
Yannis Smaragdakis
University of Athens

Declarative Static Analysis
and Zombies

Yannis Smaragdakis
 University of Athens

with
 Martin Bravenboer,

George Kastrinis, George Balatsouras,
Tony Antoniadis, George Fourtounis, Neville Grech

and
Kostas Ferles, Nikos Filippakis,

Sifis Lagouvardos, Yue Li, Petros Pathoulas,
Kostas Saidis, Tian Tan, Konstantinos Triantafyllou

Declarative Static Analysis
and Soundness

Yannis Smaragdakis
 University of Athens

with
 Martin Bravenboer,

George Kastrinis, George Balatsouras,
Tony Antoniadis, George Fourtounis, Neville Grech

and
Kostas Ferles, Nikos Filippakis,

Sifis Lagouvardos, Yue Li, Petros Pathoulas,
Kostas Saidis, Tian Tan, Konstantinos Triantafyllou

Yannis Smaragdakis
University of Athens

Overview
 What do we do?

 static program analysis
 “discover program properties that hold for all

executions”

 Vision: a system that knows more about your
program than you do

 How do we do it?
 declarative (logic-based specification)

 fast, powerful, new insights

4

Yannis Smaragdakis
University of Athens

Our Research: Doop
and friends: CClyzer, MadMax

 Since 2008:
 Doop: a powerful framework for analyzing Java

bytecode
 building on pointer analysis

 now just a substrate for more analyses

 declarative, using the Datalog language
 Lots of offshoots

 Cclyzer, for LLVM bitcode
 MadMax/Gigahorse for Ethereum VM bytecode

[OOPSLA'18 Distinguished Paper Award]

 38MLoC in 8 hours
5

Yannis Smaragdakis
University of Athens

Pointer Analysis: A Complex
Domain

6

flow-sensitive

field-sensitive

heap cloning

context-sensitive

binary decision diagrams

inclusion-based

unification-based

on-the-fly call graph

k-cfa

object sensitive

field-based

demand-driven

Yannis Smaragdakis
University of Athens

Algorithms Found In a 10-Page
Pointer Analysis Paper

7

variation points
unclear

variation points
unclear

every variant a new
algorithm

every variant a new
algorithm

correctness
unclear

correctness
unclear

incomparable in
precision

incomparable in
precision

Yannis Smaragdakis
University of Athens

Program Analysis: a Domain of
Mutual Recursion

8

var points-to

call graph

dynamic proxies

obj fld values

exceptions

reflection

Yannis Smaragdakis
University of Athens

Holistic Program Analysis:
“Everything Is Connected”

9

Yannis Smaragdakis
University of Athens

A Vision Within Reach
● An intelligent system that knows more about

your program than you do
● “Everything is connected”

– all analysis aspects encoded separately, all benefitting
each other

● The Doop framework serves to illustrate
● Key: a declarative specification of all sorts of

static analyses
● In Doop: use of Datalog

10

Yannis Smaragdakis
University of Athens

Datalog To The Rescue!
 Datalog is relations + recursion
 Limited logic programming

 SQL with recursion
 Prolog without complex terms (constructors)

 Captures PTIME complexity class
 Strictly declarative

 e.g., as opposed to Prolog
 conjunction commutative
 rules commutative

 monotonic

11

Less programming, more specification

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

12

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

13

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

rulesrules

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

14

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

headhead

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

15

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

VarPointsTo

head relationhead relation

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

16

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

VarPointsTo

 bodies bodies

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

17

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

VarPointsTo

 body relations body relations

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

18

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

VarPointsTo

join variablejoin variable

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

19

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

VarPointsTo

recursionrecursion

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

20

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

VarPointsTo

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

1st rule result1st rule result

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

21

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

VarPointsTo

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

2nd rule evaluation2nd rule evaluation

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

22

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()
a new B()

a new A()
b new B()
c new C()
a new B()

VarPointsTo

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

2nd rule result2nd rule result

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

23

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a new A()
b new B()
c new C()
a new B()
b new A()
c new B()
c new A()

a new A()
b new B()
c new C()
a new B()
b new A()
c new B()
c new A()

VarPointsTo

a new A()
b new B()
c new C()

a new A()
b new B()
c new C()

Alloc

a b
b a
c b

a b
b a
c b

Move

Yannis Smaragdakis
University of Athens

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
 Alloc(var, obj).

VarPointsTo(to, obj) <-
 Move(to, from),
 VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

The Doop Framework
 Datalog-based static analysis framework for Java

 Declarative: what, not how

 Sophisticated, very rich set of analyses
 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-

site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering,
precise exception analysis

 Support for full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class initialization,

finalization, cast checking, assignment compatibility

24

http://doop.program-analysis.org

Yannis Smaragdakis
University of Athens

Past Approaches and
Declarative Analysis
 Past approaches have flirted with declarative

analysis
 But no purely declarative approach

 specification and algorithm confused
 Declarativeness considered unscalable in both

complexity and performance
 “the first time I write an analysis it is typically in

Datalog, but then, once I’m convinced it’s precise, I
throw it out and I write it in Java, when I want to focus
on scalability.” (Naik, 2010)

25

Yannis Smaragdakis
University of Athens

Doop Makes Declarative
Analysis Real
 Complete, complex pointer analyses in Datalog

 core specification: ~1500 logic rules
 parameterized by a handful of rules per analysis flavor

 Efficient algorithms from specification
 order of magnitude performance improvement
 allowed to explore more analyses than past literature

 Approach: heuristics for searching algorithm space
 targeted at recursive problem domains

 Demonstrated scalability with explicit representation
 no BDDs

26

Yannis Smaragdakis
University of Athens

Not Expected
 Expressed complete, complex pointer analyses in

Datalog
“[E]ncoding all the details of a complicated program analysis problem
[on-the-fly call graph construction, handling of Java features] purely in
terms of subset constraints may be difficult or impossible.” (Lhotak)

 Scalability and Efficiency
“Efficiently implementing a 1H-object-sensitive analysis without BDDs
will require new improvements in data structures and algorithms”

27

Yannis Smaragdakis
University of Athens

Impressive Performance,
Implementation Insights

[OOPSLA’09, ISSTA’09]

28

Yannis Smaragdakis
University of Athens

Large Speedup For Realistic
Analyses

29

Yannis Smaragdakis
University of Athens

[PLDI’10, POPL’11, CC’13, PLDI’13, PLDI’14, FSE'18, OOPSLA'18]

Better Understanding of Existing
Algorithms, More Precise and
Scalable New Algorithms

30

Yannis Smaragdakis
University of Athens

Many More Work Threads
 Set-based pre-analysis [OOPSLA’13]

 universal optimization technique
 Completing a partial program [OOPSLA’13]

 making sense out of missing libraries
 Soundness [CACM 2/15, ECOOP'18 (distinguished paper)]

 Reflection and dynamic loading [APLAS'15, ECOOP'18, ISSTA'18]

 Port to Souffle: a parallel Datalog engine [SOAP’17]

 Must-alias analysis [SOAP’17, CC'18]

 Taint analysis using points-to algorithms [OOPSLA’17]

 Integrating heap snapshots in static analysis
[OOPSLA’17, ISSTA'18]

31

Yannis Smaragdakis
University of Athens

Now Zombies
 (ahem, soundness)

32

Yannis Smaragdakis
University of Athens

Soundness in Static Analysis
 We all want it!

 Sound: AnalysisClaim(P) → P
 E.g., for a (may-) value-flow analysis: is every

possible run-time value modeled statically?

 Soundness is a design property of an analysis
– often broken up by language feature

● basically “do you fully handle this feature?”
– e.g., “do you handle arrays soundly?”

33

Yannis Smaragdakis
University of Athens

Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Soundiness Manifesto [CACM 2/15]

34

● “There is no practical static whole-program
may-analysis that is sound”
– whole-program: models the heap

● What about all these soundness proofs?
– proof is for a limited language

– unsoundness due to dynamic features: reflection,
dynamic loading, eval

Yannis Smaragdakis
University of Athens

This Work: [ECOOP'18, Distinguished Paper Award]

Truly Sound Analysis, for Full Language

35

● Key elements:
– I. different form of soundness theorem
– II. defensive design that withstands

opaque code
● i.e., code that could be doing (nearly) anything

– III. laziness necessary for a realistic
implementation

Yannis Smaragdakis
University of Athens

Part I. Motivation:
Different Form of Soundness
Theorem

36

Yannis Smaragdakis
University of Athens

Conventional Soundness
Theorem (formulation by Xavier Rival)

37

● for all programs in stated language subset
and all executions in stated exec. subset
AnalysisClaim(P) → P

● Soundness is always qualified
● Problem: qualifications don't hold in practice

– realistic programs use dynamic features

Yannis Smaragdakis
University of Athens

Even Worse: Perverse
Incentives!

38

● for all programs in stated language subset
and all executions in stated exec. subset
AnalysisClaim(P) → P

● Proof starts from formulation of analysis over
input language

● Weaker analysis, easier soundness theorem!
– vastly unsound analysis: easy soundness proof

Yannis Smaragdakis
University of Athens

Our Soundness Theorem Form

40

● for all program points, π, in computed
subset, AnalysisClaimπ(P) → Pπ

● The analysis works for (nearly) all language
features, all executions
– but qualifies which part of its results is

guaranteed sound!

Yannis Smaragdakis
University of Athens

Our Soundness Theorem Form

41

● for all program points, π, in computed
subset, AnalysisClaimπ(P) → Pπ

● Important concept: coverage
– how big is the subset of the program for

which the analysis is sound

Yannis Smaragdakis
University of Athens

Part II. Approach:
Defensive Design that
Withstands Opaque Code

42

Yannis Smaragdakis
University of Athens

General Form of
Sound Points-To Analysis

43

● Sound points-to information: need to compute all
possible values that may ever arise at run time

● For the analysis to certify points-to set as sound, it
needs to:
– closely track information all the way from its source
– ensure no possible interference

● Need precise analysis:
– context-sensitive, flow-sensitive, over access paths

Yannis Smaragdakis
University of Athens

When Can We Be Sound?
Hello-World Case

44

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

program

a new A1()

a new A2()

a ???

a new A1()

a new A2()

a ???

points-to

Yannis Smaragdakis
University of Athens

When Can We Be Sound?
Hello-World Case

45

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

program

a new A1()

a new A2()

a (foo) new A1() +
a (bar) new A2()

a new A1()

a new A2()

a (foo) new A1() +
a (bar) new A2()

points-to

Yannis Smaragdakis
University of Athens

When Can We Be Sound?
Hello-World Case

46

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

void foo() {
 Object a = new A1();
 Object b = id(a);
}

void bar() {
 Object a = new A2();
 Object b = id(a);
}

Object id(Object a) {
 return a;
}

program

a new A1()
b new A1()

a new A2()
b new A2()

a (foo) new A1() +
a (bar) new A2()

a new A1()
b new A1()

a new A2()
b new A2()

a (foo) new A1() +
a (bar) new A2()

points-to

Yannis Smaragdakis
University of Athens

More Illustration
● What do we know after this statement?

– that program expression x.fld refers to a1

– regardless of what x refers to
● access paths!

– also that any z.fld needs to be augmented

● ... if followed by:

we know y also refers to a1
47

x.fld = new A(); // abstract object a1x.fld = new A(); // abstract object a1

... // analyzable code, no interference
y = x.fld;

... // analyzable code, no interference
y = x.fld;

Yannis Smaragdakis
University of Athens

Defensiveness Examples
● When the analysis is uncertain, it has to refuse

to certify the soundness of a points-to set

● x.fld has an unknown points-to set after if
– x.foo() could invoke dynamic code, do reflection, or merely

be too complex to analyze precisely
● e.g., reach maximum context-sensitivity depth

48

if (P()) {
 x.fld = new A(); // abstract object a1
} else {
 x.foo(); // opaque
}

if (P()) {
 x.fld = new A(); // abstract object a1
} else {
 x.foo(); // opaque
}

Yannis Smaragdakis
University of Athens

Method Calls
● Let's analyze the example further:

when is a call not opaque code?

– x has known points-to set (i.e., known foo)

– all possible foo do not perform opaque actions on an
access path

● Involved topic, more in the paper
49

if (P()) {
 x.fld = new A(); // abstract object a1
} else {
 x.foo(); // opaque
}

if (P()) {
 x.fld = new A(); // abstract object a1
} else {
 x.foo(); // opaque
}

Yannis Smaragdakis
University of Athens

Part III. Technique:
Laziness for Realistic
Implementation

50

Yannis Smaragdakis
University of Athens

Laziness

51

● A flow-sensitive, context-sensitive algorithm
over access paths cannot scale

● Idea: compute points-to set only when we
can prove the set is sound

● Implication: an empty set means unbounded
– the analysis could not compute all its

possible contents

Yannis Smaragdakis
University of Athens

Laziness, Concretely

52

● All points-to sets start empty
● Only compute a points-to set (i.e., make it

non-empty) when
– all other points-to sets feeding into it are

known
– and are non-empty themselves

● Any points-to set that remains empty at end of
analysis is marked T

Yannis Smaragdakis
University of Athens

Laziness Benefits

53

● Scalable analysis
● Avoids wasted work! Never compute a

points-to set, only to have the addition of
more information make its contents non-
certifiably sound!
– i.e., T

Yannis Smaragdakis
University of Athens

Evaluation Results

54

Yannis Smaragdakis
University of Athens

Running Time

56

Yannis Smaragdakis
University of Athens

Coverage

57

Yannis Smaragdakis
University of Athens

Devirtualization Client

58

Yannis Smaragdakis
University of Athens

Conclusions

59

● Doop: early instance of intelligent system that just
knows things about your program

● Also: fully sound analysis, for realistic languages, is
possible!

● Different form of soundness theorem, coverage as
important concept

	Slide 1
	Slide 2
	Slide 3
	Overview
	Our Project
	Pointer Analysis: A Complex Domain
	Algorithms Found In a 10-Page Pointer Analysis Paper
	Program Analysis: a Domain of Mutual Recursion
	Holistic Program Analysis: “Everything Is Connected”
	Slide 10
	Slide 11
	Datalog: Declarative Mutual Recursion_clipboard1
	Datalog: Declarative Mutual Recursion_clipboard2
	Datalog: Declarative Mutual Recursion_clipboard3
	Datalog: Declarative Mutual Recursion
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Past Approaches and Declarative Analysis
	Doop Makes Declarative Analysis Real
	Not Expected
	Impressive Performance, Implementation Insights
	Large Speedup For Realistic Analyses
	Slide 30
	Many More Work Threads
	Summary and Vision
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59

