
Language Extensibility,
Metaprogramming and
Proof automation

Meta-F*

https://fstar-lang.github.io

https://project-everest.github.io/

https://fstar-lang.github.io/

Classified as Microsoft Confidential

• MSR Redmond
• Barry Bond

• Chris Hawblitzel

• Qunyan Magnus

• Kiran Muthabatulla

• Jonathan Protzenko

• Tahina Ramananandro

• Nikhil Swamy

• Gustavo Varo

• MSR Cambridge
• Antoine Delignat-Lavaud

• Cédric Fournet

• Christoph M. Wintersteiger

• Santiago Zanella-Béguelin

• MSR India
• Aseem Rastogi

• INRIA Paris
• Danel Ahman

• Kenji Maillard

• Benjamin Beurdouche

• Karthikeyan Bhargavan

• Victor Dumitrescu

• Cătălin Hriţcu

• Marina Polubelova

• CMU (Pittsburgh)
• Jay Bosamiya

• Aymeric Fromherz

• Bryan Parno

• Edinburgh
• Markulf Kohlweiss

• Interns, open-source
contributors, visitors,
alumns

• Guido Martinez

• Zoe Paraskevopoulou

• Yao Li

• Joonwon Choi

• Clément Pit-Claudel

• Nick Giannarakis

• Niklas Grimm

• Anita Gollamudi

• Nadim Kobeissi

• Matteo Maffei

• Asher Manning

• Monal Narasimhamurthy

• Gordon Plotkin

• Perry Wang

• Jean-Karim Zinzindohoue

Classified as Microsoft Confidential

• MSR Redmond
• Barry Bond

• Chris Hawblitzel

• Qunyan Magnus

• Kiran Muthabatulla

• Jonathan Protzenko

• Tahina Ramananandro

• Nikhil Swamy

• Gustavo Varo

• MSR Cambridge
• Antoine Delignat-Lavaud

• Cédric Fournet

• Christoph M. Wintersteiger

• Santiago Zanella-Béguelin

• MSR India
• Aseem Rastogi

• INRIA Paris
• Danel Ahman

• Kenji Maillard

• Benjamin Beurdouche

• Karthikeyan Bhargavan

• Victor Dumitrescu

• Cătălin Hriţcu

• Marina Polubelova

• CMU (Pittsburgh)
• Jay Bosamiya

• Aymeric Fromherz

• Bryan Parno

• Edinburgh
• Markulf Kohlweiss

• Interns, open-source
contributors, visitors,
alumns

• Guido Martinez

• Zoe Paraskevopoulou

• Yao Li

• Joonwon Choi

• Clément Pit-Claudel

• Nick Giannarakis

• Niklas Grimm

• Anita Gollamudi

• Nadim Kobeissi

• Matteo Maffei

• Asher Manning

• Monal Narasimhamurthy

• Gordon Plotkin

• Perry Wang

• Jean-Karim Zinzindohoue

Threat model

Goal: A secure channel

connect(server,port);

send “GET…”;

data = recv();

send “POST…”;

…

accept(port);

request = recv();

send “<html>…”;

order = recv();

…

Public Key

Infrastructure

Threat model

Goal: A secure channel

connect(server,port);

send “GET…”;

data = recv();

send “POST…”;

…

accept(port);

request = recv();

send “<html>…”;

order = recv();

…

Public Key

Infrastructure

20 years of attacks & fixes
Buffer overflows

Incorrect state machines

Lax certificate parsing

Weak or poorly implemented crypto

Side channels

Informal security goals

Dangerous APIs

Flawed standards

Mainstream implementations
OpenSSL, SChannel, NSS, …

Much discussions
IETF, Google, Mozilla, Microsoft, CDNs,
cryptographers, network engineers, …

Much improvements
• Modern design

• Fewer roundtrips

• Stronger security

New implementations
required for all

• An early implementer and verified too!

• Find & fix flaws before it’s too late

RFC 8446: Aug 2018

Including many of our
proposals

Mentioning many formal models of the
protocol, including our verified
implementation of the record layer

…

TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES

F*: A general

purpose

programming

language

and verification

tool

Verification Tools and Methodology

F*: A general

purpose

programming

language

and verification

tool

Verification Tools and Methodology

val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧ →

ST unit
requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*

poly1305_mac computes a

polynomial in GF(2130-5),

storing the result in tag,

and not modifying

anything else

F*: A general

purpose

programming

language

and verification

tool

kreMLin
Compiler from

(a subset of)

F* to C

Verification Tools and Methodology

val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧ →

ST unit
requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*

poly1305_mac computes a

polynomial in GF(2130-5),

storing the result in tag,

and not modifying

anything else

Efficient C

implementation

Verification imposes no

runtime performance

overhead

void

poly1305_mac(uint8_t *tag, uint32_t len, uint8_t *msg, uint8_t *key)

{

uint64_t tmp [10] = { 0 };

uint64_t *acc = tmp

uint64_t *r = tmp + (uint32_t)5;

uint8_t s[16] = { 0 };

Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}

8

Protocol specs

Protocol security proofs

Security spec

Crypto assumptions

Implementation

AES is a pseudo-random function

= Verified

= Trusted

Secure authenticated channel

Everest in Action, so far

Production deployments of Everest Verified Cryptography

…

TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES

So what is this F* thing anyway?

Two camps of program verification tools

F*: Bridging the gap

F*: Bridging the gap

F*: Bridging the gap

F*: Bridging the gap

F*: Bridging the gap

Beyond Pure Code

Effects

Beyond Pure Code

Effects

Beyond Pure Code

Effects

Beyond Pure Code

Effects

Effectful programs
with Hoare-style Specifications

Effectful programs
with Hoare-style Specifications

STEx

> Tr

Effectful programs
with Hoare-style Specifications

STExn

Exploiting Expressiveness & Extensibility

Low*: A subset of F* that compiles to C

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Stack allocation

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Pointer arithmetic

Stack allocation

Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Pointer arithmetic

Stack allocation

Erased

specification

But SMT-based proofs can go awry

And can be at a low level of abstraction

Domain-specific languages,
ad hoc proof automation,
extensibility

Domain-specific languages,
ad hoc proof automation,
extensibility

elaborator reflection

A passive compiler pipeline

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

A passive compiler pipeline

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order

Unification
Normalizer SMT Encoding

Scripting components with a metaprogram

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order

Unification
Normalizer SMT Encoding

Scripting components with a metaprogram

Parsing &

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order

Unification
Normalizer SMT Encoding

Scripting a language implementation
from within the language

From F* to Meta-F*,
In three easy steps

Proof-state: A collection of typed holes

Metaprograms are proofstate transformers

• Uses an existing F* effect for non-termination: Dv
• The type of the state is an abstract type: proofstate

• error is the type of exceptions

State + Exception + Non-termination monad

Metaprogramming as a user-defined effect

• Standard definitions of return, bind, get, raise

• Exceptions reset the state

Metaprogramming as a user-defined effect

Metaprogramming as a user-defined effect

put

Step 2

Primitive operations on

Inl

“Goal is not an arrow”

Step 2

Primitive operations on

Inl

“Goal is not an arrow”

Step 2

Primitive operations on

Meta

Inl

“Goal is not an arrow”

Step 2

Primitive operations on

Meta

“Goal is not an arrow”

Step 2

Primitive operations on

Meta

“Goal is not an arrow”
“Goal is not an arrow”

Step 3

Reflecting on syntax

Step 3

Reflecting on syntax

Step 3

Reflecting on syntax

unquot Met

Putting it together

id Type

Type

Type

Type

Putting it together

id Type

Type

Type

Type

Putting it together

id Type

Type

Type

Putting it together

id Type

Type

Putting it together

id Type

And can be at a low level of abstraction

Remember
this?

Metaprogramming mutually inverse
parsers and formatters

Metaprogramming mutually inverse
parsers and formatters

Putting it together

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)

SMT: Just one of F*’s tactic primitives
Meta

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)

But SMT-based proofs can go awry

Remember
this?

SMT + Tactics for more automated, robust proofs

SMT + Tactics for more automated, robust proofs

• Prior manual proof required 41 steps of
explicit rewriting lemmas (!)

Language extension with native
metaprograms

Language extension with native
metaprograms

Language extension with native
metaprograms

Language extension with native
metaprograms

Some takeaways

Some takeaways

Some takeaways

improve

Some takeaways

improve

…

TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES

Meta-

https://fstar-lang.github.io

https://project-everest.github.io/

https://fstar-lang.github.io/
https://project-everest.github.io/

