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Overview
 What do we do?

 static program analysis
 “discover program properties that hold for all 

executions”

 Vision: a system that knows more about your 
program than you do

 How do we do it?
 declarative (logic-based specification)

 fast, powerful, new insights
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Our Research: Doop
and friends: CClyzer, MadMax

 Since 2008:
 Doop: a powerful framework for analyzing Java 

bytecode
 building on pointer analysis 

 now just a substrate for more analyses

 declarative, using the Datalog language
 Lots of offshoots

 Cclyzer, for LLVM bitcode
 MadMax/Gigahorse for Ethereum VM bytecode 

[OOPSLA'18 Distinguished Paper Award]

 38MLoC in 8 hours
5
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Pointer Analysis: A Complex 
Domain
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flow-sensitive

field-sensitive

heap cloning

context-sensitive

binary decision diagrams

inclusion-based

unification-based

on-the-fly call graph

k-cfa

object sensitive

field-based

demand-driven
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Algorithms Found In a 10-Page 
Pointer Analysis Paper
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variation points 
unclear

variation points 
unclear

every variant a new 
algorithm

every variant a new 
algorithm

correctness 
unclear

correctness 
unclear

incomparable in 
precision

incomparable in 
precision
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Program Analysis: a Domain of 
Mutual Recursion

8

var points-to

call graph

dynamic proxies

obj fld values

exceptions

reflection
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Holistic Program Analysis:
“Everything Is Connected”
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A Vision Within Reach
● An intelligent system that knows more about 

your program than you do 
● “Everything is connected”

– all analysis aspects encoded separately, all benefitting 
each other

● The Doop framework serves to illustrate
● Key: a declarative specification of all sorts of 

static analyses
● In Doop: use of Datalog

10
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Datalog To The Rescue!
 Datalog is relations + recursion
 Limited logic programming

 SQL with recursion
 Prolog without complex terms (constructors)

 Captures PTIME complexity class
 Strictly declarative

 e.g., as opposed to Prolog
 conjunction commutative
 rules commutative

 monotonic

11

Less programming, more specification
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

rulesrules

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

headhead
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion

15

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

VarPointsTo

head relationhead relation
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

VarPointsTo

 bodies bodies
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).



Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual 
Recursion
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b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
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source

a   new A()
b   new B()
c   new C()
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Alloc

a   b
b   a
c   b

a   b
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VarPointsTo

 body relations body relations
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
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c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

VarPointsTo

join variablejoin variable
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

VarPointsTo

recursionrecursion
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

VarPointsTo

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

1st rule result1st rule result
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

VarPointsTo

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

2nd rule evaluation2nd rule evaluation
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).



Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()
a   new B()

a   new A()
b   new B()
c   new C()
a   new B()

VarPointsTo

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move

2nd rule result2nd rule result
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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Datalog: Declarative Mutual 
Recursion
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

source

a   new A()
b   new B()
c   new C()
a   new B()
b   new A()
c   new B()
c   new A()

a   new A()
b   new B()
c   new C()
a   new B()
b   new A()
c   new B()
c   new A()

VarPointsTo

a   new A()
b   new B()
c   new C()

a   new A()
b   new B()
c   new C()

Alloc

a   b
b   a
c   b

a   b
b   a
c   b

Move
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VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).

VarPointsTo(var, obj) <-
  Alloc(var, obj).

VarPointsTo(to, obj) <-
  Move(to, from),
  VarPointsTo(from, obj).
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The Doop Framework
 Datalog-based static analysis framework for Java

 Declarative: what, not how

 Sophisticated, very rich set of analyses
 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-

site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering, 
precise exception analysis

 Support for full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class initialization, 

finalization, cast checking, assignment compatibility

24

http://doop.program-analysis.org
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Past Approaches and 
Declarative Analysis
 Past approaches have flirted with declarative 

analysis
 But no purely declarative approach

 specification and algorithm confused
 Declarativeness considered unscalable in both 

complexity and performance
 “the first time I write an analysis it is typically in 

Datalog, but then, once I’m convinced it’s precise, I 
throw it out and I write it in Java, when I want to focus 
on scalability.” (Naik, 2010)

25
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Doop Makes Declarative 
Analysis Real
 Complete, complex pointer analyses in Datalog

 core specification: ~1500 logic rules
 parameterized by a handful of rules per analysis flavor

 Efficient algorithms from specification
 order of magnitude performance improvement
 allowed to explore more analyses than past literature

 Approach: heuristics for searching algorithm space
 targeted at recursive problem domains

 Demonstrated scalability with explicit representation 
 no BDDs

26
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Not Expected
 Expressed complete, complex pointer analyses in 

Datalog
“[E]ncoding all the details of a complicated program analysis problem 
[on-the-fly call graph construction, handling of Java features] purely in 
terms of subset constraints may be difficult or impossible.”  (Lhotak)

 Scalability and Efficiency
“Efficiently implementing a 1H-object-sensitive analysis without BDDs 
will require new improvements in data structures and algorithms”

27
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Impressive Performance, 
Implementation Insights

[OOPSLA’09, ISSTA’09]

28
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Large Speedup For Realistic 
Analyses

29
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[PLDI’10, POPL’11, CC’13, PLDI’13, PLDI’14, FSE'18, OOPSLA'18]

Better Understanding of Existing 
Algorithms, More Precise and 
Scalable New Algorithms

30
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Many More Work Threads
 Set-based pre-analysis [OOPSLA’13]

 universal optimization technique
 Completing a partial program [OOPSLA’13]

 making sense out of missing libraries
 Soundness [CACM 2/15, ECOOP'18 (distinguished paper)]

 Reflection and dynamic loading [APLAS'15, ECOOP'18, ISSTA'18]

 Port to Souffle: a parallel Datalog engine [SOAP’17]

 Must-alias analysis [SOAP’17, CC'18]

 Taint analysis using points-to algorithms [OOPSLA’17]

 Integrating heap snapshots in static analysis 
[OOPSLA’17, ISSTA'18]

31
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Now Zombies
  (ahem, soundness)

32
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Soundness in Static Analysis
 We all want it!

 Sound:   AnalysisClaim(P) → P
 E.g., for a (may-) value-flow analysis: is every 

possible run-time value modeled statically?

 Soundness is a design property of an analysis
– often broken up by language feature

● basically “do you fully handle this feature?”
– e.g., “do you handle arrays soundly?”

33
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Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Soundiness Manifesto [CACM 2/15]

34

● “There is no practical static whole-program 
may-analysis that is sound”
– whole-program: models the heap

● What about all these soundness proofs?
– proof is for a limited language

– unsoundness due to dynamic features: reflection, 
dynamic loading, eval
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This Work: [ECOOP'18, Distinguished Paper Award]

Truly Sound Analysis, for Full Language

35

● Key elements:
– I. different form of soundness theorem
– II. defensive design that withstands 

opaque code
● i.e., code that could be doing (nearly) anything

– III. laziness necessary for a realistic 
implementation
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Part I.  Motivation: 
Different Form of Soundness 
Theorem

36
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Conventional Soundness 
Theorem (formulation by Xavier Rival)

37

● for all programs in stated language subset 
and all executions in stated exec. subset 
AnalysisClaim(P) → P

● Soundness is always qualified
● Problem: qualifications don't hold in practice

– realistic programs use dynamic features
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Even Worse: Perverse 
Incentives!

38

● for all programs in stated language subset 
and all executions in stated exec. subset 
AnalysisClaim(P) → P

● Proof starts from formulation of analysis over 
input language

● Weaker analysis, easier soundness theorem!
– vastly unsound analysis: easy soundness proof
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Our Soundness Theorem Form 

40

● for all program points, π, in computed 
subset, AnalysisClaimπ(P) → Pπ

● The analysis works for (nearly) all language 
features, all executions
– but qualifies which part of its results is 

guaranteed sound!
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Our Soundness Theorem Form 

41

● for all program points, π, in computed 
subset, AnalysisClaimπ(P) → Pπ

● Important concept: coverage
– how big is the subset of the program for 

which the analysis is sound
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Part II.  Approach: 
Defensive Design that 
Withstands Opaque Code

42



Yannis Smaragdakis
University of Athens

General Form of 
Sound Points-To Analysis

43

● Sound points-to information: need to compute all 
possible values that may ever arise at run time

● For the analysis to certify points-to set as sound, it 
needs to:
– closely track information all the way from its source
– ensure no possible interference

● Need precise analysis: 
– context-sensitive, flow-sensitive, over access paths
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When Can We Be Sound? 
Hello-World Case

44

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

program

a       new A1()

a       new A2()

a       ??? 

a       new A1()

a       new A2()

a       ??? 

points-to
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When Can We Be Sound? 
Hello-World Case

45

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

program

a       new A1()

a       new A2()

a (foo) new A1()  + 
a (bar) new A2()

a       new A1()

a       new A2()

a (foo) new A1()  + 
a (bar) new A2()

points-to
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When Can We Be Sound? 
Hello-World Case

46

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

void foo() {
  Object a = new A1();
  Object b = id(a);
}

void bar() {
  Object a = new A2();
  Object b = id(a);
}

Object id(Object a) {
  return a;
}

program

a       new A1()
b       new A1()

a       new A2()
b       new A2()

a (foo) new A1()  + 
a (bar) new A2()

a       new A1()
b       new A1()

a       new A2()
b       new A2()

a (foo) new A1()  + 
a (bar) new A2()

points-to
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More Illustration
● What do we know after this statement?

– that program expression x.fld refers to a1

– regardless of what x refers to
● access paths!

– also that any z.fld needs to be augmented

● ... if followed by:

we know y also refers to a1
47

x.fld = new A();   // abstract object a1x.fld = new A();   // abstract object a1

...   // analyzable code, no interference
y = x.fld;

...   // analyzable code, no interference
y = x.fld;
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Defensiveness Examples
● When the analysis is uncertain, it has to refuse 

to certify the soundness of a points-to set

● x.fld has an unknown points-to set after if 
– x.foo() could invoke dynamic code, do reflection, or merely 

be too complex to analyze precisely
● e.g., reach maximum context-sensitivity depth

48

if (P()) {
   x.fld = new A();   // abstract object a1
} else {
   x.foo();           // opaque
}

if (P()) {
   x.fld = new A();   // abstract object a1
} else {
   x.foo();           // opaque
}
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Method Calls
● Let's analyze the example further:

when is a call not opaque code?

– x has known points-to set (i.e., known foo)

– all possible foo do not perform opaque actions on an 
access path

● Involved topic, more in the paper
49

if (P()) {
   x.fld = new A();   // abstract object a1
} else {
   x.foo();           // opaque
}

if (P()) {
   x.fld = new A();   // abstract object a1
} else {
   x.foo();           // opaque
}
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Part III.  Technique: 
Laziness for Realistic 
Implementation

50
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Laziness

51

● A flow-sensitive, context-sensitive algorithm 
over access paths cannot scale

● Idea: compute points-to set only when we 
can prove the set is sound

● Implication: an empty set means unbounded
– the analysis could not compute all its 

possible contents
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Laziness, Concretely

52

● All points-to sets start empty
● Only compute a points-to set (i.e., make it 

non-empty) when
– all other points-to sets feeding into it are 

known 
– and are non-empty themselves

● Any points-to set that remains empty at end of 
analysis is marked T
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Laziness Benefits

53

● Scalable analysis
● Avoids wasted work! Never compute a 

points-to set, only to have the addition of 
more information make its contents non-
certifiably sound!
– i.e., T
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Evaluation Results

54
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Running Time
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Coverage
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Devirtualization Client
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Conclusions
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● Doop: early instance of intelligent system that just 
knows things about your program

● Also: fully sound analysis, for realistic languages, is 
possible!

● Different form of soundness theorem, coverage as 
important concept
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