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Overview

® What do we do?

static program analysis

“discover program properties that hold for all
executions”

® Vision: a system that knows more about your
program than you do

® How do we do it?

declarative (logic-based specification)
fast, powerful, new insights

Yannis Smaragdakis
University of Athens



Our Research: Doop
and friends: CClyzer, MadMax

® Since 2008:

Doop: a powerful framework for analyzing Java
bytecode

building on pointer analysis

" now just a substrate for more analyses

declarative, using the Datalog language

® |ots of offshoots
Cclyzer, for LLVM bitcode
MadMax/Gigahorse for Ethereum VM bytecode

[OOPSLA'18 Distinguished Paper Award]
38MLoC in 8 hours

Yannis Smaragdakis
University of Athens



Pointer Analysis: A Complex
Domain
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Algorithms Found In a 10-Page
Pointer AnaIyS|s Paper

J* Alias falsification for deleting a pointer assignment
prd corresponding to step 1 in Figure 2 */
procedure falsify_for_deleting assign{V)

N & pointer assignment to be deleted;

begin | P varlatlon points

en 1 in Figure 2 * begir procedure update.for.adding_assign(N,M)
1 u nC|ear 1 bey 1.| N: a pointer assignment to be added;
" | begi dmg t.;. Stt_.p 4 in Flgul‘e el M the statement after which statement N is added;
Lorklist(worklist,value) 2 |begin
2 3. 1. make N as a successor of M, and leave N without

any successors;
. create an empty worklist;

. aliases_intro_by._assignment(N,Y ES);
. repropagate_aliases(M, worklist);

every variant a new e ietpyes
algorithm

=
=1
=3
-
(=R
(=]
[ p T QRSN S Y ]

end . . . reiterate_worklist(worklist,Y ES);
3w ¢ a ‘:;’g:) Ko Qe s nd | 6 for cach may hold(M, A4, PA = (01,02)) = YES,
2 and may-hold(N, AA, PA) = NO
addit COI’I’eCtneSS propagated_at_call(N, AA, PA, - add (M, AA, PA) to worklist;
unc I ear N 7. reiterate_worklist(worklist, FALSIFIEDY;
33 an exit node begifjend

_exitimplies(N, AA, PA,value =*{ 1

Figure 8: Procedure for falsifying aliases that are po-

3.4 - bl ; M € 3“05'?3307(” } "1 5 |tentially affected by adding a pointer assignment
Incompara ein b4 iy pf:cmte.r asmgnment. EXIT Node of The Tnciion called Dy IV TespecLively,
. alias_implies_thru-assign( | 3. aliasespropagated.at_call(N,',0, FALSIFIED);
precision AA, PA, value); 1 4. for each may_hold(N, AA, PA) = YES
: : e olse if value is YES S* If the ealled finetion may genetate new aliases
: from the reaching aliases implied by P4 */
.| eng ;
begin ke ttie (M, AT, if 3 AA’ € bind(N, E, PA), such that some
end 1. e 1.4.3 else /* value is FALSIFIED PA’ (3 AA') = generated from AA’ at oxit X
2. | P make_false(M,AA, PA); alinses_propagated._at_call(N, A4, PA,
anure 1: Bx 3. end FALSIFIED);
_ 4. . 5. if & function becomes unreachable from the main pro-
bet Figure 5: Reiteration for the incremental algorith grim after the cil uinds in deleted, steps 3 s 4
s : are repeated on those calls within each of the
add (N, AA, PA) to worklist; and reachable functions
end 5 Figl 6. retterate_worklist{worklist, FALSIFIED);
fun| end
Flgure 4: Reintroduce aliases for naive falsification Fionira 7 Proasradiirvas Far Falaifrino aliacng srhickh oowms mwo




Program Analysis: a Domain of
Mutual Recursion

var points- to

caII graph exceptlons

ob| fld values

dynam|c proxies

[ reﬂectlon ]

Yannis Smaragdakis
University of Athens



Holistic Program Analysis:
“Everything Is Connected”
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A Vision Within Reach

* An intelligent system that knows more about
your program than you do

* “Everything is connected”

— all analysis aspects encoded separately, all benefitting
each other

* The Doop framework serves to illustrate

* Key: a declarative specification of all sorts of
static analyses

* In Doop: use of Datalog

Yannis Smaragdakis 10
University of Athens



Datalog To The Rescue!

® Datalog is relations + recursion
® Limited logic programming
SQL with recursion
Prolog without complex terms (constructors)

® Captures PTIME complexity class

® Strictly declarative

e.g., as opposed to Prolog
conjunction commutative
rules commutative

monotonic
Less programming, more specification

Yannis Smaragdakis
University of Athens
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Datalog: Declarative Mutual
Recursion

[ source ]
a = new A();

b = new B();

new C(); [::i>

b;

a; -
b;

Nn O v N

Yannis Smaragdakis
University of Athens



Datalog: Declarative Mutual
Recursion

[ source ] [ Alloc J
a = new A(); a | new A(Q)
b = new B(); b | new B()
c = new C(); c lnew CO)
E _ 2: [ Move ]
c = b; a |b
b |a
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens
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Datalog: Declarative Mutual

Recursion

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [ Move
c = b; a |b

b |a

c Ib

"VarPointsTo(var, obj)| <-
Alloc(var, obj).

[VarPointsTo(to, obj)]<-
Move(to, from),
VarPointsTo(from, obj).

University of Athens
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Datalog: Declarative Mutual
Recursion

| [ varPointsTo J

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [ Move
c = b; a |b

b |a

c Ib

head relation

"VarPointsTo[var, obj) <-
Alloc(var, obj).

“VarPointsTo[to, obj) <-
Move(to, from),

15

VarPointsTo(from, obj).

University of Athens



Datalog: Declarative Mutual
Recursion

| varPointsTo J

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [ Move
c = b; a |b

b |a

c Ib

VarPointsTo(var, obj) <-
|[Alloc(var, obj).|

VarPointsTo(to, obj) <-

Move(to, from),
VarPointsTo(from, obj).

16
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Datalog: Declarative Mutual
Recursion

[source ] [Alloc J [VarPointsTo ]

a = new A(); a | new A()

b = new B(); b | new B()

c = new C(); c lnew C(O)

a =b;

5 = A [Move ]

c = b; a |b
' :
c |Ib

VarPointsTo(var, obj) <-

(var, obj).

VarPointsTo(to, obj) <-

IMovelto, from),

|VarPointsTo|from, obj).

17
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Datalog: Declarative Mutual
Recursion

| varPointsTo J

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ l;: [Move
c = b; a |b

b |a

c Ib

join variable

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-

Move(to, [from),
VarPointsTo(from} obj).

18
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Datalog: Declarative Mutual
Recursion

| varPointsTo J

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [ Move
c = b; a |b

b |a

c Ib

recursion

VarPointsTo(var, obj) <-
Alloc(var, obj).

[VarPointsTo{to, obj) <-
Move(to, from),

IVarPointsToIfrom, obj).

19
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Datalog: Declarative Mutual
Recursion

[ source ] [ Alloc J [ VarPointsTo ]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() b | new B()

c = new C(); c |new C() c | new C()

a = b;

5 = A [Move ]

c = b; a |b
|
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens
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Datalog: Declarative Mutual
Recursion

[ source ] [ Alloc J [ VarPointsTo ]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() |b | new B() |

c = new C(); c | new C() c | new C()

a = b; {Move ]

b = a;

CcC = b; Ia I b I
A
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

21
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Datalog: Declarative Mutual
Recursion

[ source ] [ Alloc J [ VarPointsTo ]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() |b | new B() |

c = new C(); c | new C() c | new C()

a = b; [ﬁwove ] la | new B() |

b = a;

CcC = b; Ia I b I
:
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

22
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Datalog: Declarative Mutual

Recursion

| | VarPointsTo

[ source ] [ Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ l;: [ Move
c = b; a |b

b |a

c Ib

Nn N T ovw N O L

new
new
new
new
new
new
new

AQ)
BC)
cO)
BC)
AQ)
BC)
AQ)

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens

23



The Doop Framework

® Datalog-based static analysis framework for Java

® Declarative: what, not how @OOP

® Sophisticated, very rich set of analyses

subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-
site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering,
precise exception analysis

® Support for full semantic complexity of Java

jvm initialization, refiection analysis, threads, reference queues, native methods, class initialization,
finalization, cast checking, assignment compatibility

http://doop.program-analysis.org

Yannis Smaragdakis 24
University of Athens



Past Approaches and
Declarative Analysis

® Past approaches have flirted with declarative
analysis
® But no purely declarative approach
specification and algorithm confused

® Declarativeness considered unscalable in both
complexity and performance

“the first time | write an analysis it is typically in
Datalog, but then, once I'm convinced it’s precise, |
throw it out and | write it in Java, when | want to focus
on scalability.” (Naik, 2010)

Yannis Smaragdakis 25
University of Athens



Doop Makes Declarative
Analysis Real

® Complete, complex pointer analyses in Datalog
core specification: ~1500 logic rules
parameterized by a handful of rules per analysis flavor

® Efficient algorithms from specification
order of magnitude performance improvement
allowed to explore more analyses than past literature

® Approach: heuristics for searching algorithm space
targeted at recursive problem domains

® Demonstrated scalability with explicit representation
no BDDs

Yannis Smaragdakis 26
University of Athens



Not Expected

® Expressed complete, complex pointer analyses in
Datalog

“[E]ncoding all the details of a complicated program analysis problem
[on-the-fly call graph construction, handling of Java features] purely in
terms of subset constraints may be difficult or impossible.” (Lhotak)

® Scalability and Efficiency

“Efficiently implementing a 1H-object-sensitive analysis without BDDs
will require new improvements in data structures and algorithms”

Yannis Smaragdakis 27
University of Athens



Impressive Performance,

Implementation Insights
[OOPSLA’09, ISSTA’09]

Yannis Smaragdakis
University of Athens
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Large Speedup For Realistic

Analyses

7000

6000

5000 -

4000 -

3000 —

analysis time (seconds)

2000 -

1000 —

.

1]

doop T
paddle mm

antlr bloat

chart eclipse hsqldb

Yannis Smaragdakis
University of Athens
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Better Understanding of Existing
Algorithms, More Precise and
Scalable New Algorithms

[PLDI'10, POPL’11, CC'13, PLDI’'13, PLDI'14, FSE'18, OOPSLA'18]

Yannis Smaragdakis 30
University of Athens



Many More Work Threads

® Set-based pre-analysis [ooPsLA'13]
® universal optimization technique

® Completing a partial program [ooPsLA'13]

® making sense out of missing libraries

Soundness [CACM 2/15, ECOOP'18 (distinguished paper)]

Reflection and dynamic loading [APLAS'15, ECOOP'18, ISSTA'18]
Port to Souffle: a parallel Datalog engine [soar:17]
Must-alias analysis [sOAP'17, CC'18]

Taint analysis using points-to algorithms [ooPsLA'17]

Integrating heap snapshots in static analysis
[OOPSLA’'17, ISSTA'18]

Yannis Smaragdakis 31
University of Athens



Now Zombies
(ahem, soundness)

Yannis Smaragdakis
University of Athens
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Soundness in Static Analysis

®* We all want it!
® Sound: AnalysisClaim(P) - P

®* E.g., for a (may-) value-flow analysis: is every
possible run-time value modeled statically?

® Soundness is a design property of an analysis

— often broken up by language feature
* basically “do you fully handle this feature?”

- e.g., "do you handle arrays soundly?”

Yannis Smaragdakis 33
University of Athens



Soundiness Manifesto cacmz1s

* “There Iis no practical static whole-program
may-analysis that is sound”

- whole-program: models the heap

* What about all these soundness proofs?
— proof is for a limited language

— unsoundness due to dynamic features: reflection,
dynamic loading, eval

Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Yannis Smaragdakis 34
University of Athens



This Work: [ECOOP'18, Distinguished Paper Award]

Truly Sound Analysis, for Full Language

* Key elements:
- |. different form of soundness theorem

- |l. defensive design that withstands
opaque code
* |.e., code that could be doing (nearly) anything

— |ll. laziness necessary for a realistic
implementation

Yannis Smaragdakis 35
University of Athens



Part I. Motivation:
Different Form of Soundness
Theorem

Yannis Smaragdakis
University of Athens
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Conventional Soundness
Theorem (formulation by Xavier Rival)

* for all programs in stated language subset

and all executions in stated exec. subset
AnalysisClaim(P) - P

* Soundness is always qualified

* Problem: qualifications don't hold in practice
— realistic programs use dynamic features

Yannis Smaragdakis
University of Athens
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Even Worse: Perverse
Incentives!

* for all programs in stated language subset

and all executions in stated exec. subset
AnalysisClaim(P) - P

* Proof starts from formulation of analysis over
input language

* Weaker analysis, easier soundness theorem!
— vastly unsound analysis: easy soundness proof

Yannis Smaragdakis
University of Athens
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Our Soundness Theorem Form

* The analysis works for (nearly) all language
features, all executions

- but qualifies which part of its results is
guaranteed sound!

Yannis Smaragdakis 40
University of Athens



Our Soundness Theorem Form

* Important concept: coverage

- how big is the subset of the program for
which the analysis is sound

Yannis Smaragdakis 41
University of Athens



Part Il. Approach:
Defensive Design that
Withstands Opaque Code

Yannis Smaragdakis
University of Athens

42



General Form of
Sound Points-To Analysis

* Sound points-to information: need to compute all
possible values that may ever arise at run time

* For the analysis to certify points-to set as sound, it
needs to:

— closely track information all the way from its source
— ensure no possible interference

* Need precise analysis:
— context-sensitive, flow-sensitive, over access paths

Yannis Smaragdakis 43
University of Athens



When Can We Be Sound?
Hello-World Case

[ program } { points-to J
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = 1d(a);
}
vold bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a);
}
Object id(Object a) { <(— a 222
return a;
}

University of Athens



When Can We Be Sound?
Hello-World Case

[ program } { points-to J
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = 1d(a);
}
vold bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a);
}

Object id(Object a) { <(—=3a (foo) new A1() +
return a; a (bar) new A2()

}

Yannis Smaragdakis 45
University of Athens



When Can We Be Sound?
Hello-World Case

[ program } { points-to
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = id(a); b new A1()
}
void bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a); b new A2()
}

Object id(Object a) { <—a (foo) new A1()
return a; a (bar) new A2()

}

Yannis Smaragdakis
University of Athens



More lllustration

* What do we know after this statement?
x.fld = new A(); // abstract object a1l

— that program expression x. fld refers to a1

— regardless of what x refers to
* access paths!

— also that any z. fld needs to be augmented

* _..If followed bv:

‘e // analyzable code, no interference
y = x.fld;

we know y also refers to al

Yannis Smaragdakis 47
University of Athens



Defensiveness Examples

* When the analysis is uncertain, it has to refuse
to certify the soundness of a points-to set
if (P()) {
X.fld = new A(); // abstract object a1l

} else {
x.foo(); /] opaque

}
* x.fld has an unknown points-to set after if

- x.foo() could invoke dynamic code, do reflection, or merely
be too complex to analyze precisely

* e.g., reach maximum context-sensitivity depth

Yannis Smaragdakis 48
University of Athens



Method Calls

* Let's analyze the example further:
when is a call not opaque code?
if (P()) {
x.fld = new A(); /] abstract object a1l

x.foo(); /[ opaque

— x has known points-to set (i.e., known foo)

— all possible foo do not perform opaque actions on an
access path

Yannis Smaragdakis
University of Athens
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Part lll. Technique:
Laziness for Realistic
Implementation

Yannis Smaragdakis
University of Athens
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Laziness

* A flow-sensitive, context-sensitive algorithm
over access paths cannot scale

* |dea: compute points-to set only when we
can prove the set is sound

* Implication: an empty set means unbounded

— the analysis could not compute all its
possible contents

Yannis Smaragdakis 51
University of Athens



Laziness, Concretely

* All points-to sets start empty

* Only compute a points-to set (i.e., make it
non-empty) when

— all other points-to sets feeding into it are
Known

— and are non-empty themselves

* Any points-to set that remains empty at end of
analysis is marked T

Yannis Smaragdakis 52
University of Athens



Laziness Benefits

* Scalable analysis

* Avoids wasted work! Never compute a
points-to set, only to have the addition of
more information make its contents non-
certifiably sound!

-je., T

Yannis Smaragdakis
University of Athens
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Evaluation Results

Yannis Smaragdakis
University of Athens
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Running Time
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Coverage

EZZZzZ4 Intra-proc Sound = = = ean (Intra-proc Sound) [——JDefensive Init
gp = = = NMean (Defensive Init) [ Defensive Some s Mean (Defensive Some)
80

73.7

" 36.4 365 oA 2.
- - sl s

Yannis Smaragdakis 57
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Devirtualization Client

S Q,+ Q
‘3*(‘\ wg ‘Q‘ Q \Ib

?%

Yannis Smaragdakis
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Conclusions

* Doop: early instance of intelligent system that just
knows things about your program

* Also: fully sound analysis, for realistic languages, is
possible!

* Different form of soundness theorem, coverage as
important concept

Yannis Smaragdakis
University of Athens
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