
abstraction (in our case encoding the synthesized candidate
specifications) and it is required to be consistent with Pe

inferred for the function body using the type checking rules.
Finally, the rule SUBTYPE DTYPE checks whether a re-

finement type subtypes another by issuing an implication
verification condition over the refinement predicates of the
types involved. We use the notation h i to denote the encod-
ing of refinement predicates  into terms of (decidable) BSR
logic. Our encoding translates the containment and ordering
predicates in  into uninterpreted relations.

8 The full type system provides general rules for arbitrary inductive data
types and is presented in our technical report [71].

The validity check in the premise of the rule SUBTYPE
DTYPE requires that the conjunction of the environment
formula h�i and h 1i implies h 2i. Our encoding of h�i is
adapted from [30, 50]:

h�i =
^�

h[x/⌫] i
�� (x : {⌧ | }) 2 � ^ ⌧ 2 B [ D

 

Recall that for a function f , the set of specifications allowed
in the specification space of containment and ordering for-
mulae are restricted to the form:

 2 {(8u v , ⇠) | ⇠ 2 BF (⌦(f))}

The prenex normal form of the encoding of the premise in
the rule SUBTYPE DTYPE, Valid(h�i ^ h 1i ) h 2i,
therefore results in a 9⇤8⇤ quantifier prefix, with no func-
tions. As a result, subtype checking in our system is decid-
able and can be handled by a BSR solver [45].

The soundness of the refinement type system is defined
with respect to a reduction relation (,!) that encodes the
language’s operational semantics, which is standard:

Theorem 1. If ; ` e : P , then either e is a value, or there
exists an e0 such that e ,! e0 and ; ` e0 : P .

The completeness of subtype checking reduces to the com-
pleteness of the underlying solver for inductive data types.
For lists or trees, we use additional axioms (as local theory
extensions [23]) based on first-order axiomatizations of tran-
sitive closures found in [31, 47] to bound the shape of list or
tree data structures in BSR models to ensure completeness.

4.3 Progress

For a candidate specification  inferred for the recursive
function f , our verification algorithm encodes  into the
refinement type of f and checks the following judgment

�f ` fix ( fun f ! �x. e) : specType(�f , f, )

where �f is the type environment under which f is de-
fined. We call a specification  which can be type-checked
as shown above an inductive invariant of f . We call  
the strongest inductive invariant of f in Spec(⌦, f), if for
any other inductive invariant  f of f in Spec(⌦, f), �f `
specType(�f , f, ) <: specType(�f , f, f ) holds.

Importantly, our technique is progressive. This means that
it is always possible to add new tests to refine  whenever
 fails to be inductive, provided that one inductive invariant
exists in the specification space. We formalize the progres-
sive property in Theorem 2 under the assumption that the
underlying solver is complete (c.f. Sec. 4.2).

Theorem 2. Given a function f with a hypothesis do-
main ⌦, and assuming that an inductive invariant of f
exists in Spec(⌦, f), if �f 6` fix ( fun f ! �x. e) :
specType(�f , f, ) where  = Synthesize(f ), then there
exists a test input for f which leads to an unseen sample
� of f , for which  (�) does not hold; otherwise  is the
strongest inductive invariant of f in Spec(⌦, f).

LIST MATCH
� ` v : ’a list

⇥
�; (8u v , v : u ! v () false ^ 8u, v 99K u () false)

⇤
` e1 : P

�; x : ’a; xs : ’a list ; (8u, v 99K u () (u = x _ xs 99K u)
^ 8u v , v : u ! v () ((u = x ^ xs 99K v) _ xs : u ! v))

�
` e2 : P

� `
�

match v with | Nil ! e1 | Cons (x, xs) ! e2
�
: P

FUNCTION
�; f : {x : Px ! P};x : Px ` e : Pe �;x : Px ` Pe <: P

� ` fix ( fun f ! �x. e) : {x : Px ! P}

SUBTYPE DTYPE
Valid(h�i ^ h 1i ) h 2i)
� ` {D |  1} <: {D |  2}

Figure 7: Representative Typing Rules (list instantiation excerpt).

The theorem states that if an inductive invariant of f ex-
ists in the specification space parameterized by ⌦ (i.e., in
Spec(⌦, f)), then for any candidate specification  inferred
for f , either  is such an invariant (i.e., refinement type
checking succeeds) and is the strongest one in the specifica-
tion space, or there exists a test input which yields a concrete
program sample that invalidates  . We remark that finding
such a test input reduces to the well-studied problem of gen-
erating inputs for a program (function f ) causing it to vi-
olate its specifications (safety property  ). In our setting,
we can harness techniques such as [41], which provides a
relatively complete method for counterexample generation
in functional (data structure) programs, to derive test inputs
that violate  . In fact, because  is an input-output speci-
fication, we can directly reconstruct a new test input from
SMT models of subtype checking failures. In turn, running
the learning algorithm using the new program samples from
the new input, necessarily produces a more refined invariant.
This strategy, which can be implemented via a CEGIS (coun-
terexample guided inductive synthesis) loop [2, 55], ensures
that we can construct a finite number of test cases to guar-
antee convergence in the presumed specification space.

Details about the proof of Theorem 2 are provided in
our technical report [71]. The key idea is that our learning
algorithm ensures that  will never produce an invariant
that is true for all possible function input/output pairs, but
which is not inductive. This is a fundamental property, since
an invariant that is true which fails to be inductive (i.e., fails
type checking) cannot be invalidated by adding tests, since
the true invariant is guaranteed to be satisfied in every test
run. Without such a property, we might never find a typable
specification.

Consider the flat function in Fig. 1. If our only goal
was to use the smallest number of atomic predicates from
the hypothesis domain to construct a specification (satisfied
by all the samples of flat ), we obtain the following result:

�
8u v , ⌫ : u ! v )
✓

(t 99K u ^ accu 99K v) _
(t 99K u ^ t 99K v) _ (accu 99K u ^ accu 99K v)

◆

Compared to the specification (2), the above specification is
simpler (comprising fewer atomic predicates) and is always

true for the program above. But it is not an inductive invari-
ant, and cannot be verified using our type checking rules, es-
pecially the FUNCTION rule in Fig. 7. In particular, the fail-
ure stems from the predicate (t 99K u ^ t 99K v) in the last
line of the specification, which is too over-approximative.
It does not specify an order between u and v if they both
come from t, which is necessary to discharge the subtype
constraint in the FUNCTION rule. Adding more tests would
not refine the resulting specification, since it is a true invari-
ant, albeit not an inductive one.

Our learning algorithm rules out this problem by guar-
anteeing that any candidate specification rejects a Boolean
assignment to the selected atomic predicates that are not ob-
served or inconsistent with the samples. This means that for
any two elements u, v from t, if u occurs before v in the out-
put list (⌫), any learnt specification must ensure that u and
v respect the in-order property of t, since such a property
would be observed in every sample. More generally, for any
two elements u, v from t that do not respect the in-order of
t, they are classified into the U(nsat) samples of ⌫ : u ! v .

5. Extensions

Previous sections focused on list and tree data structures
to illustrate our technique. But, as we elaborate below,
DORDER supports complex functional data structures be-
yond lists and trees, including nested and composite struc-
tures.

We also discuss the extension of our algorithm to syn-
thesize specifications relating data constraints to values con-
tained within inductive data structures. Surprisingly, the ex-
pressive power of our learning procedure is not constrained
by the underlying hypothesis domain on which it is parame-
terized. In this sense, we claim that DORDER defines a gen-
eral framework to perform specification synthesis.

5.1 Extensions for Arbitrary User-defined Inductive

Data Structures

Our technique discovers “templates” of atomic-predicates
on a per-data-structure basis. We are able to discover cus-
tomized ordering predicates for nested datatypes (e.g., multiway-
trees), and composite datatypes that have significantly dif-

Unfold predicate definitions based on context

Propagate type constraints from function’s
pre-condition to its post-condition

Encoding yields (decidable) EPR formulae; 
completeness is ensured by axiomatizing transitive 
closure for supported data types

spec(B,  ) = {⌫ : B |  }
spec(D,  ) = {⌫ : D |  }

spec({x : ⌧1 ! ⌧2},  ) = {x : ⌧1 ! spec(⌧2, )}
specType(�f , f, ) = spec(HM(�f , f), )

Here we assume the existence a Hindley-Milner type check-
ing oracle HM(�f , f) which returns the unrefined type of a
function f . The auxiliary function spec pushes a specifica-
tion  of f into the result type of f because  is assumed to
capture the input-output relations of f .

4.2 Refinement Type System

An excerpt of our refinement type system is given in Fig. 7.
The type system is an extension of LIQUID TYPES [30, 50].
The basic typing judgment is of the form � ` e : P ,
where the typing environment � comprises type bindings
mapping program variables to refinement types (eg. x : P ),
and refinement predicates constraining the variables bound
in �. The judgment means that under the environment �,
where the values in the bound variables are assumed to
satisfy the constraints contained in �, the expression e has
the refinement type P . To ease the exposition, we show
only the most salient rules, and in particular, we only show
instances of the general rules for the list data structure.8

The LIST MATCH rule stipulates that the entire expres-
sion has type P if the body of each of the match cases
has type P under the type environment extended with the
variables bound by the matched pattern, where the variables
bound assume types as defined by the constructor definition.
Moreover, we unfold the inductive definitions of the atomic
predicates from our hypothesis domain ⌦ in the environ-
ment, exploiting the fact that we know the structure of the
matched pattern (c.f. the case considered), thus allowing us
to use the variables bound in the matched pattern to instanti-
ate the variables of the recursive unfolding of the predicate.
For instance, in the Cons (x, xs) case, we use x and xs to
stand for the existential variables u0 and l0 in the definition
of Tab. 1. In summary, the guard predicates unfold the in-
ductive definitions introduced in Tab. 1.

The FUNCTION rule for recursive functions has a subtyp-
ing constraint associated with function abstractions:

�; x : Px ` Pe <: P

which establishes a constraint on the post-condition P of the
abstraction (in our case encoding the synthesized candidate
specifications) and it is required to be consistent with Pe

inferred for the function body using the type checking rules.
Finally, the rule SUBTYPE DTYPE checks whether a re-

finement type subtypes another by issuing an implication
verification condition over the refinement predicates of the
types involved. We use the notation h i to denote the encod-
ing of refinement predicates  into terms of (decidable) BSR
logic. Our encoding translates the containment and ordering
predicates in  into uninterpreted relations.

8 The full type system provides general rules for arbitrary inductive data
types and is presented in our technical report [71].

The validity check in the premise of the rule SUBTYPE
DTYPE requires that the conjunction of the environment
formula h�i and h 1i implies h 2i. Our encoding of h�i is
adapted from [30, 50]:

h�i =
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Recall that for a function f , the set of specifications allowed
in the specification space of containment and ordering for-
mulae are restricted to the form:

 2 {(8u v , ⇠) | ⇠ 2 BF (⌦(f))}

The prenex normal form of the encoding of the premise in
the rule SUBTYPE DTYPE, Valid(h�i ^ h 1i ) h 2i,
therefore results in a 9⇤8⇤ quantifier prefix, with no func-
tions. As a result, subtype checking in our system is decid-
able and can be handled by a BSR solver [45].

The soundness of the refinement type system is defined
with respect to a reduction relation (,!) that encodes the
language’s operational semantics, which is standard:

Theorem 1. If ; ` e : P , then either e is a value, or there
exists an e0 such that e ,! e0 and ; ` e0 : P .

The completeness of subtype checking reduces to the com-
pleteness of the underlying solver for inductive data types.
For lists or trees, we use additional axioms (as local theory
extensions [23]) based on first-order axiomatizations of tran-
sitive closures found in [31, 47] to bound the shape of list or
tree data structures in BSR models to ensure completeness.

4.3 Progress

For a candidate specification  inferred for the recursive
function f , our verification algorithm encodes  into the
refinement type of f and checks the following judgment

�f ` fix ( fun f ! �x. e) : specType(�f , f, )

where �f is the type environment under which f is de-
fined. We call a specification  which can be type-checked
as shown above an inductive invariant of f . We call  
the strongest inductive invariant of f in Spec(⌦, f), if for
any other inductive invariant  f of f in Spec(⌦, f), �f `
specType(�f , f, ) <: specType(�f , f, f ) holds.

Importantly, our technique is progressive. This means that
it is always possible to add new tests to refine  whenever
 fails to be inductive, provided that one inductive invariant
exists in the specification space. We formalize the progres-
sive property in Theorem 2 under the assumption that the
underlying solver is complete (c.f. Sec. 4.2).

Theorem 2. Given a function f with a hypothesis do-
main ⌦, and assuming that an inductive invariant of f
exists in Spec(⌦, f), if �f 6` fix ( fun f ! �x. e) :
specType(�f , f, ) where  = Synthesize(f ), then there
exists a test input for f which leads to an unseen sample
� of f , for which  (�) does not hold; otherwise  is the
strongest inductive invariant of f in Spec(⌦, f).



Theorem: The learning algorithm eventually
converges to the strongest inductive 
specification in the hypothesis space. 
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Benchmark Programs Specifications

• Okasaki’s funcional Stack, Queue

• Lists: mem, concat, reverse, filter, 
insertionsort, quicksort, mergesort

• Set: list-based and tree-based 
implementations

• Heap: Leftist, Skew, Splay, Pairing, 
Binomial, Heapsort

• Tree: Treap, AVL, Braun, Splay, 
Redblack, Random-access-list, 
Proposition-lib and OCaml-Set-lib

• List reversal: input-forward is 
output-backward

• Balanced tree insertion preserves 
in-order relation

• Heap removal preserves parent-
children relations of extant nodes

• Shape-data:  
        Sorting, BST, Heap-ordered

• Numeric:  
        Tree balance

A Experimental Results ...

•DOrder -- implemented within the OCaml tool chain.
• Programmers write code as usual (with no annotation burden) while 

the tool reports program specifications. 
• Fast verification (< 2 minutes), small # samples (~ 20 samples avg.)



VCs

Spacer fails in 
this particular case

CFG

assert (x � y)

Program
main() {
int x = 1;
int y = 0;
while (*) {
x = x + y;
y = y + 1;

}
assert (x >= y)

}

p(x, y)

x = 1 ^ y = 0 ! p(x, y)

p(x, y) ^ x0 = x+ y ^ y0 = y + 1 ! p(x0, y0)

p(x, y) ^ x0 = x+ y ^ y0 = y + 1 ! x0 >= y0

x = 1 ^ y = 0 ! x >= y

assert (x � y)assert (x � y)assert (x � y)assert (x � y)assert (x � y)

Induction

A Loop (Numeric) Invariants
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x
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positive
negative

A Data-Driven Invariant Inference

x>=1

y>=0

p(x, y) ⌘ {x >= 1 ^ y >= 0}

assert (x � y)

Sampling p(x, y)

Ask Z3 positive

p(0,1) p(0,2), …
p(1,0), p(1,1), …

negative
classification



Vision:
An inductive invariant can be discovered from data

Goal: Design a learner to learn inductive invariants from data

Program

Learner
VC generator

SMT

Inductive  
invariants

Invariant 
samples

SynthHorn work flow:

A Data-Driven Invariant Inference for Recursive CHC systems



A Machine Learning Technique for 
invariants of arbitrary Boolean 

combination
of arbitrary linear arithmetic 

predicates.
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Linear Classification

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

main() {
int x,  y;
x = 0;  y = ✽;
while (y != 0) { // p(x,y)
if (y < 0)  {x--;  y++;}
else  {x++;  y—;}
assert  (x != 0);

}
}

p(3,-2) p(1,-1) p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(2, 2) p(4,3) p(7,4)

Sampling p(x, y)

•First take: use linear classification (SVM, Perceptron, 
Logistic Regression).

•But, there is a tension between Machine Learning and 
Verification: Generality vs. Safety.

nonlinear 
classifier
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A Learning Arbitrarily Shaped Numeric Invariants ...

-x - y -1 >= 0

�x� y � 1 � 0

•Generality: Call linear classification by leveraging its 
ability to infer high quality classifiers even from data 
that are not linearly separable.

x + y -1 >= 0

�x� y � 1 � 0 _ x+ y � 1 � 0

•Safety: Call linear classification recursively until all 
samples are correctly separated.

-3
-2
-1
0
1
2
3

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

-3 -2 -1 0 1 2 3

x - y + 1 >= 0

� x� y � 1 � 0 _ x+ y � 1 � 0

_ x� y + 1 � 0

-x + y + 1 >= 0

� x� y � 1 � 0 _ x+ y � 1 � 0

_ x� y + 1 � 0 ^ �x+ y + 1 � 0

•SynthHorn: Combine Generality and Safety together!

Given the data,



A Combating Over- and Under-fitting

main() {
int x,  y;
x = 0;  y = 50;
while (x < 100) { // p(x,y)
x = x + 1;
if (x > 50)  {y = y + 1;}

}
assert  (y == 100);

}

Sampling p(x, y)

56� x � 0 ^ (249� 17x+ 6y � 0 _ �50 + y � 0 ^ 50� y � 0 ^
51� x � 0 _ x� y � 0 ^ �x+ y � 0) _ x� y � 0 ^ �x+ y � 0

Z3

y

0

50

100

x

0 50 100

Positive Negative
56 - x >= 0

249 - 17x + 6y >= 0 51 - x >= 0

x - y >= 0 

-50 + y >= 0 
50 - y >= 0



A simple invariant is more likely to generalize.

Goal: Design a learner to learn simple invariants

•Can we generalize the learned invariant solely 
using the data from which the linear classifiers 
are produced?

A Combating Over- and Under-fitting
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0 50 100

Positive Negative

0

50

100

0 50 100

Positive Negative
Classified

0

50

100

0 50 100

Positive Negative
Classified

0

50

100

0 50 100

Positive Negative
Classified

0

50

100

0 50 100

Positive Negative

50 - y >= 0
t f

-50 + y >= 0
t f

⚪ 

-x + y >= t

+
⚪ 

f x - y >= 0t

+
+

-x + y >= 0
⚪ 

⚪ 
f

t f

0

50

100

0 50 100

Positive Negative
Classified

Learned classifiers from linear classification

Data

�50 + y � 0 ^ 50� y � 0 ^ �x+ y � 0 _
�50 + y � 0 ^ ¬(50� y � 0) ^ x� y � 0 ^ �x+ y � 0

p(x, y) ⌘-50 + y >= 0
50 - y >= 0
-x + y >= 0
x - y >= 0
56 - x >= 0
51 - x >= 0

249 - 17x + 6y >= 0

-50 + y >= 0
50 - y >= 0
-x + y >= 0
x - y >= 0

+   postive label 

leaf node

decision node

⚪   negative label

Decision Tree Learning

Z3

249 - 17x + 6y 



System State Space

Bad Inv

Initial

System State Space

Bad Inv

Initial

A Counterexample guided sampling by Z3

Tr(X,X 0) ^ Inv[X] ! Inv[X 0] Strengthen InvariantWeaken Invariant

System State Space

Bad Inv

Initial

Find a true counterexample Find an inductive invariant
System State Space
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A Experimental Results

Total 381

Z3-GPDR 300

Z3-Spacer 303

Z3-Duality 309

SynthHorn 368

Comparison with  
GPDR, Spacer, Duality

•Collected 381 loop and recursive 
programs with intricate invariants

SynthHorn can verify more programs
Spacer is faster

Total

Z3-GPDR

Z3-Spacer

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA He Zhu, Stephen Magill, and Suresh Jagannathan

(a) Learning vs Enumeration (b) Learning vs Template (c) Learning vs PDR (d) Learning vs Interpolation

Figure 8. Verification time - evaluation and comparison.

In general, Spacer is able to generate a solution faster
than our technique, when it terminates. However, on this
benchmark suite, it was only able to verify 303 of the 381
programs, as opposed to the 368 programs we were able to
generate a solution for.

We also compare our tool with another two CHC solvers,
GPDR [17] and Duality [24, 25], using the same timeout
parameter. Similar to Spacer, these two solvers also ran faster
on the benchmarks that they terminated on but verified less
CHC systems than LinearArbitrary. The result, in terms
of the number of verified benchmarks, is summarized in the
table below:

#Total #GPDR #Spacer #Duality #LinearArbitrary
381 300 303 309 368

Finally, to quantify the significance of DT learning in the
verification pipeline, we ran all of the above experiments
again, but disabled the use of DT learning in the learning
procedure. The convergence rate of this version decreased
significantly because it is possible that Algorithm 1 produces
a low-quality classifier as the example in Sec. 2.2 shows. In
this setting, most of the benchmarks could not be verified
within the timeout range.

SV-COMP Programs. Since a large subset of our bench-
marks come from SV-COMP [39], we compare our CHC
solver with UAutomizer [16], an interpolation-based pro-
gram verifier that won the SV-COMP’17 competition. Fig. 8(d)
depicts the comparison using 135 benchmarks in the loop-lit,
loop-invgen and recursive-∗ categories of SV-COMP [39]. Our
solver was able to verify 126 of the total 135 benchmarks,
compared to UAutomizer’s 111. In the table below we char-
acterize some of the programs that UAutomizer times-out
on that were solvable using LinearArbitrary.

#C #P #V #S #A T

Prime 21 10 99 261 11,13,15,12,14,15 18s
EvenOdd 8 4 31 541 4,6,6,6,6 105s
recHanoi3 12 6 22 9 4 0.4s
Fib2calls 12 6 53 630 2,8,8,12,9,10,7,4 168s

For example, program Prime verifies that ∀f1, f2,n. ( f1 >
1 ∧ f2 > 1 ∧mult ( f1, f2) = n) ⇒ ¬isPrime (n), i.e., n is not
prime in the case. The generated CHCs contain 21 constraints

over 10 unknown predicate symbols, and 99 variables, re-
quiring 261 samples (from SMT calls) that could nonetheless
be verified in 18 seconds using our toolchain. The complex
structure of the program, however, makes the interpolation
queries generated by UAutomizer costly, resulting in a time-
out. EvenOdd and Fib2calls are complex because they have
nested recursions, with EvenOdd requiring reasoning over
mod operations not expressible in the Polyhedra domain.
We study the scalability of our CHC solver using sev-

eral large SV-COMP benchmarks taken from the NTDriver,
Product-lines, Psyco and Systemc categories.8 Results in terms
of the number of verified benchmarks are given below for the
644 programs we were able to verify within the time bound,
out of the 679 total programs considered. As a comparison,
UAutomizer was able to solve 403 of these programs.

NTDriver Product Psyco Systemc
Total (#10) (#597) (#10) (#62)

UAutomizer 7 357 8 31
LinearArbitrary 9 589 6 40

We characterize some of these sample programs below (#L
denotes the number of lines of a program). Many of these
programs, although large, have disjunctive invariants that
are easy to learn; for example “parport” although sizable
at 10KLOC, required only 65 samples, and was able to be
verified in 13 seconds.

#L #C #P #V #S #A T

sfifo 309 32 10 292 926 12,12,13 350s
acclrm 842 8 4 8266 26 2, 7, 7 15s
elevator 3405 57 16 880 817 18 18s
parport 10012 275 59 4201 65 1,2 13s

7 Related Work

Machine Learning Based Invariant Generation. Some
machine learning-based approaches learn over a fixed space
of invariants chosen in advance either by bounding the struc-
ture of discovered formulae, or restricting the search space
to some finite sub-lattice of an abstract domain. For example,

8 We used these benchmarks because they can be verified without encoding
heap properties, functionality our tool currently does not support. The
timeout parameter was relaxed to 1000s for these large programs.

718

Verified 644 programs (out of 679 considered from SV-COMP benchmarks)
Programs in excess of 10KLOC verified < 13 sec



Comparison with PIE

Sy
nt

hH
or

n 
81

/8
2 

pa
ss

ed
 (s

ec
s)

0.1

1

10

100

1000

PIE 79/82 passed 
(secs)

0.1 1 10 100 1000

CHC sat
TO

TO

A data-driven 
invariant inference 
tool using 
enumeration-
based search 
(PLDI’16)

Machine learning leads to 
order-of-magnitude faster 

performance than enumeration 

A Experimental Results



A Summary

- Ensure there always exists a test to refine an unverifiable specification (if hypothesis 
space is sufficient).

- Automation.
-  Leverage off-the-shelf solvers and classifiers for invariant discovery

- Demonstrated applicability to real-world programs.

- Guarantees.
- The strongest specification (up to a hypothesis domain). 

★ Learning mechanisms provide a powerful framework for verifiable invariant inference 
over both data structure and numeric programs

- Full verification pipeline.

See PLDI’18,  PLDI’16,  ICFP’15,  VMCAI’15 for more details

★Extend ideas to

     - Specification inference of heap-manipulating programs (separation logic)

     - Distributed protocols (inductive invariant inference on infinite-state systems)

     - Program synthesis, generally


