PRIDE AND PREJUDICE
AND ZOMBIES

BY JANE AUSTEN AND SETH GRAHAME-SMITH

Declarative Static Analysis
and Zombies

.....
..........
.......

Established by the European Commission

Yannis Smaragdakis
University of Athens

Martin Bravenboer,
George Kastrinis, George Balatsouras,
Tony Antoniadis, George Fourtounis, Neville Grech

Kostas Ferles, Nikos Filippakis,
Sifis Lagouvardos, Yue Li, Petros Pathoulas,
Kostas Saidis, Tian Tan, Konstantinos Triantafyllou

F N/ GRAMME
EDUCATION AND LIFELONG LEARNING e’ NSRF
inyesting in knowfedge society] L
N & RELIGIOL: L

nUnion MANAGING AUTHORITY

®
@)
: o

h
wit ®
®
®

and

.8 LOGICBLOX

Declarative Static Analysis
and Soundness

Yannis Smaragdakis

®
University of Athens ®

with | @

Martin Bravenboer, ®

George Kastrinis, George Balatsouras, ®
Tony Antoniadis, George Fourtounis, Neville Grech ®

and

Kostas Ferles, Nikos Filippakis,

Sifis Lagouvardos, Yue Li, Petros Pathoulas,
Kostas Saidis, Tian Tan, Konstantinos Triantafyllou

‘ ATION .‘QN‘D LIFELON NSRF

* 4
R UK = "
= et LOGICBLOX
. uropean Union ANAGIN E & UTH O RITY -
ERVSE SILER Co-financed by Greece and the European Union

Established by the European Commission

Overview

® What do we do?

static program analysis

“discover program properties that hold for all
executions”

® Vision: a system that knows more about your
program than you do

® How do we do it?

declarative (logic-based specification)
fast, powerful, new insights

Yannis Smaragdakis
University of Athens

Our Research: Doop
and friends: CClyzer, MadMax

® Since 2008:

Doop: a powerful framework for analyzing Java
bytecode

building on pointer analysis

" now just a substrate for more analyses

declarative, using the Datalog language

® |ots of offshoots
Cclyzer, for LLVM bitcode
MadMax/Gigahorse for Ethereum VM bytecode

[OOPSLA'18 Distinguished Paper Award]
38MLoC in 8 hours

Yannis Smaragdakis
University of Athens

Pointer Analysis: A Complex
Domain

Results 1 - 20 @ Sort by | relevance _' v in 'ex_panded form v
.. QSave results to a Binder
flow-sensitive Resultpage:1 2 3 4 5 6 7 8 9 10 next >>
P 1 Semi-sppointer analysis
ﬁGId'SGﬂSltlve &, January 2009 POR=QQuRrfCcedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
@ programming languages
. Publisher: ACM
heap Clon I ng Full text available: ﬂw (246.09 KB) Additional Information: full citation, abstract, references, index terms

Bibliometrics: Downloads (6 Weeks): 34, Downloads (12 Months): 34, Citation Count: 0

context-sensitive
Pointer analysis is a prerequisite for many program analyses, and the effectiveness of these analyses depends

b|nary deC|S|On d|ag rams on the precision of the pointer information they receive. Two major axes of pointer analysis precision are
flow-sensitivity and context-sensitivity, ...

InC|USIOn-based Keywords: alias analysis, pointer analysis

unlﬁcatIOn-baSGd 2 EfﬁcieSEae!d-sensitive}jzointer analysis of C

a David 1. #1. Kelly, Chris Hankin
@November 2007 Transactions on Programming Languages and Systems (TOPLAS) , volume 30 Issue 1

On-’[he-ﬂy call graph Publisher: ACM

Full text available: ﬂﬂ (924 .64 KB) Additional Information: full citation, abstract, references, index terms
k-Cfa Bibliometrics: Downloads (6 Weeks): 31, Downloads (12 Months): 282, Citation Count: 1
ObJeCt SenSItIVe The subject of this article is flow- and context-insensitive pointer analysis. We present a novel approach for

precisely modelling struct variables and indirect function calls. Our method emphasises efficiency and simplicity
and is based on a simple ...

field-based
demand-driven

Keywords: Set-constraints, pointer analysis

3 Cloning-baseghgontext-sensitivedbointer alias analysis usin€binary decision diagrams >

Py T Mon | Cor = ——

@June 2004 PLDI '04: Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and
implementation

Publisher: ACM

ldmed e Teb e e TV E FATT AT LAON

Yannis Smaragdakis 6
University of Athens

Algorithms Found In a 10-Page
Pointer AnaIyS|s Paper

J* Alias falsification for deleting a pointer assignment
prd corresponding to step 1 in Figure 2 */
procedure falsify_for_deleting assign{V)

N & pointer assignment to be deleted;

begin | P varlatlon points

en 1 in Figure 2 * begir procedure update.for.adding_assign(N,M)
1 u nC|ear 1 bey 1.| N: a pointer assignment to be added;
" | begi dmg t.;. Stt_.p 4 in Flgul‘e el M the statement after which statement N is added;
Lorklist(worklist,value) 2 |begin
2 3. 1. make N as a successor of M, and leave N without

any successors;
. create an empty worklist;

. aliases_intro_by._assignment(N,Y ES);
. repropagate_aliases(M, worklist);

every variant a new e ietpyes
algorithm

=
=1
=3
-
(=R
(=]
[p T QRSN S Y]

end . . . reiterate_worklist(worklist,Y ES);
3w ¢ a ‘:;’g:) Ko Qe s nd | 6 for cach may hold(M, A4, PA = (01,02)) = YES,
2 and may-hold(N, AA, PA) = NO
addit COI’I’eCtneSS propagated_at_call(N, AA, PA, - add (M, AA, PA) to worklist;
unc I ear N 7. reiterate_worklist(worklist, FALSIFIEDY;
33 an exit node begifjend

_exitimplies(N, AA, PA,value =*{ 1

Figure 8: Procedure for falsifying aliases that are po-

3.4 - bl ; M € 3“05'?3307(” } "1 5 |tentially affected by adding a pointer assignment
Incompara ein b4 iy pf:cmte.r asmgnment. EXIT Node of The Tnciion called Dy IV TespecLively,
. alias_implies_thru-assign(| 3. aliasespropagated.at_call(N,',0, FALSIFIED);
precision AA, PA, value); 1 4. for each may_hold(N, AA, PA) = YES
: : e olse if value is YES S* If the ealled finetion may genetate new aliases
: from the reaching aliases implied by P4 */
.| eng ;
begin ke ttie (M, AT, if 3 AA’ € bind(N, E, PA), such that some
end 1. e 1.4.3 else /* value is FALSIFIED PA’ (3 AA') = generated from AA’ at oxit X
2. | P make_false(M,AA, PA); alinses_propagated._at_call(N, A4, PA,
anure 1: Bx 3. end FALSIFIED);
_ 4. . 5. if & function becomes unreachable from the main pro-
bet Figure 5: Reiteration for the incremental algorith grim after the cil uinds in deleted, steps 3 s 4
s : are repeated on those calls within each of the
add (N, AA, PA) to worklist; and reachable functions
end 5 Figl 6. retterate_worklist{worklist, FALSIFIED);
fun| end
Flgure 4: Reintroduce aliases for naive falsification Fionira 7 Proasradiirvas Far Falaifrino aliacng srhickh oowms mwo

Program Analysis: a Domain of
Mutual Recursion

var points- to

caII graph exceptlons

ob| fld values

dynam|c proxies

[reﬂectlon]

Yannis Smaragdakis
University of Athens

Holistic Program Analysis:
“Everything Is Connected”

<Y
k4

Gentl

HOLISTIC DETECTIVE AGENCY .' , 5]; RIES PREMIERE

| SATOCT229/8C

A Vision Within Reach

* An intelligent system that knows more about
your program than you do

* “Everything is connected”

— all analysis aspects encoded separately, all benefitting
each other

* The Doop framework serves to illustrate

* Key: a declarative specification of all sorts of
static analyses

* In Doop: use of Datalog

Yannis Smaragdakis 10
University of Athens

Datalog To The Rescue!

® Datalog is relations + recursion
® Limited logic programming
SQL with recursion
Prolog without complex terms (constructors)

® Captures PTIME complexity class

® Strictly declarative

e.g., as opposed to Prolog
conjunction commutative
rules commutative

monotonic
Less programming, more specification

Yannis Smaragdakis
University of Athens

11

Datalog: Declarative Mutual
Recursion

[source]
a = new A();

b = new B();

new C(); [::i>

b;

a; -
b;

Nn O v N

Yannis Smaragdakis
University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc J
a = new A(); a | new A(Q)
b = new B(); b | new B()
c = new C(); c lnew CO)
E _ 2: [Move]
c = b; a |b
b |a
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens

13

Datalog: Declarative Mutual

Recursion

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [Move
c = b; a |b

b |a

c Ib

"VarPointsTo(var, obj)| <-
Alloc(var, obj).

[VarPointsTo(to, obj)]<-
Move(to, from),
VarPointsTo(from, obj).

University of Athens

14

Datalog: Declarative Mutual
Recursion

| [varPointsTo J

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [Move
c = b; a |b

b |a

c Ib

head relation

"VarPointsTo[var, obj) <-
Alloc(var, obj).

“VarPointsTo[to, obj) <-
Move(to, from),

15

VarPointsTo(from, obj).

University of Athens

Datalog: Declarative Mutual
Recursion

| varPointsTo J

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [Move
c = b; a |b

b |a

c Ib

VarPointsTo(var, obj) <-
|[Alloc(var, obj).|

VarPointsTo(to, obj) <-

Move(to, from),
VarPointsTo(from, obj).

16

University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc J [VarPointsTo]

a = new A(); a | new A()

b = new B(); b | new B()

c = new C(); c lnew C(O)

a =b;

5 = A [Move]

c = b; a |b
' :
c |Ib

VarPointsTo(var, obj) <-

(var, obj).

VarPointsTo(to, obj) <-

IMovelto, from),

|VarPointsTo|from, obj).

17

University of Athens

Datalog: Declarative Mutual
Recursion

| varPointsTo J

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ l;: [Move
c = b; a |b

b |a

c Ib

join variable

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-

Move(to, [from),
VarPointsTo(from} obj).

18

University of Athens

Datalog: Declarative Mutual
Recursion

| varPointsTo J

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ 2: [Move
c = b; a |b

b |a

c Ib

recursion

VarPointsTo(var, obj) <-
Alloc(var, obj).

[VarPointsTo{to, obj) <-
Move(to, from),

IVarPointsToIfrom, obj).

19

University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc J [VarPointsTo]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() b | new B()

c = new C(); c |new C() c | new C()

a = b;

5 = A [Move]

c = b; a |b
|
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens

20

Datalog: Declarative Mutual
Recursion

[source] [Alloc J [VarPointsTo]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() |b | new B() |

c = new C(); c | new C() c | new C()

a = b; {Move]

b = a;

CcC = b; Ia I b I
A
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

21

University of Athens

Datalog: Declarative Mutual
Recursion

[source] [Alloc J [VarPointsTo]

a = new A(); a | new A() a | new A()

b = new B(); b | new B() |b | new B() |

c = new C(); c | new C() c | new C()

a = b; [ﬁwove] la | new B() |

b = a;

CcC = b; Ia I b I
:
c Ib

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

22

University of Athens

Datalog: Declarative Mutual

Recursion

| | VarPointsTo

[source] [Alloc

a = new A(); a | new A()
b = new B(); b | new B()
c = new C(); c lnew C(O)
E _ l;: [Move
c = b; a |b

b |a

c Ib

Nn N T ovw N O L

new
new
new
new
new
new
new

AQ)
BC)
cO)
BC)
AQ)
BC)
AQ)

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

University of Athens

23

The Doop Framework

® Datalog-based static analysis framework for Java

® Declarative: what, not how @OOP

® Sophisticated, very rich set of analyses

subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-
site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering,
precise exception analysis

® Support for full semantic complexity of Java

jvm initialization, refiection analysis, threads, reference queues, native methods, class initialization,
finalization, cast checking, assignment compatibility

http://doop.program-analysis.org

Yannis Smaragdakis 24
University of Athens

Past Approaches and
Declarative Analysis

® Past approaches have flirted with declarative
analysis
® But no purely declarative approach
specification and algorithm confused

® Declarativeness considered unscalable in both
complexity and performance

“the first time | write an analysis it is typically in
Datalog, but then, once I'm convinced it’s precise, |
throw it out and | write it in Java, when | want to focus
on scalability.” (Naik, 2010)

Yannis Smaragdakis 25
University of Athens

Doop Makes Declarative
Analysis Real

® Complete, complex pointer analyses in Datalog
core specification: ~1500 logic rules
parameterized by a handful of rules per analysis flavor

® Efficient algorithms from specification
order of magnitude performance improvement
allowed to explore more analyses than past literature

® Approach: heuristics for searching algorithm space
targeted at recursive problem domains

® Demonstrated scalability with explicit representation
no BDDs

Yannis Smaragdakis 26
University of Athens

Not Expected

® Expressed complete, complex pointer analyses in
Datalog

“[E]ncoding all the details of a complicated program analysis problem
[on-the-fly call graph construction, handling of Java features] purely in
terms of subset constraints may be difficult or impossible.” (Lhotak)

® Scalability and Efficiency

“Efficiently implementing a 1H-object-sensitive analysis without BDDs
will require new improvements in data structures and algorithms”

Yannis Smaragdakis 27
University of Athens

Impressive Performance,

Implementation Insights
[OOPSLA’09, ISSTA’09]

Yannis Smaragdakis
University of Athens

28

Large Speedup For Realistic

Analyses

7000

6000

5000 -

4000 -

3000 —

analysis time (seconds)

2000 -

1000 —

.

1]

doop T
paddle mm

antlr bloat

chart eclipse hsqldb

Yannis Smaragdakis
University of Athens

luindex lusearch

xalan

29

Better Understanding of Existing
Algorithms, More Precise and
Scalable New Algorithms

[PLDI'10, POPL’11, CC'13, PLDI’'13, PLDI'14, FSE'18, OOPSLA'18]

Yannis Smaragdakis 30
University of Athens

Many More Work Threads

® Set-based pre-analysis [ooPsLA'13]
® universal optimization technique

® Completing a partial program [ooPsLA'13]

® making sense out of missing libraries

Soundness [CACM 2/15, ECOOP'18 (distinguished paper)]

Reflection and dynamic loading [APLAS'15, ECOOP'18, ISSTA'18]
Port to Souffle: a parallel Datalog engine [soar:17]
Must-alias analysis [sOAP'17, CC'18]

Taint analysis using points-to algorithms [ooPsLA'17]

Integrating heap snapshots in static analysis
[OOPSLA’'17, ISSTA'18]

Yannis Smaragdakis 31
University of Athens

Now Zombies
(ahem, soundness)

Yannis Smaragdakis
University of Athens

32

Soundness in Static Analysis

®* We all want it!
® Sound: AnalysisClaim(P) - P

®* E.g., for a (may-) value-flow analysis: is every
possible run-time value modeled statically?

® Soundness is a design property of an analysis

— often broken up by language feature
* basically “do you fully handle this feature?”

- e.g., "do you handle arrays soundly?”

Yannis Smaragdakis 33
University of Athens

Soundiness Manifesto cacmz1s

* “There Iis no practical static whole-program
may-analysis that is sound”

- whole-program: models the heap

* What about all these soundness proofs?
— proof is for a limited language

— unsoundness due to dynamic features: reflection,
dynamic loading, eval

Method m = obj.getClass().getMethod(methName);
m.invoke(obj);

Yannis Smaragdakis 34
University of Athens

This Work: [ECOOP'18, Distinguished Paper Award]

Truly Sound Analysis, for Full Language

* Key elements:
- |. different form of soundness theorem

- |l. defensive design that withstands
opaque code
* |.e., code that could be doing (nearly) anything

— |ll. laziness necessary for a realistic
implementation

Yannis Smaragdakis 35
University of Athens

Part I. Motivation:
Different Form of Soundness
Theorem

Yannis Smaragdakis
University of Athens

36

Conventional Soundness
Theorem (formulation by Xavier Rival)

* for all programs in stated language subset

and all executions in stated exec. subset
AnalysisClaim(P) - P

* Soundness is always qualified

* Problem: qualifications don't hold in practice
— realistic programs use dynamic features

Yannis Smaragdakis
University of Athens

37

Even Worse: Perverse
Incentives!

* for all programs in stated language subset

and all executions in stated exec. subset
AnalysisClaim(P) - P

* Proof starts from formulation of analysis over
input language

* Weaker analysis, easier soundness theorem!
— vastly unsound analysis: easy soundness proof

Yannis Smaragdakis
University of Athens

38

Our Soundness Theorem Form

* The analysis works for (nearly) all language
features, all executions

- but qualifies which part of its results is
guaranteed sound!

Yannis Smaragdakis 40
University of Athens

Our Soundness Theorem Form

* Important concept: coverage

- how big is the subset of the program for
which the analysis is sound

Yannis Smaragdakis 41
University of Athens

Part Il. Approach:
Defensive Design that
Withstands Opaque Code

Yannis Smaragdakis
University of Athens

42

General Form of
Sound Points-To Analysis

* Sound points-to information: need to compute all
possible values that may ever arise at run time

* For the analysis to certify points-to set as sound, it
needs to:

— closely track information all the way from its source
— ensure no possible interference

* Need precise analysis:
— context-sensitive, flow-sensitive, over access paths

Yannis Smaragdakis 43
University of Athens

When Can We Be Sound?
Hello-World Case

[program } { points-to J
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = 1d(a);
}
vold bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a);
}
Object id(Object a) { <(— a 222
return a;
}

University of Athens

When Can We Be Sound?
Hello-World Case

[program } { points-to J
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = 1d(a);
}
vold bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a);
}

Object id(Object a) { <(—=3a (foo) new A1() +
return a; a (bar) new A2()

}

Yannis Smaragdakis 45
University of Athens

When Can We Be Sound?
Hello-World Case

[program } { points-to
voild foo() {
Object a = new A1(); <(— a new A1()
Object b = id(a); b new A1()
}
void bar() {
Object a = new A2(); <— a new A2()
Object b = 1d(a); b new A2()
}

Object id(Object a) { <—a (foo) new A1()
return a; a (bar) new A2()

}

Yannis Smaragdakis
University of Athens

More lllustration

* What do we know after this statement?
x.fld = new A(); // abstract object a1l

— that program expression x. fld refers to a1

— regardless of what x refers to
* access paths!

— also that any z. fld needs to be augmented

* _..If followed bv:

‘e // analyzable code, no interference
y = x.fld;

we know y also refers to al

Yannis Smaragdakis 47
University of Athens

Defensiveness Examples

* When the analysis is uncertain, it has to refuse
to certify the soundness of a points-to set
if (P()) {
X.fld = new A(); // abstract object a1l

} else {
x.foo(); /] opaque

}
* x.fld has an unknown points-to set after if

- x.foo() could invoke dynamic code, do reflection, or merely
be too complex to analyze precisely

* e.g., reach maximum context-sensitivity depth

Yannis Smaragdakis 48
University of Athens

Method Calls

* Let's analyze the example further:
when is a call not opaque code?
if (P()) {
x.fld = new A(); /] abstract object a1l

x.foo(); /[opaque

— x has known points-to set (i.e., known foo)

— all possible foo do not perform opaque actions on an
access path

Yannis Smaragdakis
University of Athens

49

Part lll. Technique:
Laziness for Realistic
Implementation

Yannis Smaragdakis
University of Athens

50

Laziness

* A flow-sensitive, context-sensitive algorithm
over access paths cannot scale

* |dea: compute points-to set only when we
can prove the set is sound

* Implication: an empty set means unbounded

— the analysis could not compute all its
possible contents

Yannis Smaragdakis 51
University of Athens

Laziness, Concretely

* All points-to sets start empty

* Only compute a points-to set (i.e., make it
non-empty) when

— all other points-to sets feeding into it are
Known

— and are non-empty themselves

* Any points-to set that remains empty at end of
analysis is marked T

Yannis Smaragdakis 52
University of Athens

Laziness Benefits

* Scalable analysis

* Avoids wasted work! Never compute a
points-to set, only to have the addition of
more information make its contents non-
certifiably sound!

-je., T

Yannis Smaragdakis
University of Athens

53

Evaluation Results

Yannis Smaragdakis
University of Athens

54

Running Time

4416
3500 |
3000]
2500
2162
2000
t 1659 W defensive
1500 [unsound
1000 8
4 5?8
500 329 idﬂzﬂ 257 ﬂlg? 201 281 355
. l]
S 3 A e £ 4:_\ rﬁ + \Q&\ (S;f
SFLF S F <8~ S & Q
AR ;;,'5“” @0‘ . § @Q‘@,ﬂa -‘+ ”‘*-‘ é“;*‘ ﬁe do}
Yannis Smaragdakis 56

University of Athens

Coverage

EZZZzZ4 Intra-proc Sound = = = ean (Intra-proc Sound) [——JDefensive Init
gp = = = NMean (Defensive Init) [Defensive Some s Mean (Defensive Some)
80

73.7

" 36.4 365 oA 2.
- - sl s

Yannis Smaragdakis 57
University of Athens

Devirtualization Client

S Q,+ Q
‘3*(‘\ wg ‘Q‘ Q \Ib

?%

Yannis Smaragdakis

7 - = = = [ean (Intra-proc Sound)] Defensive
= = m Mean (Defensive Init) T 1 Defensive Some ~ nnunnnn Mean (Defensive Some)

Init

o

@@@@@@ & & &
a\d\ﬁ Q < '5:‘ \faﬂ\

Conclusions

* Doop: early instance of intelligent system that just
knows things about your program

* Also: fully sound analysis, for realistic languages, is
possible!

* Different form of soundness theorem, coverage as
important concept

Yannis Smaragdakis
University of Athens

59

	Slide 1
	Slide 2
	Slide 3
	Overview
	Our Project
	Pointer Analysis: A Complex Domain
	Algorithms Found In a 10-Page Pointer Analysis Paper
	Program Analysis: a Domain of Mutual Recursion
	Holistic Program Analysis: “Everything Is Connected”
	Slide 10
	Slide 11
	Datalog: Declarative Mutual Recursion_clipboard1
	Datalog: Declarative Mutual Recursion_clipboard2
	Datalog: Declarative Mutual Recursion_clipboard3
	Datalog: Declarative Mutual Recursion
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Past Approaches and Declarative Analysis
	Doop Makes Declarative Analysis Real
	Not Expected
	Impressive Performance, Implementation Insights
	Large Speedup For Realistic Analyses
	Slide 30
	Many More Work Threads
	Summary and Vision
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59

