

Vulnerable Semantics of Solidity

Sukyoung Ryu with PLRG@KAIST and friends

October 20, 2018

Fortress, JavaScript, and Solidity

Sukyoung Ryu with PLRG@KAIST and friends October 20, 2018

KAIST: SML and OCaml

Links to other SML resources

Please feel free to send additional URLs that should be on this list to smlnj-dev-list@mailman.cs.uchicago.edu

SML Programming Resources

- <u>Concurrent ML</u>
- <u>sml_tk</u>, a library for using the TK graphical interface, now updated to version 3.0
- Martin Erwig's <u>Functional Graph Library</u>
- Yi and Ryu's <u>SML/NJ exception analyzer</u>

Harvard: Assembly, C, and Modula-3

Debugging Everywhere

The goal of the *Debugging Everywhere* project is to make debugging a cheap, ubiquitous service. We intend to begin by getting compilers to emit *Active Debugging Information*, which we expect will support multi-language, multi-platform debugging much more readily than older approaches like Dwarf or dbx ``stabs."

Sun Microsystems: Java and Scala

sources / ProjectFortress / src / com / sun / fortress / parser

 $z: \operatorname{Vec} := 0$ $r: \operatorname{Vec} := x$ $p: \operatorname{Vec} := r$ $\rho: \operatorname{Elt} := r^T r$ for $j \leftarrow seq(1: cgit_{\max})$ do q = A p $\alpha = \frac{\rho}{p^T q}$ $z := z + \alpha p$ $r := r - \alpha q$ $\rho_0 = \rho$ $\rho := r^T r$ $\beta = \frac{\rho}{\rho_0}$ $p := r + \beta p$ end (z, ||x - A z||)

Filename	Author	Revision	Modified	Log Entry
Compilation.rats	chf	4575	over 4 years ago	Updated Copyright notices
Declaration.rats	chf	4575	over 4 years ago	Updated Copyright notices
DelimitedExpr.rats	sukyoungryu	4921	about 4 years ago	Revising
Expression.rats	Guy Steele	5051	almost 4 years ago	Completely redid assignment and
Fortress.rats	chf	4575	over 4 years ago	Updated Copyright notices

Fortress, JavaScript, and Solidity

PLRG

Sun Microsystems: Fortress

$$v_{\text{norm}} = v/||v||$$

$$\sum_{k \leftarrow 1:n} \underline{a_k} \underline{x^k}$$

$$C = \underline{A \cup B}$$

$$y = \underline{3x} \underline{\sin x} \underline{\cos 2x} \log \underline{\log x}$$

- A multicore language for scientists and engineers
- Run your whiteboard in parallel!
- "Growing a Language" <u>https://www.youtube.com/watch?v=_ahvzDzKdB0&t=10s</u>
 - ✤ Guy L. Steele Jr., keynote talk, OOPSLA 1998
 - Migher-Order and Symbolic Computation 12, 221-236 (1999)

Sun Microsystems: Fortress

"It's an absolute piece of beauty"

https://www.youtube.com/watch?v=_ahvzDzKdB0

Fortress, JavaScript, and Solidity

PLRG

Language Manipulation: Fortress

- Specification
- Parsing
- Static checking
- Compilation / Interpretation
- Testing
- Analysis
- Verification

- Development from scratch
- Language evolves to experiment with new features
- Constant changes in spec., parsing, checking, ...
- Language development by 3 teams in tandem:
 - Specification team
 - Implementation team
 - Library team

Specification team

- Formal concrete grammar in EBNF
- Informal description in prose
- Examples & formal calculi

PIR

Specification team

- Formal concrete grammar in EBNF
- Informal description in prose
- Examples & formal calculi
- Library team

Adventurous library in unimplemented Fortress features

Specification team

- Formal concrete grammar in EBNF
- Informal description in prose
- Examples & formal calculi
- Library team

- Adventurous library in unimplemented Fortress features
- Implementation team

- Implementation extension
- Regression tests & new feature tests

Language Manipulation: Fortress

- Specification: automatic extraction/test of examples
- Parsing: automatic generation of parsers & ASTs
- Static checking: parallel development
- Compilation / Interpretation: cross validation
- Testing
- Analysis
- Verification
 - FFMM (Featherweight Fortress with Multiple Dispatch and Multiple Inheritance): 3,000 LOC (Coq)

- Method overloading
 - Multiple method declarations of the same name
- Symmetric multiple dispatch
 - Selection of a method declaration at run time using all the arguments equally
- Overloading rules
 - Static rejection of ambiguous method declarations
 - No ambiguous nor undefined method call at run time!

cc1: CampingCar = CampingCar()
cc2: CampingCar = CampingCar()
collide(cc1, cc2)

sort[P <: Car](x: List[P]): SortedList[P] = _
sort[P <: CampingTrailer](x: List[P]): SortedList[P] = _</pre>

l: List[CampingCar] = List(CampingCar())
sort(cc)

sort[P <: Car](x: List[P]): SortedList[P] = _</pre>

- sort[P <: CampingTrailer](x: List[P]): SortedList[P] = _</pre>
- sort[P <: CampingCar](x: List[P]): SortedList[P] = _</pre>
- l: List[CampingCar] = List(CampingCar())
 sort(cc)

Fortress: Symmetric Multiple Dispatch with Parametric Polymorphism

Type Checking Modular Multiple Dispatch with Parametric Polymorphism and Multiple Inheritance

Eric Allen	Justin	Justin Hilburn		patrick	Victor Luchangco
Oracle Labs eric.allen@oracle.co		e Labs n@oracle.com	University of at Aus scottk@cs.ut	tin	Oracle Labs victor.luchangco@oracle.com
S	ukyoung Ryu	David Cl	nase	Guy L.	Steele Jr.
sry	KAIST /u.cs@kaist.ac.kr	Oracle L david.r.chase@c			le Labs 0oracle.com

OOPSLA'11

- No variance, No dynamic dispatch algorithm
- No type soundness proof

PLRG

Polymorphic Symmetric Multiple Dispatch with Variance

GYUNGHEE PARK, Oracle Labs and KAIST JAEMIN HONG, KAIST GUY L. STEELE JR., Oracle Labs SUKYOUNG RYU, KAIST

POPL'19

Yes variance, Yes dynamic dispatch algorithm

Yes type soundness proof

Program	П	::=	$\overline{\psi}, e$
Class declaration	ψ	::=	$\texttt{trait } T[\![\overline{V \ \beta} \]\!] \mathrel{<:} \{\overline{t}\} \ \overline{\mu} \ \texttt{end} \ \ \texttt{object } O[\![\overline{\beta} \]\!](\overline{x \colon \tau}) \mathrel{<:} \{\overline{t}\} \ \overline{\mu} \ \texttt{end}$
Method definition	μ	::=	$m[\![\overline{\kappa}]\!](\overline{x:\tau}):\tau=e$
Class type parameter binding	β	::=	$P <: \{\overline{\tau}\}$
Method type parameter binding	κ	::=	$\{\overline{\tau}\} <: P <: \{\overline{\tau}\}$
Variance mark	V	::=	+ - =
Expression	е	::=	$z \mid ((\overline{x:\tau}):\tau \Rightarrow e) \mid e @(\overline{e}) \mid O[[\overline{\tau}]](\overline{e}) \mid e.m(\overline{e})$
Bindable variable	z	::=	$x \mid self$
Туре	τ	::=	$P \mid c \mid (\overline{\tau}) \mid (\tau \to \tau) \mid Any$
Constructed type	С	::=	$t \mid O[[\overline{\tau}]]$
Trait type	t	::=	$T \llbracket \overline{\tau} \rrbracket$

PIRG

Well-formed programs: $\vdash \Pi : g$

$\Pi = \overline{\psi}, e \qquad distinct(\overline{name(\psi)}) \qquad \Delta = \{\overline{\psi}\} \qquad \overline{\Delta} \vdash \psi \text{ ok} \qquad \Delta; \bullet \vdash e : (_, g) $ [T-Program]
⊢ ∏ : g
Well-formed trait and object declarations: $\Delta \vdash \psi \text{ ok}$
$\Delta' = \Delta \cup \left\{\overline{\{\} <: P <: \{\overline{\xi}\}}\right\} \qquad distinct(\overline{P}) \qquad \overline{\underline{\Delta'} + \xi \text{ ok}} \qquad \overline{\underline{\Delta'} + t \text{ ok}}$
$\{\overline{J}\} = properAncestors(\Delta', T[\![\overline{P}]\!]) \qquad \overline{\Delta'; \overline{J} \vdash J_i \text{ and } J_j \text{ ancestors ok}}^{1 \le i < j \le \#(\overline{J})}$
$\underline{T} \neq name(J) \qquad \underline{\Delta'; \text{self}: T[\overline{P}]; \overline{VP} \vdash \mu \text{ ok}} \qquad \{\overline{d}\} = allVisible(\Delta', T[\overline{P}]])$
$\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})} \qquad \overline{\Delta' \vdash d_i \text{ meet } d_j \text{ wrt } \{\overline{d}\} \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$
$ \underbrace{\frac{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}^{1 \le i < j \le \#(\overline{d})}}{\Box' \vdash d_j \text{ return type wrt } d_i \text{ ok}^{1 \le i < j \le \#(\overline{d})}} } $ $ \underline{ \text{[D-TRAIT]}} $
$\Delta \vdash \text{trait } T[\![\overline{VP \lhd \{\overline{\xi}\}}]\!] \lhd \{\overline{t}\} \overline{\mu} \text{ end ok}$
$\Delta' = \Delta \cup \left\{\overline{\{\} <: P <: \{\overline{\xi}\}}\right\} \qquad distinct(\overline{P}) \qquad \overline{\underline{\Delta'} + \xi \text{ ok}} \qquad \overline{\underline{\Delta'} + t \text{ ok}}$
$\{\overline{J}\} = properAncestors(\Delta', O[\![\overline{P}]\!]) \qquad \overline{\Delta'; \overline{J} \vdash J_i \text{ and } J_j \text{ ancestors ok}}^{1 \le i < j \le \#(\overline{J})}$
$\Delta'; \texttt{self:} O[\![\overline{P}]\!], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok} \qquad \{\overline{d}\} = allVisible(\Delta', O[\![\overline{P}]\!])$
$\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})} \qquad \overline{\Delta' \vdash d_i \text{ meet } d_j \text{ wrt } \{\overline{d}\} \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$
$\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})} \qquad \overline{\Delta' \vdash d_j \text{ return type wrt } d_i \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$
$\underline{\Delta' \vdash \tau \text{ ok}} distinct(\overline{x}) \qquad \qquad [D-OBJECT]$
$\Delta \vdash \text{object } O[\![\overline{P <: \{\overline{\xi}\}}]\!](\overline{x; \tau}) <: \{\overline{t}\} \overline{\mu} \text{ end ok}$
Well-formed method declarations: $\Delta; \Gamma; \overline{V P} \vdash \mu \text{ ok}$
$\Delta \vdash \left[\!\left\{\overline{\zeta}\right\} <: Q <: \{\overline{\xi}\}\right]\!\right] ok \qquad \Delta' = \Delta \cup \left\{\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\xi}\}\right\} \qquad \overline{\underline{\Delta'}} \vdash \zeta ok \qquad \overline{\underline{\Delta'}} \vdash \xi ok$
$\begin{array}{ll} distinct(\overline{x}) & \overline{\Delta'} \vdash \tau \text{ ok} & \Delta' \vdash \omega \text{ ok} & \Delta'; \Gamma, \overline{x:\tau} \vdash e: (_, \rho) & \Delta' \vdash \rho <: \omega \\ distinct(\overline{P}, \overline{Q}) & (\overline{V} = =) \lor (\forall \mathcal{T}. (\underline{((\overline{\tau}) \to \omega)} \neq \mathcal{T}[P]) \lor (\underline{\Delta} \vdash \mathcal{T} \text{ variance } V)) \end{array}$
$\frac{\operatorname{alstinct}(P,Q) (V = =) \lor (\forall T : (\underline{((\tau) \to \omega)} \neq T [P]) \lor (\underline{\Delta} \vdash T \text{ variance } V))}{\Delta; \Gamma; \overline{VP} \vdash m[[\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\xi}\}]](\overline{x:\tau}): \omega = e \text{ ok}}$ [D-METHOD]

Fig. 3. Well-formed programs, class declarations, and method declarations

Fortress, JavaScript, and Solidity

Fig. 3. Well-formed programs, class declarations, and method declarations

Well-formed ancestors: $\Delta; \overline{J} \vdash J$ and J ancestors ok	
$T \neq T'$	[Anc-Diff-Trait]
$\Delta; \overline{J} \vdash T[[\overline{\alpha}]] \text{ and } T'[[\overline{\eta}]] \text{ ancestors ok}$	
$T[\![\overline{\gamma}]\!] \in \{\overline{J}\} \qquad \Delta \vdash T[\![\overline{\gamma}]\!] <: T[\![\overline{\alpha}]\!] \qquad \Delta \vdash T[\![\overline{\gamma}]\!] <: T[\![\overline{\eta}]\!]$	[Anc-Same-Trait]
$\Delta; \overline{J} \vdash T[[\overline{\alpha}]] \text{ and } T[[\overline{\eta}]] \text{ ancestors ok}$	[]
Well-formed type parameter bindings: $\Delta \vdash \llbracket \overline{K} \rrbracket$ ok	
Δ ⊢ [[]] ok	[Binding-Empty]
$FV(\overline{\chi'}) \subseteq parameters(\Delta) \cup \{\overline{P}\} \qquad FV(\overline{\eta'}) \subseteq parameters(\Delta)$ $\Delta \vdash \bigcup \{\overline{\chi'}\} <: \Box \{\overline{\eta'}\} \qquad \Delta \vdash \llbracket \{\overline{\chi}\} <: P <: \{\overline{\eta}\} \rrbracket \text{ ok}$ $\Delta \vdash \llbracket \{\overline{\chi}\} <: P <: \{\overline{\eta}\}, \{\overline{\chi'}\} <: P' <: \{\overline{\eta'}\} \rrbracket \text{ ok}$	[Binding-Step]

Fig. 4. Well-formed ancestors and type parameter bindings

Fortress, JavaScript, and Solidity

Well-formed programs: $\vdash \Pi : g$	Well-formed ancestors: $\Delta; \overline{J} \vdash J$ and J ancestors ok
$\frac{\Pi = \overline{\psi}, e distinct(\overline{name(\psi)}) \Delta = \{\overline{\psi}\} \overline{\Delta} \vdash \psi \text{ ok} \Delta; \bullet \vdash e: (_,g) \\ \vdash \Pi : g [T-$	PROGRAM] $T \neq T'$ $\Delta; \overline{J} \vdash T[[\overline{\alpha}]] \text{ and } T'[[\overline{\eta}]] \text{ ancestors ok} \qquad [Anc-Diff-Trait]$
Well-formed trait and object declarations: Δ No Duplicates Rule: $\Delta \vdash d$ not duplicates Rule: $\Delta \vdash$	
$\Delta' = \Delta \cup \left\{ \{\} <: P <: \{\overline{\xi}\} \right\} disti \qquad name(d) \neq name(d') \qquad [No-I]$ $\{\overline{J}\} = properAncestors(\Delta', T[[\overline{P}]]) \qquad \overline{L} \qquad \overline{\Delta} \vdash d \text{ not duplicate of } d' \qquad [No-I]$ $\overline{\underline{T} \neq name(J)} \qquad \overline{\Delta'; \text{ self}: T[[\overline{P}]]; \overline{VP}} \qquad \overline{\Delta' \vdash dom(d) \sqsubseteq dom(d')} \qquad [No-Dup-I]$	$\begin{array}{l} \text{Dup-Triv} \end{bmatrix} & \frac{name(d) \neq name(d')}{\Delta \vdash d \ \text{meet} \ d' \ \text{wrt} \ - \ \text{ok}} & [\text{Meet-Triv}] & \overline{[\overline{K}]] \ \text{ok}} \\ \text{Not-Less} \end{bmatrix} & \frac{\Delta \vdash (dom(d) \sqcap dom(d')) \sqsubseteq \exists [\![]] \text{Bottom}}{\prod} & [\text{Meet-Excl}] \{\overline{P}\} & FV(\overline{\eta'}) \subseteq parameters(\Delta) \end{array}$
$\frac{\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}}{\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}} \qquad \frac{\Delta \vdash d \text{ not duplicate of } d'}{\neg (\Delta \vdash dom(d') \sqsubseteq dom(d))} \qquad \text{[No-Dup-integration]}$	Not-GTR] $\frac{\Delta \vdash d \operatorname{meet} d' \operatorname{wrt} - \operatorname{ok}}{\Delta \vdash d \operatorname{om}(d) \sqsubseteq d \operatorname{om}(d')} \qquad [Meet-Less] \qquad \frac{\Delta \vdash [\![\overline{\{\overline{\chi}\}} \lhd P \lhd : \{\overline{\eta}\}]\!] \operatorname{ok}}{\overline{\eta}\}, \{\overline{\chi'}\} \lhd P' \lhd : \{\overline{\eta'}\}] \operatorname{ok}} \qquad [BINDING-STEP]$
$\Delta \vdash \text{trait } T[\overline{VP < :}$ $\Delta' = \Delta \cup \{\overline{\{\} <: P <: \{\overline{\xi}\}}\} distin$ $d''' \in \{\overline{d''}\} name(d) = name(d') =$	$\frac{\Delta \vdash dom(d') \sqsubseteq dom(d)}{\Delta \vdash d \text{ meet } d' \text{ wrt } - \text{ ok}} $ $[MEET-GTR]$ $name(d''') \Delta \vdash dom(d''') \equiv (dom(d) \sqcap dom(d'))$
$\{J\} = properAncestors(\Delta', O[[P]]) \Delta'$ $\underline{\Delta'; \text{self:} O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}} \Delta \vdash d$	meet d' wrt $\{\overline{d''}\}$ ok
$ \frac{\overline{\Delta'} \vdash d_i \text{ not duplicate of } d_j}{\overline{\Delta'} \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})} \qquad $	$\neg (\Delta \vdash dom(d) \sqsubseteq dom(d'))$
Well-formed method declarations: $\Lambda: \overline{\Gamma}: \overline{V, P} \rightarrow \overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\}$ disti	$\overline{\kappa: P <: \{\overline{\eta}\}} \qquad arrow(d') = \forall \llbracket \overline{\kappa'} \rrbracket (\alpha' \to \rho')$ $nct(\overline{P}, \overline{Q}) \qquad \Delta \vdash dom(d) \sqsubseteq dom(d')$ $\forall \llbracket \overline{\kappa}, \overline{\kappa'} \rrbracket ((\alpha \sqcap \alpha') \to \rho')$
	n type wrt d' ok [RETURN-TEST]
distinct($\overline{P}, \overline{Q}$) $\overline{(V = =) \lor (\forall \mathcal{T}. (((\overline{\tau}) \to \omega) \neq \mathcal{T} P) \lor (\Delta \vdash \mathcal{T} \text{ variance } V))}$	Overloading rules for FGFV
$\Delta; \Gamma; \overline{VP} \vdash m[[\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\overline{\xi}}\}]](\overline{x:\tau}): \omega = e \text{ ok}$	-Method]

Fig. 3. Well-formed programs, class declarations, and method declarations

Fortress, JavaScript, and Solidity

Well-formed programs: $\vdash \Pi : g$			rmed ancestors: $\Delta; \overline{J} \vdash J \text{ and } J \text{ ancestors ok}$ $T \neq T'$	
	$= \{\overline{\psi}\} \qquad \overline{\Delta} \vdash \psi \text{ ok} \qquad \Delta; \bullet \vdash e : (_, g)$ $\Pi : g \qquad [\text{T-Program}]$		Existential inner subtyping: $\Delta \vdash \Xi \lesssim \Xi$ using σ	r1
Well-formed trait and object declarations: Δ	No Duplicates Rule: $\Delta \vdash d$ not duplicate of d	Meet Rule:	$\Delta' = \Delta \cup \{\overline{\{\overline{\chi}\}} <: P <: \{\overline{\eta}\}\} \qquad \{\overline{P}\} \cap FV(\overline{\chi'}, \overline{\eta'}, \alpha') = \Delta' \vdash \sigma \text{ on } \langle \overline{Q} \rangle \text{ obeys } \langle \overline{\bigsqcup\{\overline{\chi'}\}} \rangle \text{ and } \langle \overline{\bigsqcup\{\overline{\eta}\}} \rangle$	
$\Delta' = \Delta \cup \left\{\overline{\{\} <: P <: \{\overline{\xi}\}}\right\} \qquad disti$	$\frac{name(d) \neq name(d')}{\Delta \vdash d \text{ not duplicate of } d'} $ [No-Dup-Triv]	$\Delta \vdash d$	$\Delta \vdash \exists \llbracket \overline{\{\overline{\chi}\}} <: P <: \{\overline{\eta}\} \rrbracket \alpha \lesssim \exists \llbracket \overline{\{\overline{\chi'}\}} <: Q$	$\overline{\varrho} <: \{\overline{\eta'}\}] \alpha' \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', T[[\overline{P}]]) \qquad \Delta$ $\underline{T \neq name(J)} \qquad \underline{\Delta'; self: T[[\overline{P}]]; \overline{VP}}$	$\neg (\Delta \vdash dom(d) \sqsubseteq dom(d'))$ [No-Dup-Not-Less]	$\frac{\Delta \vdash (dom(d))}{\Delta \vdash d}$		$= \emptyset \sigma = \left[\overline{\gamma/P} \right] \overline{\gamma \neq \text{Bottom}}$
$\frac{\overline{\Delta'} \vdash d_i \text{ not duplicate of } d_j}{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}} \overset{1 \le i < j \le \#(\overline{d})}{1 \le i < j \le \#(\overline{d})}$	$\Delta \vdash d \text{ not duplicate of } d'$ $\neg (\Delta \vdash dom(d') \sqsubseteq dom(d))$ [No-Dup-Not-GTR]	$\Delta \vdash d$	$\Delta' \vdash \sigma \text{ on } \langle \overline{P} \rangle \text{ obeys } \langle \overline{\bigsqcup\{\overline{\chi}\}} \rangle \text{ and } \langle \overline{\sqcap\{\overline{\eta}\}} \rangle$	$ \rangle \qquad \Delta' \vdash \sigma \alpha <: \alpha' \qquad $
$\Delta \vdash \text{trait} T[\overline{VP} < $	$\Delta \vdash d$ not duplicate of d'	$\begin{array}{c} \Delta \vdash d \\ \Delta \vdash d \end{array}$		$Q <: \{\overline{\eta'}\}]] \alpha' \text{ using } \sigma$
$\Delta' = \Delta \cup \left\{\overline{\{\} <: P <: \{\overline{\xi}\}}\right\} \qquad distin$	$d^{\prime\prime\prime} \in \{\overline{d^{\prime\prime}}\} name(d) = name(d^{\prime}) = name(d^{\prime\prime\prime})$	$\Delta \vdash d$ $\Delta \vdash dom(d'')$		
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$	$\Delta \vdash d \operatorname{meet} d' \operatorname{wr}$		$\frac{\Delta \vdash unify(C \land C') = (\sigma, C'') toBounds(C'') = \{\overline{K'}\}}{\Delta \vdash \exists [\overline{K}] \alpha \stackrel{\equiv}{\longrightarrow} \exists [\overline{K'}] \sigma \alpha \text{ using } \sigma}$	otherwise $\overline{A \vdash \exists [\overline{K}]]_{\alpha}} \stackrel{\equiv}{\longrightarrow} \exists [\overline{K}]]_{\alpha} \text{ using } [1]$
$\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$	Return Type Rule: $\Delta \vdash d$ return type wrt d ok $name(d) \neq name(d')$	$\neg (\Delta \vdash don$	$\Box \vdash \Box_{\parallel} K \ \exists \alpha \longrightarrow \Box_{\parallel} K \ \exists \delta \alpha \text{ using } \delta$ Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon \text{ using } \sigma$	
$\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$	$\Delta \vdash d \text{ return type wrt } d' \text{ ok} \qquad [\text{Return-Triv}]$	$\Delta \vdash d$ retur	$\Delta \vdash \forall \llbracket \overline{K} \rrbracket$	$(\alpha \to \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$
$\Delta \vdash \text{object } O[[\overline{P} <: \{\overline{\xi}\}]$	$arrow(d) = \forall [\![\overline{\kappa}]\!](\alpha \to \rho) \qquad \overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$ $\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\} \qquad distinct(\overline{P}, \overline{Q})$	$arrow(d') = \Delta \vdash dom(d)$	Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \exists \text{ using } \sigma \Delta \vdash \Xi \sqsubseteq \Xi$ $\Delta \vdash \Xi \stackrel{\equiv}{\longrightarrow} \Xi'' \text{ using } - \Delta \vdash \Xi'' \lesssim \Xi' \text{ using } \sigma$	$\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } _$
Well-formed method declarations: $\Delta; \Gamma; \overline{V P} \vdash$	$\Delta \vdash \forall [\![\overline{\kappa}]\!] (\alpha \to \rho) \sqsubseteq \forall [\![\overline{\kappa}, \overline{\kappa'}]\!] ((\alpha \to \rho))$		$\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } \sigma$	$\Delta \vdash \Xi \sqsubseteq \Xi'$
$\Delta \vdash \left[\!\left[\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\xi}\}\right]\!\right] \text{ ok } \qquad \Delta' = \Delta \cup \left\{\overline{\{\overline{\zeta}\}} <: q \in \mathbb{Z} \right\}$	$\Delta \vdash d$ return type wrt	d' ok	Universal subtyping: $\Delta \vdash \Upsilon \sqsubseteq \Upsilon$ using $\sigma \qquad \Delta \vdash \Upsilon \sqsubseteq \Upsilon$	
$distinct(\overline{x}) \qquad \underline{\Delta'} \vdash \tau \text{ ok} \qquad \Delta' \vdash \omega \text{ ok}$	Fig. 5. Overload	ing rules for FG	$\Delta \vdash \Upsilon' \stackrel{\equiv}{\longrightarrow} \Upsilon'' \text{ using } _ \qquad \Delta \vdash \Upsilon \lesssim \Upsilon'' \text{ using } \sigma$	$\Delta \vdash \Upsilon \sqsubseteq \Upsilon'$ using _
	$\underline{\underline{P} \neq \mathcal{T}[P]} \lor (\underline{\Delta} \vdash \mathcal{T} \text{ variance } V)) $ $\underline{\underline{P}} = \underline{P} =$		$\Delta \vdash \Upsilon \sqsubseteq \Upsilon' \text{ using } \sigma$	$\Delta \vdash \Upsilon \sqsubseteq \Upsilon'$
$\Delta; \Gamma; \overline{VP} \vdash m[[\overline{\{\overline{\zeta}\}}] <: Q <: \{\overline{Z}\} \in \mathbb{Q} : \overline{Z} = \overline$	$\overline{\xi}$] $[(\overline{x:\tau}): \omega = e \text{ ok}$		Fig. 6. Subtype relations of qua	antified types

Fig. 3. Well-formed programs, class declarations, and method declarations

Fortress, JavaScript, and Solidity

Well-formed programs: $\vdash \Pi : g$		Well-form	med ancestors: $\Delta; \overline{J} \vdash J \text{ and } J \text{ ancestors ok}$		
$\Pi = \overline{\psi}, e \qquad distinct(\overline{name(\psi)}) \qquad \Delta =$	$\{\overline{\psi}\}$ $\overline{\Delta} \vdash \psi \text{ ok}$ $\Delta; \bullet \vdash e: (-, g)$		$T \neq T'$		
	T-Program]	Existential inner subtyping: $\Delta \vdash \Xi \lesssim \Xi$ using	gσ	
⊢ I	I : g				
Well-formed trait and object declarations: Δ	· .]		$\Delta' = \Delta \cup \{\overline{\{\chi\}} <: P <: \{\overline{\eta}\}\} \qquad \{\overline{P}\} \cap FV$		
wen-tormed that and object declar attoris.	No Duplicates Rule: $\Delta \vdash d$ not duplicate of d	Meet Rule:	$\Delta' \vdash \sigma \text{ on } \langle \overline{Q} \rangle \text{ obeys } \langle \overline{\bigsqcup\{\overline{\chi'}\}}$	\rangle and $\langle \prod \{\overline{\eta'}\} \rangle$	$\frac{\Delta' \vdash \alpha <: \sigma \alpha'}{}$ [E-SUB]
$\Delta' = \Delta \cup \left\{\overline{\{\} <: P <: \{\overline{\xi}\}}\right\} disti$	$name(d) \neq name(d')$	name	$\Delta \vdash \exists \llbracket \overline{\{\overline{\chi}\} <: P <: \{\overline{\eta}\}} \rrbracket \alpha \lesssim$	$\{\overline{y'}\} < 0 < 0$	$\overline{[n']}] \alpha' \text{ using } \sigma$
	$\Delta \vdash d \text{ not duplicate of } d'$ [No-Dup-Triv]	$\Delta \vdash d$			
$\{\overline{J}\} = properAncestors(\Delta', T[[\overline{P}]])$ L			Universal inner subtyping: $\Delta \vdash \Upsilon \lesssim \Upsilon$ using	σ	
$\underline{T} \neq name(J) \qquad \Delta'; \texttt{self}: T[[\overline{P}]]; \overline{VP}$	$\frac{\neg (\Delta \vdash dom(d) \sqsubseteq dom(d'))}{[\text{No-Dup-Not-Less}]}$	$\Delta \vdash (dom(d) \sqcap$			
$\overline{\Delta' \vdash d_i}$ not duplicate of $\overline{d_j}^{1 \le i < j \le \#(\overline{d})}$	$\Delta \vdash d$ not duplicate of d'	$\Delta \vdash d$	$\Delta' = \Delta \cup \{\overline{\overline{\chi'}}\} <: Q <: \{\overline{\overline{\eta'}}\}\} \qquad \{\overline{Q}\} \cap$		
	$\neg (\Delta \vdash dom(d') \sqsubseteq dom(d))$	$\Delta \vdash d$	$\Delta' \vdash \sigma \text{ on } \langle \overline{P} \rangle \text{ obeys } \langle \overline{\bigsqcup\{\overline{\chi}\}} \rangle$	\rangle and $\langle \prod \{\overline{\eta}\} \rangle$	$\Delta' \vdash \sigma \alpha <: \alpha' $ [U-SUB]
$\overline{\Delta'} \vdash d_i \text{ return type wrt } d_j \text{ ok}^{1 \le i < j \le \#(\overline{d})}$	Δ [No-Dup-Not-Gtr]			$\{\overline{\chi'}\} <: 0 <: +$	$\overline{\{\eta'\}}] \alpha'$ using σ
$\Delta \vdash \text{trait } T \ \overline{VP} < T$					
$\Delta' = \Delta \cup \left\{ \overline{\{\}} <: P <: \{\overline{\xi}\} \right\} \qquad distin$	Manyr	noro	rulas	<i>c</i> ′	
(Many r	nore	rules	$\frac{C'}{(\overline{K'})}$	otherwise
$\{\overline{J}\} = properAncestors(\Delta', O[\![\overline{P}]\!]) \qquad \overline{\Delta'}$	Many r	nore	rules	$\{\overline{K'}\}$	otherwise
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$		an an anatar in 2011 in an coine anna a	rules	$\{\overline{K'}\}$	otherwise $\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \stackrel{\Xi}{\longrightarrow} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \rbrack$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$	Return Type Rule: [] F d return type wrt d ok			{\overline{K'}}	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \stackrel{\equiv}{\longrightarrow} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } []$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{self}: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$	Return Type Rule: $\Delta \vdash d$ return type wrt d ok $name(d) \neq name(d')$		Tules Universal reduction: $\Delta \vdash \Upsilon \stackrel{\equiv}{\longrightarrow} \Upsilon$ using σ	{\overline{K'}}	
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$	Return Type Rule: $\Delta \vdash d$ return type wrt d ok $name(d) \neq name(d')$ [Return-Triv]			$\frac{\{\overline{K'}\}}{\Delta \vdash \exists \llbracket}$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \stackrel{\equiv}{\longrightarrow} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } []$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{self:} O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$	$\frac{\text{Return Type Rule: } \Delta \vdash d \text{ return type wrt } d \text{ ok}}{name(d) \neq name(d')}$ $\frac{A \vdash d \text{ return type wrt } d' \text{ ok}}{\Delta \vdash d \text{ return type wrt } d' \text{ ok}}$ [Return-Triv]	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon$ using σ	$\frac{\{\overline{K'}\}}{\Delta \vdash \exists \llbracket}$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \end{bmatrix}$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$	$\begin{array}{c c} \textbf{Return Type Rule:} & \Delta \vdash d \text{ return type wrt } d \text{ ok} \\ \hline \\ \hline name(d) \neq name(d') \\ \hline \\ \Delta \vdash d \text{ return type wrt } d' \text{ ok} \end{array} & [\text{Return-Triv}] \\ \hline \\ arrow(d) = \forall \llbracket \overline{\kappa} \rrbracket (\alpha \to \rho) & \overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\} \\ \hline \end{array}$	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\overline{A} \vdash d \text{ retur}$ $\overline{A} \vdash d \text{ retur}$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon$ using σ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \exists$ using σ	$\frac{\{\overline{K'}\}}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha - \alpha)}$ $\Delta \vdash \Xi \sqsubseteq \Xi$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \end{bmatrix}$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{ self: } O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$ $\Delta \vdash \text{ object } O[[\overline{P <: \{\overline{\xi}\}}]$	$\frac{\text{Return Type Rule: } \Delta \vdash d \text{ return type wrt } d \text{ ok}}{name(d) \neq name(d')}$ $\frac{A \vdash d \text{ return type wrt } d' \text{ ok}}{\Delta \vdash d \text{ return type wrt } d' \text{ ok}}$ [Return-Triv]	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\overline{A} \vdash d \text{ retur}$ $\overline{A} \vdash d \text{ retur}$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon$ using σ	$\frac{\{\overline{K'}\}}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha - \alpha)}$ $\Delta \vdash \Xi \sqsubseteq \Xi$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \end{bmatrix}$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{self:} O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$	$\begin{array}{c c} \textbf{Return Type Rule:} & \Delta \vdash d \text{ return type wrt } d \text{ ok} \\ \hline \\ \hline name(d) \neq name(d') \\ \hline \\ \Delta \vdash d \text{ return type wrt } d' \text{ ok} \end{array} & [\text{Return-Triv}] \\ \hline \\ arrow(d) = \forall \llbracket \overline{\kappa} \rrbracket (\alpha \to \rho) & \overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\} \\ \hline \end{array}$	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ ${\Delta} \vdash d \text{ retur}$ ${\Delta} \vdash dom(d') = \Delta \vdash dom(d)$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon$ using σ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \exists$ using σ	$\frac{\{\overline{K'}\}}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha - \alpha)}$ $\Delta \vdash \Xi \sqsubseteq \Xi$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \end{bmatrix}$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$ $\rightarrow \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{ self: } O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{1 \le i < j \le \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$ $\Delta \vdash \text{ object } O[[\overline{P <: \{\overline{\xi}\}}]$	$\begin{array}{c c} \textbf{Return 1ype Rule:} & \Delta \vdash d \text{ return type wit } d \text{ ok} \\ \hline \\ name(d) \neq name(d') \\ \hline \\ \hline \Delta \vdash d \text{ return type wit } d' \text{ ok} \end{array} & [\text{Return-Triv}] \\ \hline \\ arrow(d) = \forall [\![\overline{\kappa}]\!](\alpha \to \rho) & \overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\} \\ \hline \\ \hline \\ \overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\} & distinct(\overline{P}, \overline{Q}) \end{array}$	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\overline{\Delta} \vdash d \text{ retur}$ $\overline{A} \vdash dom(d') = \Delta \vdash dom(d)$ $((\alpha \sqcap \alpha') \rightarrow \rho')$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon \text{ using } \sigma$ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \exists \text{ using } \sigma$ $\underline{\Delta \vdash \Xi \xrightarrow{\equiv} \Xi'' \text{ using } - \Delta \vdash \Xi'' \lesssim \Xi' \text{ u}}$ $\Delta \vdash \Xi \sqsubseteq \exists' \text{ using } \sigma$	$\frac{\{\overline{K'}\}}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha - \overline{k}) $ $\Delta \vdash \Xi \sqsubseteq \Xi$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \rrbracket$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$ $\rightarrow \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$ $\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } _$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j^{-1 \leq i < j \leq \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}^{-1 \leq i < j \leq \#(\overline{d})}$ $\underline{\overline{\Delta'} \vdash \tau \text{ ok}}$ $\Delta \vdash \text{ object } O[[\overline{P <: \{\overline{\xi}\}}]$ Well-formed method declarations: $\Delta; \Gamma; \overline{VP} \vdash$	Return Type Rule: $\Delta \vdash d$ return type wrt d ok $name(d) \neq name(d')$ [RETURN-TRIV] $\overline{\Delta} \vdash d$ return type wrt d' ok[RETURN-TRIV] $arrow(d) = \forall [[\overline{\kappa}]](\alpha \rightarrow \rho)$ $\overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$ $\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\}$ $distinct(\overline{P}, \overline{Q})$ $\Delta \vdash \forall [[\overline{\kappa}]](\alpha \rightarrow \rho) \sqsubseteq \forall [[\overline{\kappa}, \overline{\kappa'}]]$ $\Delta \vdash d$ return type wrt	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\overline{\Delta} \vdash d \text{ retur}$ $\overline{A} \vdash dom(d') = \Delta \vdash dom(d)$ $((\alpha \sqcap \alpha') \rightarrow \rho')$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon \text{ using } \sigma$ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \Xi \text{ using } \sigma$ $\Delta \vdash \Xi \xrightarrow{\equiv} \Xi'' \text{ using } - \Delta \vdash \Xi'' \lesssim \Xi' \text{ using } \sigma$ $\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } \sigma$ Universal subtyping: $\Delta \vdash \Upsilon \sqsubseteq \Upsilon \text{ using } \sigma$	$\frac{\{\overline{K'}\}}{\Delta \vdash \exists \llbracket}$ $\frac{\Delta \vdash \exists \llbracket}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha \rightarrow \Box)}$ $\frac{\Delta \vdash \Xi \sqsubseteq \Xi}{\text{sing } \sigma}$ $\Delta \vdash \Upsilon \sqsubseteq \Upsilon$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \rrbracket$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$ $\rightarrow \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$ $\underline{\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } _}$ $\Delta \vdash \Xi \sqsubseteq \Xi'$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; = \overline{P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j^{-1 \leq i < j \leq \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{-1 \leq i < j \leq \#(\overline{d})}$ $\underline{\Delta' \vdash \tau \text{ ok}}$ $\Delta \vdash \text{ object } O[[\overline{P <: \{\overline{\xi}\}}]$ Well-formed method declarations: $\Delta; \Gamma; \overline{VP} \vdash$ $\Delta \vdash [[\overline{\{\overline{\zeta}\} <: Q <: \{\overline{\xi}\}}]] \text{ ok} \qquad \Delta' = \Delta \cup \{\overline{\{\overline{\zeta}\} <: Q \in Q\}}$ $distinct(\overline{x}) \qquad \underline{\Delta' \vdash \tau \text{ ok}} \qquad \Delta' \vdash \omega \text{ ok}$	Return Type Rule: $\Delta \vdash d$ return type wrf d ok $\frac{name(d) \neq name(d')}{\Delta \vdash d \text{ return type wrf } d' \text{ ok}} [\text{Return-Triv}]$ $arrow(d) = \forall [[\overline{\kappa}]](\alpha \to \rho) \overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$ $\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\} distinct(\overline{P}, \overline{Q})$ $\Delta \vdash \forall [[\overline{\kappa}]](\alpha \to \rho) \sqsubseteq \forall [[\overline{\kappa}, \overline{\kappa'}]]$ $\Delta \vdash d \text{ return type wrf}$ Fig. 5. Overloa	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\frac{\neg}{\Delta \vdash d \text{ retur}}$ $\frac{\overline{A} \vdash dom(d') = \Delta \vdash dom(d)}{((\alpha \sqcap \alpha') \rightarrow \rho')}$ $\frac{(\alpha \sqcap \alpha') \rightarrow \rho'}{\text{t } d' \text{ ok}}$ adding rules for FG	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon \text{ using } \sigma$ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \text{ using } \sigma$ $\Delta \vdash \Xi \xrightarrow{\equiv} \Xi'' \text{ using } - \Delta \vdash \Xi'' \lesssim \Xi' \text{ u}$ $\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } \sigma$ Universal subtyping: $\Delta \vdash \Upsilon \sqsubseteq \Upsilon \text{ using } \sigma$ $\Delta \vdash \Upsilon' \xrightarrow{\equiv} \Upsilon'' \text{ using } - \Delta \vdash \Upsilon \lesssim \Upsilon'' \text{ u}$	$\frac{\{\overline{K'}\}}{\Delta \vdash \exists \llbracket}$ $\frac{\Delta \vdash \exists \llbracket}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha \rightarrow \Box)}$ $\frac{\Delta \vdash \Xi \sqsubseteq \Xi}{\text{sing } \sigma}$ $\Delta \vdash \Upsilon \sqsubseteq \Upsilon$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \rrbracket$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$ $\rightarrow \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$ $\frac{\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } _}{\Delta \vdash \Xi \sqsubseteq \Xi'}$ $\Delta \vdash \Upsilon \sqsubseteq \Upsilon' \text{ using } _$
$\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\underline{\Delta'; \text{ self}: O[[\overline{P}]], \overline{x:\tau}; \overline{=P} \vdash \mu \text{ ok}}$ $\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j^{-1 \leq i < j \leq \#(\overline{d})}$ $\overline{\Delta' \vdash d_i \text{ return type wrt } d_j \text{ ok}}^{-1 \leq i < j \leq \#(\overline{d})}$ $\underline{\Delta' \vdash \tau \text{ ok}}$ $\Delta \vdash \text{ object } O[[\overline{P <: \{\overline{\xi}\}}]$ Well-formed method declarations: $\Delta; \Gamma; \overline{VP} \vdash$ $\Delta \vdash [[\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\xi}\}}]] \text{ ok} \qquad \Delta' = \Delta \cup \{\overline{\{\overline{\zeta}\}} <: Q \in [\overline{X}]\}$	Return Type Rule: $\Delta \vdash d$ return type wrt d ok $name(d) \neq name(d')$ [RETURN-TRIV] $\Delta \vdash d$ return type wrt d' ok[RETURN-TRIV] $arrow(d) = \forall [[\overline{\kappa}]](\alpha \rightarrow \rho)$ $\overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$ $\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\}$ $distinct(\overline{P}, \overline{Q})$ $\Delta \vdash \forall [[\overline{\kappa}]](\alpha \rightarrow \rho) \sqsubseteq \forall [[\overline{\kappa}, \overline{\kappa'}]]$ $\Delta \vdash d$ return type wrtFig. 5. Overloa $\neq \mathcal{T} [P]) \lor (\Delta \vdash \mathcal{T}$ variance V))[D-METHOD]	$\frac{\neg(\Delta \vdash don}{\Delta \vdash d \text{ retur}}$ $\frac{\neg}{\Delta \vdash d \text{ retur}}$ $\frac{\overline{A} \vdash dom(d') = \Delta \vdash dom(d)}{((\alpha \sqcap \alpha') \rightarrow \rho')}$ $\frac{(\alpha \sqcap \alpha') \rightarrow \rho'}{\text{t } d' \text{ ok}}$ adding rules for FG	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon \text{ using } \sigma$ Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \Xi \text{ using } \sigma$ $\Delta \vdash \Xi \xrightarrow{\equiv} \Xi'' \text{ using } - \Delta \vdash \Xi'' \lesssim \Xi' \text{ using } \sigma$ $\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } \sigma$ Universal subtyping: $\Delta \vdash \Upsilon \sqsubseteq \Upsilon \text{ using } \sigma$	$\frac{\{\overline{K'}\}}{\Delta \vdash \exists \llbracket}$ $\frac{\Delta \vdash \exists \llbracket}{\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha \rightarrow \Box)}$ $\frac{\Delta \vdash \Xi \sqsubseteq \Xi}{\text{sing } \sigma}$ $\Delta \vdash \Upsilon \sqsubseteq \Upsilon$	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \rrbracket$ $\overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$ $\rightarrow \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$ $\underline{\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } _}$ $\Delta \vdash \Xi \sqsubseteq \Xi'$

Fig. 3. Well-formed programs, class declarations, and method declarations

Fig. 6. Subtype relations of quantified types

Fortress, JavaScript, and Solidity

Well-formed programs: $\vdash \Pi : g$		Well-for	med ancestors: $\Delta; \overline{J} \vdash J \text{ and } J \text{ ancestors ok}$	
	$\{\overline{\psi}\} \qquad \underline{\Delta} \vdash \psi \text{ ok} \qquad \Delta; \bullet \vdash e: (_, g)$ I: q	T-Program]	$T \neq T'$ Existential inner subtyping: $\Delta \vdash \Xi \lesssim \Xi$ using	ξσ
F I	1 : <i>g</i>		$A' = A \cup (\overline{(\overline{a})} + c \overline{B} + c \overline{(\overline{a})})$ $(\overline{B}) = C \overline{B}$	$\overline{\overline{u}}$ $\overline{\overline{u}}$ \overline{u} \overline{b} \overline{b} \overline{b} \overline{b} \overline{b} \overline{b}
Well-formed trait and object declarations: Δ	· • 1		$\Delta' = \Delta \cup \{\overline{\{\overline{\chi}\}} <: P <: \{\overline{\eta}\}\} \qquad \{\overline{P}\} \cap FV$	
	No Duplicates Rule: $\Delta \vdash d$ not dupl	icate of <i>d</i> Meet Rule:	$\Delta' \vdash \sigma \text{ on } \langle \overline{Q} \rangle \text{ obeys } \langle \bigsqcup \{ \overline{\chi'} \}$	$\langle \overline{\Pi\{\overline{\eta'}\}} \rangle \Delta' \vdash \alpha <: \sigma \alpha'$ [E-Sub]
$\Delta' = \Delta \cup \left\{ \{\} <: P <: \{\overline{\xi}\} \right\} \qquad disti$	$name(d) \neq name(d')$ [No	-Dup-Triv] name	$\Delta \vdash \exists \llbracket \overline{\{\overline{\chi}\}} <: P <: \{\overline{\eta}\} \rrbracket \alpha \lesssim$	$\exists [\![\overline{\{\overline{\chi'}\}} <: Q <: \{\overline{\eta'}\}]\!] \alpha' \text{ using } \sigma$
$\{\overline{J}\} = properAncestors(\Delta', T[\![\overline{P}]\!])$	$\Delta \vdash d$ not duplicate of d'	$\Delta \vdash d$	Universal inner subtyping: $\Delta \vdash \Upsilon \lesssim \Upsilon$ using	T
$\overline{T \neq name(J)} \qquad \overline{\Delta'; \text{self}: T[[\overline{P}]]; \overline{VP}}$	$\neg \big(\Delta \vdash dom(d) \sqsubseteq dom(d')\big)$	$\Delta \vdash (dom(d))$		
	$\Delta \vdash d$ not duplicate of d' [No-Dup	P-Not-Less] $\Delta \vdash d$	$\Delta' = \Delta \cup \{\overline{\{\overline{\chi'}\}} <: Q <: \{\overline{\eta'}\}\} \qquad \{\overline{Q}\} \cap I$	$FV(\overline{\overline{\chi}}, \overline{\overline{\eta}}, \alpha) = \emptyset$ $\sigma = \overline{\gamma/P}$ $\overline{\gamma \neq \text{Bottom}}$
$\overline{\Delta' \vdash d_i \text{ not duplicate of } d_j}^{1 \le i < j \le \#(\overline{d})}$	$\neg (\Delta \vdash dom(d') \sqsubseteq dom(d))$	$\Delta \vdash d$) and $\langle \overline{\prod\{\overline{\eta}\}} \rangle \qquad \Delta' \vdash \sigma \alpha <: \alpha'$
$\overline{\Delta' \vdash d_i}$ return type wrt d_j ok $1 \le i < j \le #(\overline{d})$	$\frac{\neg(\Delta \vdash aom(a)) \sqsubseteq aom(a))}{[\text{No-Dut}]}$	P-Not-Gtr]		[U-Sub]
	And the second second second	the second s		$\frac{\sqrt{\pi}}{\sqrt{\chi'}} <: Q <: \{\overline{\eta'}\}] \alpha' \text{ using } \sigma$
$\Delta' = \Delta \cup \left\{\overline{\{\}} <: P <: \{\overline{\xi}\}\right\} \qquad distin$ $\{\overline{J}\} = properAncestors(\Delta', O[[\overline{P}]]) \qquad \overline{\Delta'}$ $\overline{\Delta'; self: O[[\overline{P}]], \overline{x:\tau}; = \overline{P} \vdash \mu \text{ ok}}$	Next: (Coq Me	chanization	$\frac{C'}{\{\overline{K'}\}} \qquad \text{otherwise}$
		ana ang ang ang ang ang ang ang ang ang	مستعلق ما والم حرف المعالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية ال	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \stackrel{\equiv}{\longrightarrow} \exists \llbracket \overline{K} \rrbracket \alpha \text{ using } \llbracket \end{bmatrix}$
$\overline{\Delta' \vdash d_i}$ not duplicate of $d_j^{1 \le i < j \le \#(\overline{d})}$	Return Type Rule: $\Delta \vdash d$ return type		=	
$\overline{\Delta' \vdash d_i}$ return type wrt d_j ok $1 \le i < j \le \#(\overline{d})$	$name(d) \neq name(d')$	$\neg (\Delta \vdash don$	Universal reduction: $\Delta \vdash \Upsilon \xrightarrow{\equiv} \Upsilon$ using σ	$\Delta \vdash \exists \llbracket \overline{K} \rrbracket \alpha \xrightarrow{\equiv} \exists \llbracket \overline{K'} \rrbracket \alpha' \text{ using } \sigma$
$\underline{\Delta'} \vdash \tau \text{ ok}$	$\Delta \vdash d$ return type wrt d' ok	$\Delta \vdash d$ retur		$\Delta \vdash \forall \llbracket \overline{K} \rrbracket (\alpha \to \omega) \xrightarrow{\equiv} \forall \llbracket \overline{K'} \rrbracket (\alpha' \to \sigma \omega) \text{ using } \sigma$
$\Delta \vdash \text{object } O[\overline{P <: \{\overline{\xi}\}}]$	$arrow(d) = \forall \llbracket \overline{\kappa} \rrbracket (\alpha \to \rho) \qquad \overline{\kappa} = \{ \overline{\chi} \}$		Existential subtyping: $\Delta \vdash \Xi \sqsubseteq \exists \text{ using } \sigma$	$\Delta \vdash \Xi \sqsubseteq \Xi$
	$\overline{\kappa' = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\} \qquad dis$	$tinct(\overline{P}, \overline{Q}) \qquad \Delta \vdash dom(d)$	$\Delta \vdash \Xi \xrightarrow{\equiv} \Xi'' \text{ using } \Delta \vdash \Xi'' \lesssim \Xi' \text{ using } \Box$	sing σ $\Delta \vdash \Xi \sqsubseteq \Xi'$ using $_$
Well-formed method declarations: $\Delta; \Gamma; \overline{VP} \vdash$	$\Delta \vdash \forall [\![\overline{\kappa}]\!] (\alpha \to \rho)$	$\sqsubseteq \forall \llbracket \overline{\kappa}, \overline{\kappa'} \rrbracket ((\alpha \sqcap \alpha') \to \rho')$	$\Delta \vdash \Xi \sqsubseteq \Xi' \text{ using } \sigma$	$\Delta \vdash \Xi \sqsubseteq \Xi'$
$\Delta \vdash \left[\!\left[\overline{\{\overline{\zeta}\}} <: Q <: \{\overline{\overline{\zeta}}\}\right]\!\right] \text{ok} \qquad \Delta' = \Delta \cup \left\{\!\overline{\{\overline{\zeta}\}} <: q <: \{\overline{\zeta}\} <: q <: \{\overline{\zeta}\}, \{\overline{\zeta}, \{\overline{\zeta}\}, \{\overline{\zeta}, \{\overline{\zeta}\}, \{\overline{\zeta}, \{\overline{\zeta}\}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, \{\overline{\zeta}, {$			$\Delta \vdash \Delta \sqsubseteq \Delta$ using σ	
	$\Delta \vdash d$ retu	arn type wrt d' ok		$Y \vdash Y \sqsubseteq Y$
$distinct(\overline{x}) = \underline{\Delta' \vdash \tau \text{ ok}} \Delta' \vdash \omega \text{ ok}$	Fig			$\Delta \vdash \Upsilon \sqsubseteq \Upsilon$ sing σ $\Delta \vdash \Upsilon \sqsubseteq \Upsilon' using _$
	Fig. $\neq \mathcal{T}[P] \lor (\Delta \vdash \mathcal{T} \text{ variance } V))$	arn type wrt <i>d'</i> ok	Universal subtyping: $\Delta \vdash \Upsilon \sqsubseteq \Upsilon$ using σ	

Fig. 3. Well-formed programs, class declarations, and method declarations

Fig. 6. Subtype relations of quantified types

Fortress, JavaScript, and Solidity

No Duplicates Rule: $\Delta \vdash d$ n	ot duplicate of d	Meet Rule: $\Delta \vdash d \mod d$ wrt	$\{\overline{d}\}$ ok
$name(d) \neq name(d')$	[No-Dup-Triv]	$name(d) \neq name(d')$	[Meet-Triv]
$\Delta \vdash d$ not duplicate of d'		$\Delta \vdash d \operatorname{meet} d' \operatorname{wrt} _ \operatorname{ok}$	
$\neg (\Delta \vdash dom(d) \sqsubseteq dom(d')) $	No-Dup-Not-Less]	$\Delta \vdash (dom(d) \sqcap dom(d')) \sqsubseteq \exists \llbracket \rrbracket$	[MEET-EXCL]
$\Delta \vdash d$ not duplicate of d'		$\Delta \vdash d \text{ meet } d' \text{ wrt } = \text{ ok}$	
$\neg (\Delta \vdash dom(d') \sqsubseteq dom(d))$	No-Dup-Not-Gtr]	$\Delta \vdash dom(d) \sqsubseteq dom(d')$	[MEET-LESS]
$\Delta \vdash d$ not duplicate of d'		$\Delta \vdash d \mod d' \operatorname{wrt} - \operatorname{ok}$	
		$\Delta \vdash dom(d') \sqsubseteq dom(d)$	[Meet-Gtr]
		$\Delta \vdash d \mod d' \operatorname{wrt} - \operatorname{ok}$	[
$d''' \in \{\overline{d''}\} name(d) = nd$	ame(d') = name(d''')	$\Delta \vdash \mathit{dom}(d''') \equiv \bigl(\mathit{dom}(d) \sqcap \mathit{dom}(d) \lor$	$\frac{m(d')}{m(d')}$ [MEET-THIRD]
	$\Delta \vdash d \text{ meet } d' \text{ wrt}$	$\{\overline{d''}\}$ ok	[]
Return Type Rule: $\Delta \vdash d$ ret	urn type wrt <i>d</i> ok		
$name(d) \neq name(d')$	[Return-Triv]	$\neg (\Delta \vdash dom(d) \sqsubseteq dom(d'))$	[Return-Not-Less]
$\Delta \vdash d$ return type wrt d' ok		$\Delta \vdash d$ return type wrt d' ok	
$arrow(d) = \forall \llbracket \overline{\kappa} \rrbracket (\alpha \to \rho) \qquad \overline{\rho}$	$\kappa = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$	$\mathit{arrow}(d') = \forall [\![\overline{\kappa'}]\!] (\alpha' \to \rho')$	
$\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\}$	$distinct(\overline{P}, \overline{Q})$	$\Delta \vdash \mathit{dom}(d) \sqsubseteq \mathit{dom}(d')$	
$\Delta \vdash \forall \llbracket \overline{\kappa} \rrbracket (a$	$\alpha \to \rho) \sqsubseteq \forall \llbracket \overline{\kappa}, \overline{\kappa'} \rrbracket ((\alpha$	$\alpha \sqcap \alpha') \to \rho')$	[Return-Test]
			INCLURN-LEST

Fig. 5. Overloading rules for FGFV

Fortress, JavaScript, and Solidity

PIRG

Language Manipulation: JavaScript

- Specification: ECMAScript
- Parsing: automatic generation of parsers & ASTs
- Static checking: parallel development
- Compilation / Interpretation: cross validation
- Testing
- Analysis: SAFE, TAJS, WALA
- Verification

Analyzing JS

module $M\left\{s\cdots ight\}$	module definition	ϕ ::= $x \cdots$	path
module $M = M \cdots M$;	module alias	$\varphi_i ::= \phi.(x)$	internal qualified name
import $M \cdots .x;$	qualified import	$\varphi_e ::= \phi.x$	external qualified name
import $M \cdots x : x;$	aliased import	$\varphi ::= \varphi_i$	qualified name
import $M \cdots \star;$	import all	φ_e	
export var $x = e$;	exported variable	$ar{arphi} ::= \phi.*$	expanded qualified name
export function $x(x \cdots) \{s \cdots$		$\tau ::= var$	desugaring type
export module $M \{s \cdots\}$	exported module	module	desugaring scope
export module $M = M \cdots M$; e	exported module alias	$\varsigma ::= \epsilon$ local	desugaring scope
-	exported local	export φ_e	
•	exported local alias	$\rho ::= \bot$	desugaring binding
_	exported qualified alias	$ \tau \varphi$	6
1		$\bar{\rho} := \bot$	expanded desugaring binding
Figure 9. Extended syntax for Jav	aScript modules	ΙT	
0	1	$\Sigma ::= \{(\varphi, \rho\varsigma) \cdots \}$	desugaring environment
		$\cup \left\{ (ar{arphi},ar{ ho})\cdots ight\}$	
$v ::= \cdots \mid \alpha$	value	$\Sigma^* ::= \epsilon$	desugaring environment chain
$lpha ::= \langle\!\langle v_g angle\! angle$	accessor	$\sum^{*} \Sigma$	
$v_g ::= func()\{ return \ e \ \}$	getter	$\mid \Sigma^* x$	

Figure 10. Extended syntax for λ_{JS} to allow accessors

Figure 12. Desugaring environment for the modified λ_{JS}

Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: Formal Specification and Implementation of a Scalable Analysis Framework for ECMAScript (FOOL'12)

Seonghoon Kang and Sukyoung Ryu. Formal Specification of a JavaScript Module System (OOPSLA'12)

Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the "with" Statement in JavaScript: Removing "with" Statements in JavaScript Applications (DLS'13)

WaiTing Cheung, Sukyoung Ryu, Sunghun Kim. Development Nature Matters: An Empirical Study of Code Clones in JavaScript Applications (EMSE'15)

Fortress, JavaScript, and Solidity

Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the "with" Statement in JavaScript: Removing "with" Statements in JavaScript Applications (DLS'13)

WaiTing Cheung, Sukyoung Ryu, Sunghun Kim. Development Nature Matters: An Empirical Study of Code Clones in JavaScript Applications (EMSE'15)

Fortress, JavaScript, and Solidity

Analyzing JS Web Apps

Changhee Park, Sooncheol Won, Joonho Jin, and Sukyoung Ryu. **Static Analysis of JavaScript Web Applications in the Wild via Practical DOM Modeling** (ASE'15)

Changhee Park and Sukyoung Ryu. Scalable and Precise Static Analysis of JavaScript Applications via Loop-Sensitivity (ECOOP'15)

Analyzing JS Web Apps in the Wild

SungGyeong Bae, Hyunghun Cho, Inho Lim, and Sukyoung Ryu. SAFEwapi: Web API Misuse Detector for Web Applications (FSE'14)

Yoonseok Ko, Hongki Lee, Julian Dolby, and Sukyoung Ryu. Practically Tunable Static Analysis Framework for Large-Scale JavaScript Applications (ASE'15)

Analyzing JS Web Apps in the Wild Partially

Joonyoung Park, Inho Lim, and Sukyoung Ryu. Battles with False Positives in Static Analysis of JavaScript Web Applications in the Wild (ICSE-SEIP'16)

Joonyoung Park, **Kwangwon Sun**, and Sukyoung Ryu. **EventHandler-based Analysis Framework for Web Apps using Dynamically Collected States** (FASE'18)

Analyzing JS Web Apps in the Wild Partially

JavaScript Bug Detection

3d-raytrace.js:118:19~118:23: [Warning 3d-raytrace.js:119:19~119:23: [Warning 3d-raytrace.js:119:19~119:23: [Warning 3d-raytrace.js:120:19~120:24: [Warning 3d-raytrace.js:120:19~120:24: // this *somewh	<pre>] Trying to convert undefined to number. 'self[3]' can be undefined.] Reading absent property '3' of object 'self'.] Trying to convert undefined to number. 'self[7]' can be undefined.] Reading absent property '7' of object 'self'.] Trying to convert undefined to number. 'self[11]' can be undefined. camera code is from notes i made ages ago, it is from ere* i cannot remember where</pre>
<pre>var temp = new Array(] var tx = -self[3]; var ty = -self[7]; var tz = -self[11]; for (h = 0; h < 3; h+4 for (v = 0; v < 3; temp[h + v * 4 for (i = 0; i < 11; i4 self[i] = temp[i]; self[3] = tx * self[0] self[3] = tx * self[4] m[3</pre>	<pre>zaxis = normaliseVector(subVector(lookat, origin)); xaxis = normaliseVector(cross(up, zaxis)); yaxis = normaliseVector(cross(xaxis, subVector([0,0,0]</pre>
Web Page Rug De	tection (I)

Web Page Bug Detection (I)

Web Application Bug Detection (I)

loading : function(i) {

```
// alert("<img src='image/loading_"+i+".png>");
var tmpdivB = document.getElementById("waitIcon");
```

PLRG

i = i == null ? 1 : i;

// set timeout is 30s
this.totalCnt++;
if (this.totalCnt > 200) {
 this.endLoading();
 tmpdivB.className = "";
 this.showNoResultFound(tmpdivB);
 return;
}

Fortress, JavaScript, and Solidity

Bug Detection in JS Web Apps with SAFE

Procedure

Fortress, JavaScript, and Solidity

1/30

Sukyoung Ryu

KAIST

Now, Solidity!

🛅 coindesk 🖁

The DAO Attacked: Code Issue Leads to \$60 Million Ether Theft

y	f	<u>8</u> +	in 466	Ö					
Michael del Castillo ≤ У ♠ ② Jun 17, 2016 at 14:00 UTC Updated Jun 18, 2016 at 14:46 UTC									

The DAO, the distributed autonomous organization that had collected over \$150m worth of the cryptocurrency ether, has reportedly been hacked, sparking a broad market sell-off.

A leaderless organization comprised of a series of smart contracts written on the ethereum codebase, The DAO has lost 3.6m ether, which is currently sitting in a separate wallet after being split off into a separate grouping dubbed a "child DAO"

RailOnline | TV&Showbiz | Femail | Health | Science | Money | Video

£200 million worth of digital cryptocurrency is wiped out as bungling developer locks investors out while trying to stop hackers

- A developer was fixing a bug that let hackers steal funds from virtual wallets
- · But the developer accidentally left a second flaw in its systems
- When the user tried to undo the damage by deleting the flaw in the code, this locked the funds in the wallets permanently
- The only way to reverse the issue is a 'hard-fork', but not everyone supports this

http://www.dailymail.co.uk/sciencetech/article-5062543/200-MILLION-virtual-currency-Ether-lost.html https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/

BBC Code bug freezes \$150m of Ethereum crypto-cash

9 November 2017

f 🍠 🔗 🗹 < Share

http://www.bbc.com/news/technology-41928147

Hackers Have Walked Off With About 14% of Big Digital Currencies

By Olga Kharif

January 18, 2018, 7:19 PM GMT+5:30

- $\rightarrow~$ Cybercriminals compromise Bitcoin, Ether supply, blockchains
- → Crypto-crazed users adopt technology without weighing risks

https://www.bloomberg.com/news/articles/2018-01-18/hackers-have-walkedoff-with-about-14-of-big-digital-currencies

Smart Contract Vulnerabilities

Blog >

Blog

Newsletter Books

Essays

Talks

News

About Me

Academic

Ethereum Hacks

The press is reporting a \$32M theft of the cryptocurrency Ethereum. Like all such thefts, they're not a result of a cryptographic failure in the currencies, but instead a software vulnerability in the software surrounding the currency -- in this case, digital wallets.

This is the second Ethereum hack this week. The first tricked people in sending their Ethereum to another address.

This is my concern about digital cash. The cryptography can be bulletproof, but the computer security will always be an issue.

Tags: cryptocurrency, cryptography, hacking, theft, vulnerabilities Posted on July 20, 2017 at 9:12 AM • 46 Comments

About Bruce Schneier

I've been writing about security issues on my blog since 2004, and in my monthly newsletter since 1998. I write books, articles, and academic papers. Currently, I'm the Chief Technology Officer of IBM Resilient, a fellow at Harvard's Berkman Center, and a board member of EFF.

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BYZANTIUM VERSION d1ca9d0 - 2018-03-0827

0s: Stop and Arithmetic Operations All arithmetic is modulo 2^{256} unless otherwise noted. The zero-th power of zero 0^0 is defined to be one.								
Value	Mnemonic	δ	α	Description				
0x00	STOP	0	0	Halts execution.				
0x01	ADD	2	1	Addition operation. $\mu'_{s}[0] \equiv \mu_{s}[0] + \mu_{s}[1]$				
0x02	MUL	2	1	Multiplication operation. $\mu'_{s}[0] \equiv \mu_{s}[0] \times \mu_{s}[1]$				
0x03	SUB	2	1	Subtraction operation. $\mu'_{s}[0] \equiv \mu_{s}[0] - \mu_{s}[1]$				
0x04	DIV	2	1	Integer division operation. $\boldsymbol{\mu}_{\mathbf{s}}'[0] \equiv \begin{cases} 0 & \text{if } \boldsymbol{\mu}_{\mathbf{s}}[1] = 0 \\ \lfloor \boldsymbol{\mu}_{\mathbf{s}}[0] \div \boldsymbol{\mu}_{\mathbf{s}}[1] \rfloor & \text{otherwise} \end{cases}$				
0x05	SDIV	2	1	$ \begin{array}{l} \mbox{Signed integer division operation (truncated).} \\ \mu_{\rm s}'[0] \equiv \begin{cases} 0 & \mbox{if } \mu_{\rm s}[1] = 0 \\ -2^{255} & \mbox{if } \mu_{\rm s}[0] = -2^{255} \wedge \mu_{\rm s}[1] = -1 \\ \mbox{sgn}(\mu_{\rm s}[0] \div \mu_{\rm s}[1]) \lfloor \mu_{\rm s}[0] \div \mu_{\rm s}[1] \rfloor & \mbox{otherwise} \end{cases} \\ \mbox{Where all values are treated as two's complement signed 256-bit integers.} \\ \mbox{Note the overflow semantic when } -2^{255} & \mbox{is negated.} \end{cases} $				

https://ethereum.github.io/yellowpaper/paper.pdf

PLRG

Smart Contract Vulnerabilities: Research

- Formal Verification of Smart Contracts, PLAS 2016
 - A small subset of the Solidity programming language
 - A tiny language and no automatic verification

PLRG *

Smart Contract Vulnerabilities: Research

- Making Smart Contracts Smarter, CCS 2016
 - Oyente: Symbolic execution of EVM bytecode
 - Mot sound nor complete

A Survey of Attacks on Ethereum Smart Contracts, POST 2017

Level	Cause of vulnerability	Attacks
Solidity	Call to the unknown	4.1
	Gasless send	4.2
	Exception disorders	4.2, 4.5
	Type casts	
	Reentrancy	4.1
	Keeping secrets	4.3
EVM	Immutable bugs	4.4, 4.5
	Ether lost in trasfer	
	Stack size limit	4.5
Blockchain	Unpredictable state	4.5, 4.6
	Generating randomness	
	Time constraints	4.5

 Table 1. Taxonomy of vulnerabilities in Ethereum smart contracts.

- Zeus: Analyzing Safety of Smart Contracts, NDSS 2018
 - Verification using an LLVM model checker after compiling Solidity code to LLVM bitcode

A Semantic Framework for the Security Analysis of Ethereum Smart Contracts, POST 2018

Formal guarantees

- We prove our abstraction to be sound:
 - "Every concrete execution can be mimicked by derivations in the abstract semantics"

encoding of execution encoding of program state logics of known contracts as predicate instances as horn clauses

encoding of call stack as predicate instances

USENIX Security 2018

Track 1

Smart Contracts

Session Chair: Suman Jana, Columbia University

teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts Johannes Krupp and Christian Rossow, *CISPA, Saarland University, Saarland Informatics Campus*

AVAILABLE MEDIA

Show details 🕨

Enter the Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts

Lorenz Breidenbach, Cornell Tech, IC3, ETH Zurich; Philip Daian, Cornell Tech, IC3; Florian Tramer, Stanford; Ari Juels, Cornell Tech, IC3, Jacobs Institute AVAILABLE MEDIA

Show details •

Arbitrum: Scalable, private smart contracts Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten, *Princeton University* AVAILABLE MEDIA

Show details >

Erays: Reverse Engineering Ethereum's Opaque Smart Contracts Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael Bailey, *University of Illinois, Urbana-Champaign* AVAILABLE MEDIA

Show details 🕨

Fortress, JavaScript, and Solidity

Hide details 👻

ACM CCS 2018

Smart Contracts (203 AB)

Session Chair: Yan Chen

SECURIFY: Practical Security Analysis of Smart Contracts

Petar Tsankov (ETH Zurich), Andrei Marian Dan (ETH Zurich), Dana Drachsler Cohen (ETH Zurich), Arthur Gervais (Imperial College London), Florian Buenzli (ETH Zurich), Martin Vechev (ETH Zurich)

BitML: a calculus for **Bitcoin smart contracts**

Massimo Bartoletti (University of Cagliari), Roberto Zunino (University of Trento)

Scoping and Declarations

A variable declared anywhere within a function will be in scope for the *entire function*, regardless of where it is declared (this will change soon, see below). This happens because Solidity inherits its scoping rules from JavaScript. This is in contrast to many languages where variables are only scoped where they are declared until the end of the semantic block. As a result, the following code is illegal and cause the compiler to throw an error, **Identifier already declared** :

PLRG

Vulnerable Semantics of Solidity: Scope

Scoping and Declarations

A variable declared anywhere within a function will be in scope for the *entire function*, regardless of where it is declared (this will change soon, see below). This happens because Solidity inherits its scoping rules from JavaScript. This is in contrast to many languages where variables are only scoped where they are declared until the end of the semantic block. As a result, the following code is illegal and cause the compiler to throw an error, **Identifier already declared** :

Scoping and Declarations

A variable declared anywhere within a function will be in scope for the *entire function*, regardless of where it is declared (this will change soon, see below). This happens because Solidity inherits its scoping rules from JavaScript. This is in contrast to many languages where variables are only scoped where they are declared until the end of the semantic block. As a result, the following code is illegal and cause the compiler to throw an error, Identifier already declared :

Scoping starting from Version 0.5.0

Starting from version 0.5.0, Solidity will change to the more widespread scoping rules of C99 (and many other languages): Variables are visible from the point right after their declaration until the end of a {} -block. As an exception to this rule, variables declared in the initialization part of a for-loop are only visible until the end of the for-loop.

Overload resolution and Argument matching

Overloaded functions are selected by matching the function declarations in the current scope to the arguments supplied in the function call. Functions are selected as overload candidates if all arguments can be implicitly converted to the expected types. If there is not exactly one candidate, resolution fails.

Note

Return parameters are not taken into account for overload resolution.

```
pragma solidity ^0.4.16;
```

```
contract A {
   function f(uint8 _in) public pure returns (uint8 out) {
      out = _in;
   }
   function f(uint256 _in) public pure returns (uint256 out) {
      out = _in;
   }
}
```

Overload resolution and Argument matching

Overloaded functions are selected by matching the function declarations in the current scope to the arguments supplied in the function call. Functions are selected as overload candidates if all arguments can be implicitly converted to the expected types. If there is not exactly one candidate, resolution fails.

Note

Return parameters are not taken into account for overload resolution.

Return Type Rule:
$$\Delta \vdash d \text{ return type wrt } d \text{ ok}$$
$$\boxed{\Delta \vdash d \text{ return type wrt } d' \text{ ok}}$$
$$\boxed{Return Triv}$$
$$\frac{\neg(\Delta \vdash dom(d) \sqsubseteq dom(d'))}{\Delta \vdash d \text{ return type wrt } d' \text{ ok}}$$
$$\boxed{Return Not-Less}$$
arrow(d) = \forall [[\overline{\kappa}]](\alpha \rightarrow \rho) $\overline{\kappa} = \{\overline{\chi}\} <: P <: \{\overline{\eta}\}$ $arrow(d') = \forall [[\overline{\kappa'}]](\alpha' \rightarrow \rho')$ $[Return Not-Less]$ $\overline{\kappa'} = \{\overline{\chi'}\} <: Q <: \{\overline{\eta'}\}$ $distinct(\overline{P}, \overline{Q})$ $\Delta \vdash dom(d) \sqsubseteq dom(d')$ $\Delta \vdash \forall [[\overline{\kappa}]](\alpha \rightarrow \rho) \sqsubseteq \forall [[\overline{\kappa}, \overline{\kappa'}]]((\alpha \sqcap \alpha') \rightarrow \rho')$ $[Return Test]$

Multiple Inheritance and Linearization

Languages that allow multiple inheritance have to deal with several problems. One is the Diamond Problem. Solidity is similar to Python in that it uses "C3 Linearization" to force a specific order in the DAG of base classes. This results in the desirable property of monotonicity but disallows some inheritance graphs. Especially, the order in which the base classes are given in the is directive is important: You have to list the direct base contracts in the order from "most base-like" to "most derived". Note that this order is different from the one used in Python. In the following code, Solidity will give the error "Linearization of inheritance graph impossible".

```
// This will not compile
```

pragma solidity ^0.4.0;

```
contract X {}
contract A is X {}
contract C is A, X {}
```

The reason for this is that **c** requests **x** to override **A** (by specifying **A**, **x** in this order), but **A** itself requests to override **x**, which is a contradiction that cannot be resolved.

Vulnerable Semantics of Solidity: MM mortal pragma solidity ^0.4.22; Base1 Base2 contract owned { ... } contract mortal is owned { Final function kill() public { if (msg.sender == owner) selfdestruct(owner); } } contract Base1 is mortal { function kill() public { /* cleanup 1 */ mortal.kill(); } } contract Base2 is mortal { function kill() public { /* cleanup 2 */ mortal.kill(); } } contract Final is Base1, Base2 { ... }

Vulnerable Semantics of Solidity: MM mortal pragma solidity ^0.4.22; Base1 Base2 contract owned { ... } contract mortal is owned { Final function kill() public { if (msg.sender == owner) selfdestruct(owner); } } contract Base1 is mortal { function kill() public { /* cleanup 1 */ super.kill(); } } contract Base2 is mortal { function kill() public { /* cleanup 2 */ super.kill(); } } contract Final is Base1, Base2 { ... }

https://pdaian.com/blog/solidity-anti-patterns-fun-with-inheritance-dag-abuse/

Multiple Inheritance and Linearization

Languages that allow multiple inheritance have to deal with several problems. One is the Diamond Problem. Solidity is similar to Python in that it uses "C3 Linearization" to force a specific order in the DAG of base classes. This results in the desirable property of monotonicity but disallows some

(The name "C3" is not an initialism.) It was first published at the 1996 OOPSLA conference, in a paper entitled "A Monotonic Superclass Linearization for Dylan".^[1] It was adapted to the Open Dylan implementation in January 2012^[2] following an enhancement proposal.^[3] It has been chosen as the default algorithm for method resolution in Python 2.3 (and newer),^{[4][5]} Perl 6,^[6] Parrot,^[7], Solidity, and PGF/TikZ's Object-Oriented Programming module^[8]. It is also available as an alternative, non-default MRO in the core of Perl 5 starting with version 5.10.0.^[9] An extension implementation for earlier versions of Perl 5 named Class::C3 exists on CPAN.^[10]

- Which platform?
 - Ethereum, Michelson/Liquidity, Zilliqa/Scilla, …
- Which language?
 - Source-level: Solidity, LLL, Vyper, ...
 - Bytecode
- What problems?
 - Bugs: type-related, resource-related, ...
 - Vulnerabilities: security, privacy, …

PLRG@KAIST for the Wild with Theory

- PL to save the world from *bugs* in real-world applications
- PL with proofs
- PL for Software Engineering
- PL for Security
- 열심히, 즐겁게, 자발적으로

PIR

Fortress, JavaScript, and Solidity

PLRG