
"Systemized"	Static	Analysis	

Harry Xu

University of California, Los Angeles

2

Overview	of	My	Work	

 PL Systems

3

Static	Analysis:	Has	the	Problem	Been	Solved?	

More elegant

Academia
•  Hundreds of papers published in

the past decade

•  Algorithms become increasingly
sophisticated

Industry
•  Less than a dozen commercial

analysis tools

•  Use very simple algorithms

•  Software becomes increasingly
large and dynamic

More practical

4

The	Ever-increasing	Gap	

Scalability Difficulty in
implementation

Lost in multiple
languages

5

Attempts	from	the	PL	Community	
•  Poor scalability

•  Complicated
implementations

•  Lost in multiple
languages

+ Trading off precision for scalability

+ Minimizing generated information

- Further complicates the implementation

+ Using declarative models such as Datalog

- Fundamentally limited by a Datalog engine

- Nothing has been done

6

The	Outside	World	
•  The FB graph had 721M

vertices (users), 68.7B
edges (friendships) in
May 2011

•  Google Maps had 20
petabytes of data in 2015

7

Our	“Large”	Programs	
•  The Linux kernel, 16M lines

of code; a fully inlined version
has about 1B edges

•  HBase, 1.37M lines of code;
128M edges in a fully inlined
version

•  Hadoop, 546K lines of code;
44M edges in a fully inlined
version FB Graph: 68.7B edges

8

Time	for	a	Mindset	Shift?	

It is not because our
programs are too large,
but because we haven’t
thought about how to
develop scalable
systems

9

“Big	Data”	Thinking	
Solution =

(1) Large Dataset + (2) Simple Computation +

System Design

Don’t complicate the algorithm Leave the algorithm simple
Don’t worry about too much
(intermediate) data
Don’t stop at the interface
between app and system

Leverage modern computing
resources
Design and implement
customized systems

10

What	We	Did	
Built single-machine, disk-based systems specifically for
the static analysis workload

•  Graspan: a graph system for CFL-reachability
computation [ASPLOS’17]

•  Grapple: a graph system for finite-state property
checking [In Submission]

11

Why	Systemized	Static	Analyses	Work	
•  Poor scalability

•  Complicated
implementations

•  Lost in multiple
languages

No longer worry about memory blowup as
we have disk-support

Analysis developers only implement a few
interfaces; No longer worry about performance

Components in different languages are turned into
graphs of the same format and analyzed together

12

Graspan:	Context-Free	Language	(CFL)	Reachability	
•  A program graph P

•  A context-free Grammar G with balanced parentheses
properties

a b c

K à l1 l2

l1 l2

K

c is K-reachable from a

Reps, Program analysis via graph reachability, IST, 1998

13

A	Wide	Range	of	Applications	
•  Pointer/alias analysis

•  Dataflow analysis, pushdown systems, set-constraint
problems can all be converted to context-free-language
reachability problems

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006
Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008

a b c

Alias

Assign Assign

Alias à Assign+

b = a;
c = b;

14

•  Pointer/alias analysis

•  Address-of & / dereference* are the open/close
parentheses

A	Wide	Range	of	Applications	(Cont.)	

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006
Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008

a b c

Alias

& *

Alias à Assign+

b = & a; // Address-of
c = b;
d = *c; // Dereference

d

															| & Alias *

Alias

15

“Big	Data”	Thinking	

Solution =

(1) Large Dataset + (2) Simple Computation +

System Design

16

Turning	Code	Analysis	into	Data	Analytics	
•  Key insights:

–  The input is a fully inlined program graph
–  Adding transitive edges explicitly – satisfying (1)
–  Core computation is adding edges – satisfying (2)
–  Leveraging disk support for memory blowup

•  Can existing graph systems be directly used?
–  No, none of them support dynamic addition of a lot of edges

(1) Online edge duplicate check and (2) dynamic graph
repartitioning

17

	
Graspan	[Wang-ASPLOS’17]	
•  Scalable

–  Disk-based processing on the developer's work machine

•  Parallel
–  Edge-pair centric computation

•  Easy to implement a static analysis
–  Implement a few interfaces

4 students + 1 postdoc, 1.5 years of development; implemented in both Java and C++
https://github.com/Graspan/

18

How	It	Works?	

GRAMMAR RULES

G

19

Granspan	Design	

Preprocessing Edge-Pair Centric
Computation Postprocessing

20

Computation	Occurs	in	Supersteps	

Preprocessing Edge-Pair Centric
Computation Postprocessing

21

Preprocessing Edge-Pair Centric
Computation Postprocessing

0

1

2

3

4

0 1 2
A B

C

Each	Superstep	Loads	Two	Partitions	

22

Each	Superstep	Loads	Two	Partitions	

Preprocessing Edge-Pair Centric
Computation Postprocessing

0

1

2

3

4

We keep iterating until delta is 0

23

Post-Processing	

Preprocessing Edge-Pair Centric
Computation Postprocessing

•  Repartition oversized partitions to maintain balanced
load on memory

•  Save partitions to disk

•  Scheduler favors in-memory partitions and those with
higher matching degrees

24

What	We	Have	Analyzed	

•  With
– A fully context-sensitive pointer/alias analysis
– A fully context-sensitive dataflow analysis

• On a Dell Desktop Computer with 8GB memory and 1TB
SSD

Program #LOC #Inlines

Linux 4.4.0-rc5 16M 31.7M
PostgreSQL 8.3.9 700K 290K

Apache httpd 2.2.18 300K 58K

25

	
Evaluation		
•  Can the interprocedural analyses improve D. Englers’ checkers?

–  Found 85 new NULL pointer bugs and 1127 unnecessary NULL tests in Linux
4.4.0-rc5

•  How well does Graspan perform?
–  Computations took 11 mins – 12 hrs

•  How does Graspan compare to other systems?
–  GraphChi crashed in 133 seconds
–  Traditional implementations of these algorithms ran out of memory in most cases
–  Datalog (SociaLite) –based implementation ran out of memory in most cases

•  Will try a differential dataflow system like Naiad

26

Grapple:	A	Finite-State	Property	Checker	
•  Many bugs in large-scale systems have finite-state

properties
–  Many OS bugs studied in Chou et al. in 2001 are finite state

property bugs: misplaced locks, use-after-free, etc.
–  Most distributed system bugs studied in Gunawi et al. in

2014 are finite state property bugs: socket leaks, task state
problems, mishandled exceptions, etc.

Gunawi et al., What bugs live in the cloud? a study of 3000+ issues in cloud systems, SoCC, 2014
 Chou et al., An empirical study of operating systems errors, SOSP, 2001

27

Analyses	Under	the	Hood	
•  What we need for the checker

–  Extract sequences of method calls on each object of
interest

–  Check them against the FSM specification

•  What analyses we need
–  Alias analysis
–  Dataflow analysis
–  Context sensitivity and path sensitivity

28

Grapple	
•  Phases

–  A fully path-sensitive, context-sensitive alias analysis
–  A fully path-sensitive, context-sensitive dataflow analysis
–  Extract event sequences

•  Computation Model
–  Edge-pair-centric model
–  Challenge: how to represent and solve path constraints

during graph processing

29

Grapple	Computation	Model	
•  A program graph P

•  A context-free grammar G with balanced parentheses
properties

•  C = c1 ∧ c2 is satisfiable

a b c

K à l1 l2

 l1,c1

 l2,c2

K, C

c is K-reachable from a

30

Path	Constraint	Representation	
•  Challenges

–  Each edge carries only fixed-size data
–  The size is often smaller than 4 bytes

•  Using interprocedural control flow execution tree
(ICFET) as an index engine

•  Each edge contains a path encoding, which is used to
query for a path constraint based upon ICFET

31

Control	Flow	Execution	Tree	(CFET)	

x = parse(args[0]);

y = x;

if(x > 0) { y--; }
else { y++; }

if(y > 0) {…}
else {…}
return;

public static void main(String[] args) {
1 FileWriter out = null, o = null;
2 int x = Integer.parseInt(args[0]), y=x;

3 if(x >= 0) {
4 out = new FileWriter("out.txt");
5 o = out;
6 y--;

}
7 else {
8 y++;

}

9 if(y > 0) {
10 out.write(x);
11 o.close();

}

12 return;
}

Open

Error

Init

close()

write()

write()
/close()

new()

Close

close()

write()

out

o

object

out

x>=0

x-1>0

new

assign

0

2

6

o

0
x>=0

1

3 4

x+1>0
2

5 6

x-1>0

TF

F T F T

out

o

object

out

new

assign

0

2

6

o

[0, 2]

[2, 6]

A simple numbering algorithm: T child -> ID * 2; F child -> ID * 2 + 1

Built before the graph computation starts

0
2

1
4, 6

3, 5

32

Path	Representation 		
•  An intraprocedural CFET path can be uniquely encoded

as a pair [IDstart, IDend]
•  Decoding can be done efficiently online

•  Loops are unrolled a certain number of times

public static void main(String[] args) {
1 FileWriter out = null, o = null;
2 int x = Integer.parseInt(args[0]), y=x;

3 if(x >= 0) {
4 out = new FileWriter("out.txt");
5 o = out;
6 y--;

}
7 else {
8 y++;

}

9 if(y > 0) {
10 out.write(x);
11 o.close();

}

12 return;
}

Open

Error

Init

close()

write()

write()
/close()

new()

Close

close()

write()

out

o

object

out

x>=0

x-1>0

new

assign

0

2

6

o

0
x>=0

1

3 4

x+1>0
2

5 6

x-1>0

TF

F T F T

out

o

object

out

new

assign

0

2

6

o

[0, 2]

[2, 6]

Example: [0, 6] uniquely identifies the
right most path

Decoding can be done by right shifts

Symbolic execution used to compute
conditions

33

Interprocedural	CFET	
void foo (int x) {
 int y = x + 1;
 if (x > 0) { y = bar (2 * x); //f2 }
 if (y < 0) {…}
 return;
}

int bar (int a) {
 if (a < 0) {return a + 1;}
 return a – 1;
}

0
x>0

TF

1

3 4

x+1<0F T

2

5 6

F T

private void foo(int x) {
1 int y = x+1;
2 if(x > 0) {
3 y = bar(2*x);

}
4 if(y < 0) {
5 …

}
6 return;

}

private int bar(int a) {
7 if(a < 0) {
8 return a++;

}
9 return a--;

}

0
a<0

1 2

TF

y<0

a=2*x,
(f2

y=a-1,
)f2 y=a+1,

)f2

foo(x)

bar(a)

Connecting callers with callees using call and return edges, annotated
with call site IDs and symbolic equations

34

Interprocedural	Path	Representation	
•  A sequence of intervals

–  [2, 0], 25, [2, 0]
–  Bounded by the call

stack depth

•  A constraint can be
computed by extracting
constraints for path
fragments and
combining them into a
conjunctive form

0
x>0

TF

1

3 4

x+1<0F T

2

5 6

F T

private void foo(int x) {
1 int y = x+1;
2 if(x > 0) {
3 y = bar(2*x);

}
4 if(y < 0) {
5 …

}
6 return;

}

private int bar(int a) {
7 if(a < 0) {
8 return a++;

}
9 return a--;

}

0
a<0

1 2

TF

y<0

a=2*x,
(f2

y=a-1,
)f2 y=a+1,

)f2

foo(x)

bar(a)

35

Computation	
•  Use Graspan’s edge-pair-centric computation model

•  Z3 is used for constraint solving

•  Each partition is much easier to become imbalanced
–  Eager repartitioning during the computation

36

Evaluation	Subjects	

Program #LoC Version
Apache ZooKeeper 206K 3.5.0
Apache Hadoop 568K 2.7.5
HDFS 546K 2.0.3
Apache HBase 1.37M 1.1.6

37

Checkers	Implemented	
•  IO checker

•  Socket checker

•  Exception handling checker

•  Lock usage checker

•  Checkers: 3.2K lines of Java code

•  Grapple: 13K lines of C++ code, with about 1.5K lines reused from
Graspan

•  1 postdoc + 5 students, 1 year of effort

38

Bugs	Found	

Grapple reported a total of 359 true bugs and 17 false warnings
 4.7% false warning rate

39

Grapple	Performance	

The execution time ranges from 2.5 hours to 19 hours

40

Performance	Breakdown	

41

Conclusion	
•  Develop systems to solve PL problems

•  Try them out
–  https://github.com/graspan
–  https://github.com/grapple-system

42

Acknowledgements	
•  My (current and former) students and postdocs

–  Zhiqiang Zuo (postdoc 2015 – 2018, currently an Ass. Prof.
at Nanjing University)

–  Kai Wang (Ph.D. student)
–  John Thorpe (Ph.D. student)
–  Aftab Hussain (M.S. student)

43

PL	for	Systems	

I/O, Network,
Computation Model, …

Memory management,
compilation, hybrid

memories, …

Systems

Language
Runtime My Work

Existing Work

44

Systems	for	PL	

Big Data Systems

SAT Solver,
Program Analysis,

Model Checking, …

System
Solutions

PL
Problems

Our Work

Existing Work

Scalable Results

45

Evaluation	II	
•  Is Graspan efficient and scalable?

–  Computations took 11 mins – 12 hrs

46

Evaluation	III	
•  Graspan v/s other engines?

–  GraphChi crashed in 133 secs

[101] X. Zheng and R. Rugina, Demand-driven alias analysis for C, POPL, 2008
[45] M. S. Lam, S. Guo, and J. Seo. SociaLite: Datalog extensions for efficient social network

 analysis. ICDE, 2013.

47

Program	Graph	Generation	
x = parse(args[0]); y = x;

FilterWriter out = null, o = null;

if(x > 0) {
 out = new FilterWriter();
 o = out;
 y--;
}
else { y++; }

if(y > 0) {out.write(…); o.close();}

return;

public static void main(String[] args) {
1 FileWriter out = null, o = null;
2 int x = Integer.parseInt(args[0]), y=x;

3 if(x >= 0) {
4 out = new FileWriter("out.txt");
5 o = out;
6 y--;

}
7 else {
8 y++;

}

9 if(y > 0) {
10 out.write(x);
11 o.close();

}

12 return;
}

Open

Error

Init

close()

write()

write()
/close()

new()

Close

close()

write()

out

o

object

out

x>=0

x-1>0

new

assign

0

2

6

o

0
x>=0

1

3 4

x+1>0
2

5 6

x-1>0

TF

F T F T

out1

o1

object

out0

new

assign

0

2

6

o0

{[0, 2]}

{[2, 6]}

