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Threat model

Goal: A secure channel

connect(server,port);

send “GET…”;

data = recv();

send “POST…”;

…

accept(port);

request = recv();

send “<html>…”;

order = recv();

…

Public Key

Infrastructure
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Public Key

Infrastructure

20 years of attacks & fixes
Buffer overflows

Incorrect state machines

Lax certificate parsing

Weak or poorly implemented crypto

Side channels

Informal security goals

Dangerous APIs

Flawed standards

Mainstream implementations
OpenSSL, SChannel, NSS, …



Much discussions
IETF, Google, Mozilla, Microsoft, CDNs, 
cryptographers, network engineers, … 

Much improvements
• Modern design 

• Fewer roundtrips

• Stronger security

New implementations
required for all

• An early implementer and verified too! 

• Find & fix flaws before it’s too late

RFC 8446: Aug 2018

Including many of our 
proposals

Mentioning many formal models of the 
protocol, including our verified 
implementation of the record layer
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TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto 

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES
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val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧ →

ST unit
requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*

poly1305_mac computes a 

polynomial in GF(2130-5), 

storing the result in tag, 

and not modifying 

anything else
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Verification Tools and Methodology

val nbytes 16 →
u32 →
nbytes len →
nbytes 32 ∧ →

ST unit
requires λ → ∈ ∧ ∈ ∧ ∈
ensures λ →

let in
let in
modifies ∧

Math spec in F*

poly1305_mac computes a 

polynomial in GF(2130-5), 

storing the result in tag, 

and not modifying 

anything else

Efficient C 

implementation

Verification imposes no 

runtime performance 

overhead

void

poly1305_mac(uint8_t *tag, uint32_t len, uint8_t *msg, uint8_t *key)

{

uint64_t tmp [10] = { 0 };

uint64_t *acc = tmp

uint64_t *r = tmp + (uint32_t)5;

uint8_t s[16] = { 0 };

Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}
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Protocol specs

Protocol security proofs

Security spec

Crypto assumptions

Implementation

AES is a pseudo-random function

= Verified

= Trusted

Secure authenticated channel





Everest in Action, so far

Production deployments of Everest Verified Cryptography
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TLS

RSA SHA

Network buffers

Untrusted network (TCP, UDP, …)

Crypto 

Algorithms

Project Everest

Verified Secure Components
in the TLS Ecosystem

QUIC
ECDH AES



So what is this F* thing anyway?



Two camps of program verification tools
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Beyond Pure Code

Effects
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Effectful programs 
with Hoare-style Specifications



Effectful programs 
with Hoare-style Specifications

STEx

> Tr



Effectful programs 
with Hoare-style Specifications

STExn



Exploiting Expressiveness & Extensibility

Low*: A subset of F* that compiles to C



Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory
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Low* to C

And to support compilation to C, in nearly 1-1 correspondence, for auditability of our generated code

Designed to allow manipulating a C-like view of memory

Pointer arithmetic

Stack allocation

Erased 

specification





But SMT-based proofs can go awry



And can be at a low level of abstraction



Domain-specific languages, 
ad hoc proof automation,
extensibility
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ad hoc proof automation,
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elaborator reflection
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Extraction aka

Code generation
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Parsing & 

Desugaring
Typechecker

Extraction aka

Code generation

Higher-order 

Unification
Normalizer SMT Encoding



Scripting a language implementation
from within the language



From F*  to Meta-F*, 
In three easy steps



Proof-state: A collection of typed holes



Metaprograms are proofstate transformers

• Uses an existing F* effect for non-termination: Dv
• The type of the state is an abstract type: proofstate

• error is the type of exceptions

State + Exception + Non-termination monad



Metaprogramming as a user-defined effect

• Standard definitions of return, bind, get, raise

• Exceptions reset the state



Metaprogramming as a user-defined effect



Metaprogramming as a user-defined effect

put



Step 2

Primitive operations on 

Inl

“Goal is not an arrow”
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Primitive operations on 

Meta

“Goal is not an arrow”
“Goal is not an arrow”



Step 3

Reflecting on syntax
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Reflecting on syntax

unquot Met



Putting it together

id Type

Type

Type
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And can be at a low level of abstraction

Remember 
this?



Metaprogramming mutually inverse 
parsers and formatters
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Putting it together

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)



SMT: Just one of F*’s tactic primitives
Meta

f

assert

𝑥: 𝑛𝑎𝑡, ℎ: 𝑥 > 1 ⊢ _ ∶ (𝑥 ∗ 𝑥 > 𝑥)



But SMT-based proofs can go awry

Remember 
this?



SMT + Tactics for more automated, robust proofs



SMT + Tactics for more automated, robust proofs

• Prior manual proof required 41 steps of 
explicit rewriting lemmas (!)



Language extension with native 
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