
Vulnerable Semantics of Solidity

Sukyoung Ryu

October 20, 2018

with PLRG@KAIST and friends

Fortress, JavaScript, and
Solidity

Sukyoung Ryu

October 20, 2018

with PLRG@KAIST and friends

/ 60Fortress, JavaScript, and Solidity

KAIST: SML and OCaml

!3

/ 60Fortress, JavaScript, and Solidity

Harvard: Assembly, C, and Modula-3

!4

/ 60Fortress, JavaScript, and Solidity

Sun Microsystems: Java and Scala

!5

/ 60Fortress, JavaScript, and Solidity

Sun Microsystems: Fortress

!6

A multicore language for scientists and engineers
Run your whiteboard in parallel!
“Growing a Language” https://www.youtube.com/watch?v=_ahvzDzKdB0&t=10s
Guy L. Steele Jr., keynote talk, OOPSLA 1998
Higher-Order and Symbolic Computation 12, 221-236 (1999)

/ 60Fortress, JavaScript, and Solidity

Sun Microsystems: Fortress

!7

/ 60Fortress, JavaScript, and Solidity

Language Manipulation: Fortress

!8

Specification
Parsing
Static checking
Compilation / Interpretation
Testing
Analysis
Verification

/ 60Fortress, JavaScript, and Solidity

Fortress as a Language Designer

!9

Development from scratch
Language evolves to experiment with new features
Constant changes in spec., parsing, checking, …
Language development by 3 teams in tandem:
Specification team
Implementation team
Library team

/ 60Fortress, JavaScript, and Solidity

Fortress as a Language Designer

!10

Specification team
Formal concrete grammar in EBNF
Informal description in prose
Examples & formal calculi

/ 60Fortress, JavaScript, and Solidity

Fortress as a Language Designer

!11

Specification team
Formal concrete grammar in EBNF
Informal description in prose
Examples & formal calculi

Library team
Adventurous library in unimplemented Fortress features

/ 60Fortress, JavaScript, and Solidity

Fortress as a Language Designer

!12

Specification team
Formal concrete grammar in EBNF
Informal description in prose
Examples & formal calculi

Library team
Adventurous library in unimplemented Fortress features

Implementation team
Implementation extension
Regression tests & new feature tests

Specification team
Formal concrete grammar in EBNF
Informal description in prose
Examples & formal calculi

Library team
Adventurous library in unimplemented Fortress features

/ 60Fortress, JavaScript, and Solidity

Language Manipulation: Fortress

!13

Specification: automatic extraction/test of examples
Parsing: automatic generation of parsers & ASTs
Static checking: parallel development
Compilation / Interpretation: cross validation
Testing
Analysis
Verification
FFMM (Featherweight Fortress with Multiple Dispatch
and Multiple Inheritance): 3,000 LOC (Coq)

/ 60Fortress, JavaScript, and Solidity

Fortress: Symmetric Multiple Dispatch

!14

Method overloading
Multiple method declarations of the same name

Symmetric multiple dispatch
Selection of a method declaration at run time using all
the arguments equally

Overloading rules
Static rejection of ambiguous method declarations
No ambiguous nor undefined method call at run time!

/ 60Fortress, JavaScript, and Solidity !15

Fortress: Symmetric Multiple Dispatch

/ 60Fortress, JavaScript, and Solidity !16

Fortress: Symmetric Multiple Dispatch

/ 60Fortress, JavaScript, and Solidity !17

Fortress: Symmetric Multiple Dispatch

sort[P	<:	Car](x:	List[P]):	SortedList[P]	=	_	

sort[P	<:	CampingTrailer](x:	List[P]):	SortedList[P]	=	_	

l:	List[CampingCar]	=	List(CampingCar())	

sort(cc)

/ 60Fortress, JavaScript, and Solidity !18

Fortress: Symmetric Multiple Dispatch

sort[P	<:	Car](x:	List[P]):	SortedList[P]	=	_	

sort[P	<:	CampingTrailer](x:	List[P]):	SortedList[P]	=	_	

sort[P	<:	CampingCar](x:	List[P]):	SortedList[P]	=	_	

l:	List[CampingCar]	=	List(CampingCar())	

sort(cc)

/ 60Fortress, JavaScript, and Solidity !19

Fortress: Symmetric Multiple Dispatch
with Parametric Polymorphism

OOPSLA’11
No variance, No dynamic dispatch algorithm
No type soundness proof

/ 60Fortress, JavaScript, and Solidity !20

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance

/ 60Fortress, JavaScript, and Solidity !21

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance

POPL’19
Yes variance, Yes dynamic dispatch algorithm
Yes type soundness proof

PROVED

/ 60Fortress, JavaScript, and Solidity !22

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity !23

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity !24

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity !25

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity !26

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity !27

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

Many more rules …

/ 60Fortress, JavaScript, and Solidity !28

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

Next: Coq Mechanization

/ 60Fortress, JavaScript, and Solidity !29

Fortress: Symmetric Multiple Dispatch
with Polymorphism and Variance PROVED

/ 60Fortress, JavaScript, and Solidity

Language Manipulation: JavaScript

!30

Specification: ECMAScript
Parsing: automatic generation of parsers & ASTs
Static checking: parallel development
Compilation / Interpretation: cross validation
Testing
Analysis: SAFE, TAJS, WALA
Verification

/ 60Fortress, JavaScript, and Solidity

Analyzing JS

!31

Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE:
Formal Specification and Implementation of a Scalable Analysis
Framework for ECMAScript (FOOL’12)
Seonghoon Kang and Sukyoung Ryu. Formal Specification of a JavaScript
Module System (OOPSLA’12)

Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the “with” Statement
in JavaScript: Removing “with” Statements in JavaScript Applications (DLS’13)

WaiTing Cheung, Sukyoung Ryu, Sunghun Kim. Development Nature Matters: An
Empirical Study of Code Clones in JavaScript Applications (EMSE’15)

/ 60Fortress, JavaScript, and Solidity

Analyzing JS

!32

Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE:
Formal Specification and Implementation of a Scalable Analysis
Framework for ECMAScript (FOOL’12)
Seonghoon Kang and Sukyoung Ryu. Formal Specification of a JavaScript
Module System (OOPSLA’12)

Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the “with” Statement
in JavaScript: Removing “with” Statements in JavaScript Applications (DLS’13)

WaiTing Cheung, Sukyoung Ryu, Sunghun Kim. Development Nature Matters: An
Empirical Study of Code Clones in JavaScript Applications (EMSE’15)

/ 60Fortress, JavaScript, and Solidity

Analyzing JS Web Apps

!33

Changhee Park, Sooncheol Won, Joonho Jin, and Sukyoung Ryu. Static Analysis of
JavaScript Web Applications in the Wild via Practical DOM Modeling (ASE’15)

 Changhee Park and Sukyoung Ryu. Scalable and Precise Static Analysis of
 JavaScript Applications via Loop-Sensitivity (ECOOP’15)

/ 60Fortress, JavaScript, and Solidity

Analyzing JS Web Apps in the Wild

!34

SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEWAPI: Web
API Misuse Detector for Web Applications (FSE’14)

Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. Practically Tunable
Static Analysis Framework for Large-Scale JavaScript Applications (ASE’15)

/ 60Fortress, JavaScript, and Solidity

Analyzing JS Web Apps in the Wild Partially

!35

Joonyoung Park, Inho Lim, and Sukyoung Ryu. Battles with False Positives in
Static Analysis of JavaScript Web Applications in the Wild (ICSE-SEIP’16)

Joonyoung Park, Kwangwon Sun, and Sukyoung Ryu. EventHandler-based
Analysis Framework for Web Apps using Dynamically Collected States (FASE’18)

/ 60Fortress, JavaScript, and Solidity

Analyzing JS Web Apps in the Wild Partially

!36

/ 60Fortress, JavaScript, and Solidity

Bug Detection in JS Web Apps with SAFE

!37

/ 60Fortress, JavaScript, and Solidity !38

Now, Solidity!

https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/	
http://www.dailymail.co.uk/sciencetech/article-5062543/200-MILLION-virtual-currency-Ether-lost.html	

http://www.bbc.com/news/technology-41928147	
https://www.bloomberg.com/news/articles/2018-01-18/hackers-have-walked-

off-with-about-14-of-big-digital-currencies	

/ 60Fortress, JavaScript, and Solidity !39

Smart Contract Vulnerabilities

/ 60Fortress, JavaScript, and Solidity !40

https://ethereum.github.io/yellowpaper/paper.pdf	

Smart Contract Vulnerabilities: Research

/ 60Fortress, JavaScript, and Solidity !41

Smart Contract Vulnerabilities: Research
Formal Verification of Smart Contracts, PLAS 2016
A small subset of the Solidity programming language
A tiny language and no automatic verification

/ 60Fortress, JavaScript, and Solidity !42

Smart Contract Vulnerabilities: Research

EXPLORER	 CORE	ANALYSIS	

Z3	Bit-Vector	Solver	

VALIDATOR	

ByteCode	

Ethereum	

State	

CFG	BUILDER	 Visualizer	

6060604052123

123123528.....	

Making Smart Contracts Smarter, CCS 2016
Oyente: Symbolic execution of EVM bytecode
Not sound nor complete

/ 60Fortress, JavaScript, and Solidity !43

Smart Contract Vulnerabilities: Research
A Survey of Attacks on Ethereum Smart Contracts,
POST 2017

/ 60Fortress, JavaScript, and Solidity !44

Smart Contract Vulnerabilities: Research
Zeus: Analyzing Safety of Smart Contracts, NDSS 2018
Verification using an LLVM model checker after compiling
Solidity code to LLVM bitcode

/ 60Fortress, JavaScript, and Solidity !45

Smart Contract Vulnerabilities: Research
A Semantic Framework for the Security Analysis of Ethereum
Smart Contracts, POST 2018

/ 60Fortress, JavaScript, and Solidity !46

Smart Contract Vulnerabilities: Research
USENIX Security 2018

/ 60Fortress, JavaScript, and Solidity !47

Smart Contract Vulnerabilities: Research
ACM CCS 2018

/ 60Fortress, JavaScript, and Solidity !48

Vulnerable Semantics of Solidity: Scope

/ 60Fortress, JavaScript, and Solidity !49

Vulnerable Semantics of Solidity: Scope

/ 60Fortress, JavaScript, and Solidity !50

Vulnerable Semantics of Solidity: Scope

/ 60Fortress, JavaScript, and Solidity !51

Vulnerable Semantics of Solidity: MM

/ 60Fortress, JavaScript, and Solidity !52

Vulnerable Semantics of Solidity: MM

/ 60Fortress, JavaScript, and Solidity !53

Vulnerable Semantics of Solidity: MM

/ 60Fortress, JavaScript, and Solidity !54

Vulnerable Semantics of Solidity: MM
pragma	solidity	^0.4.22;	

contract	owned	{	…	}	

contract	mortal	is	owned	{	
				function	kill()	public	{	
								if	(msg.sender	==	owner)	selfdestruct(owner);	
				}	
}	

contract	Base1	is	mortal	{	
				function	kill()	public	{	/*	cleanup	1	*/	mortal.kill();	}	
}	

contract	Base2	is	mortal	{	
				function	kill()	public	{	/*	cleanup	2	*/	mortal.kill();	}	
}	

contract	Final	is	Base1,	Base2	{	…	}

mortal

Final

Base1 Base2

/ 60Fortress, JavaScript, and Solidity !55

Vulnerable Semantics of Solidity: MM
pragma	solidity	^0.4.22;	

contract	owned	{	…	}	

contract	mortal	is	owned	{	
				function	kill()	public	{	
								if	(msg.sender	==	owner)	selfdestruct(owner);	
				}	
}	

contract	Base1	is	mortal	{	
				function	kill()	public	{	/*	cleanup	1	*/	super.kill();	}	
}	

contract	Base2	is	mortal	{	
				function	kill()	public	{	/*	cleanup	2	*/	super.kill();	}	
}	

contract	Final	is	Base1,	Base2	{	…	}

mortal

Final

Base1 Base2

/ 60Fortress, JavaScript, and Solidity !56

Vulnerable Semantics of Solidity: MM
Crowdsale

MDTCrowdsale

CappedCrowdsale WhitelistedCrowdsale

withinPeriod	&&	nonZeroPurchase

super.validPurchase()	&&	
withinCap

super.validPurchase()	||	
(whitelist[msg.sender]	&&	

!hasEnded())

((withinPeriod	&&	nonZeroPurchase)	&&	withinCap)	||	
(whitelist[msg.sender]	&&	!hasEnded())

https://pdaian.com/blog/solidity-anti-patterns-fun-with-inheritance-dag-abuse/

/ 60Fortress, JavaScript, and Solidity !57

Vulnerable Semantics of Solidity: MM

/ 60Fortress, JavaScript, and Solidity !58

Which platform?
Ethereum, Michelson/Liquidity, Zilliqa/Scilla, …

Which language?
Source-level: Solidity, LLL, Vyper, …
Bytecode

What problems?
Bugs: type-related, resource-related, …
Vulnerabilities: security, privacy, …

Smart Contract Vulnerabilities: Research

/ 60Fortress, JavaScript, and Solidity

PLRG@KAIST for the Wild with Theory

!59

/ 60Fortress, JavaScript, and Solidity

PLRG@KAIST for the Wild with Theory

!60

Come visit PLRG@KAIST!

