Analyzing A

Debuggir

Model Interna

g and Adversari

Sample Attack Detection

Xiangyu Zhang @ ETH, 2018

PURDUE

s for
al

Al Driven Computing

- Al Models are becoming an integral part of modern computing
- Autonomous vehicles, Apple Face ID, iRobots, Cotana, and computer games

- Al Models are shared/reused just like software components
- Python face recognition package

big@ ,__..f-."'_openML Gradientzoo nl.\

Al Driven System Engineering

Tuning / Debugging / Optimization

Evaluation

Implementation

Al Models Are Prone to Bugs and
Vulnerabilities Just Like Software Components

. Traditional engineering bugs
- Coding bugs, data cleaning, mis-behaved data partitioning, improper data augmentation

- Model bugs — misconducts in the Al model engineering process leading to
undesirable consequences

- Root causes: biased training data, defective model structure, hyper-parameter(s), optimization
algorithms, batch size, loss function, activation function(s)

- Symptoms: low model accuracy, vulnerable to adversarial sample attacks

- E.g., State-of-the-art pre-trained models can only achieve 80% accuracy on an ImageNet
classification challenge; 73% accuracy on Children’s Book Test challenge.

- Numerous attacks on Al systems (Trojaning, perturbation, and patching attacks)

Debugging Al Models

* Debugging is hard

* DNNs are not human understandable/interpretable
e Fach neuron denotes some abstract feature

 Lack of scientific way of locating the root causes
* Trial-and-error

* Unclear how to fix bugs
e Cannot directly change weight values
e Cannot train with failure inducing inputs

Theme of the Talk

- Leveraging what we have learned in program analysis and software
engineering to open the box

. Qutline

- MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection (FSE'18)

- Aml: Attacks Meet Interpretability, Attribute-steered Detection of Adversarial
Samples (NIPS"18)

Al Model Bugs

- Input related bugs
- Biased training inputs
- Overfitting and underfitting

- Inclusion of problematic inputs in the training set leads to difficulty of convergence
- Training a model to evaluate propositional logic expression

TAFVT

Al Model Bugs

Input related bugs

Biased training inputs
Overfitting and underfitting

Inclusion of problematic inputs in the training set leads to difficulty of convergence
- Training a model to evaluate propositional logic expression

Problematic input embedding (for RNN models)

Similar embeddings do not entail similar semantics
“new” and “create”

. Structural bugs
- Redundant/insufficient layers/neurons
In-effective structures
Forget gates in (LSTM) do not retain/throw-away certain contextual information

. ISubop‘umal setting of reward values leading to extremely long training time in reinforcement
earning

Quad

time = 0.0000s
frame = 0

roll = 0.0000
pitch = 0.0000
yaw = 0.0000

x_dot = 0.0000 N amm
y_dot = 0.0000
z_dot = 0.0000

After fixing the reward setting (four hours training)

X Quad

time = 0.0000s
frame = 0

roll = 0.0000

pitch = 0.0000

yaw = 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000

= 0.0000 e L
x_dot = 0.0000]
y_dot = 0.0000

z_dot = 0.0000

N« X =0T

Al Model Bugs

- Input related bugs
- Biased training inputs
Overfitting and underfitting

- Inclusion of problematic inputs in the training set leads to difficulty of convergence

- Problematic input embedding (for RNN models)
Embedding of training inputs does not provide good coverage

Similar embeddings do not entail similar semantics
General embeddings may not work well for domain-specific applications

. Structural bugs
- Redundant/insufficient layers/neurons
- In-effective structures
Forget gates in (LSTM) do not retain the appropriate contextual information

. ISuboptimal setting of reward values leading to extremely long training time in reinforcement
earning

Overfitting and Underfitting Bugs

- We say a model has an underfitting bug if for some label, both training
and test accuracies are lower than a threshold t

. tis domain specific

- We say a model has an overfitting bug if for some label, its training
accuracy is higher than test accuracy by at least some threshold

Existing Works

* Applying pre-defined image operations on existing data points
* Rotation, mirror, clip, brightness change etc.

* Using generative models to collect new data points
 Variational Autoencoder (VAE) or Generative Adversarial Net (GAN)
* Trend of using GAN

W

Random
Source

Generator Real Example Discriminator

r~

‘ective

Using GAN is Not That E

Use 14 GANs downloaded from various sources for MNIST to generate inputs

For each GAN, randomly select 40,000 generated inputs as additional training data
to fix a MNIST model that has an underfitting bug for digit 5 (only 74% accuracy)

7 GANSs fail to improve either digit 5 or the whole model, 4 improve the model but
not digit 5, and only 3 can improve both (digit 5 to 83% after 1 hour of training)

* MODE can improve to 94% in 5 mins
Root Cause: does not consider the reasons why a NN misbehaves

ol<]x]5]515

What Have We Learned in Software Debugging

O-—v
7) ,A‘\, > o] "1 — [} — f —- " Prograrn
& 0—X o Debugging
Programs State Differential F3'U|t‘ Code Fix

Analysis Localization

MODE: Al Model State Differential Analysis and
Input Selection

Q—v
: — l .H Program
.; #"} ...} q D_ V ﬁ ’ Debu in
o

Programs State Differential Fault

s All®
Models \ g _J J >

Code Fix

¢ 9000

MODE

>|= —

State lefer.entlal Faulty .Fea.ture High Quality Training Data
Analysis Localization

Overview

= -

Dataset

Results

l

-

v Newly Generated Dataset
v 4 S

Selected New Dataset Input Selection DiTferential
Heatmap

Heat Map

* A matrix representing the importance of each neuron in a hidden layer
* One heat map for each hidden layer
* Each neuron denotes some abstract feature

* Visualization of heat-map
* One pixel denotes the importance of one neuron/feature (to the output)
* Red — positive importance

* Blue — negative importance
2 3 4

—

- -

A Motivating Example

* Assume a model that has an underfitting bug for label 1 (other numbers misclassified to 1)

(4

* Benign heat-map Faulty heat-map Differential heat-map

* Selected samples samples should not be selected

/||] L7

-

i

Heat-map Computation

e Cannot use gradient information -- how much output changes can be induced by
weight value changes

* Gradients are with-respect-to weight values, whereas importance is with-
respect-to features (neurons)

* Importance measures how much influence a feature has on the classification
result of an output label

* Important features may not have weight values of a large gradient

7

K

DU
N

‘ JRK
/

V

_— - 9 U d
Original Model Feature Model

e Feature model: part of the original model (including weights) + a newly trained
SoftMax layer (used for prediction)

* The weights of the last layer measure the importance of individual features (for
the prediction)

* The normalized weights for an output label of the newly trained SoftMax layer is
the Heatmap

* Normalize the weights to [-1,1] with the absolute values denoting the importance and the
signs denoting positive/negative importance

Differential Heat-maps for Under-fitting

* Two kinds of root causes
(1) Extracted features cannot fully represent the uniqueness of the target label
* Selecting cases that can emphasize the uniqueness

(2) Cases mis-classified to the target label share common features with some
cases of the target label
* Not to select such cases

* Two corresponding kinds of differential heap-maps
e For (1),
* DHM, [f] = HM, [f] = HM, [f], when [HM, [f]—HM, [f]| is minimal for k!=L

* DHM,[f] represents the minimal similarity of feature f regarding the target
label L and some other output label, larger values mean more uniqueness

Example

HE

Ak
HM, HM, DHM, 0 0

* DHM shows the importance features to differentiate two output
labels, as shown in the example

* Selecting cases with strong presence in the red zones and weak
presence in the blue zones would help improve unigueness

Differential Heat-maps for Under-fitting

* Two kinds of root causes
(1) Extracted features cannot fully represent the uniqueness of the target label
» Selecting cases that can emphasize the unigueness

(2) Cases mis-classified to the target label share common features with some cases for
the target label

e Selecting samples that the model to disambiguate
e Two corresponding kinds of differential heap-maps
e For (1), ...
* For (2),

* DHM L[f] =HM misclassified as L [f] —HM correctly classified as L [f]
* Alarge (red) value indicates the feature is critical for misclassification

HM 1 HM mis-classified as 1 DHM 1 O Q

e DHM shows the confusing features

» Selecting cases that avoid the red areas and cover the blue areas will
benefit

Differential Heat-map for Over-fitting

* Root cause — narrowly scoped training data, model too large, or training with too
many epochs

* More diverse training data for the target label is needed

* DHM L[ﬂ =m OXk(H M L misclassified ask[f] —HM correctly classified as L [ﬂ)
* Alarge value denotes that the feature is responsible for misclassifying L to k

* We need more samples that has this feature

H MO H MO mis-classified DHMO 0 o
* The red regions in the DHM denote the features helpful for
generalization, the blue regions denote the overfitted features.

e Larger-sized O are needed

Input Selection

e For each new input i, we feed it to the feature model (without running
through the output layer) to acquire a feature value vector V.

score=V * DHM
 DHM is a vector pointing to the most promising direction

Evaluation

* RQ1: How effective and efficient is MODE in fixing model bugs?

* RQ2: How does MODE compare to using random samples or faulty samples to fix
model bugs?

* RQ3: What is the impact of different parameters?

Experiment One

Three data sets

* Digit recognition (MNIST), Fashion-icon recognition (FM), Object recognition (CIFAR)
For each data set, we have downloaded multiple models

e Total 20 models

* 20k-20M weight values

Training with batches of 2000 samples, capped at 20,000 samples and 4 hours for small
models, and 40,000 samples and 24 hours for large models

Partition an original data set 30% training, 10% validation, 10% test, 50% bug fixing

Select one UF and one OF for each model
* UF: the output label with the lowest training and test accuracy
e OF: the label with good training accuracy but the lowest test accuracy

Effectiveness: MINIST

Table 1: Fixing Model Bugs Summary

Model Bug Accuracy MODE Randomly Selecting GAN Samples Failing Sample
(Size) Type Model Label #Samples Time MAcc LAcc MAcc LAcc #Samples Time MAcc LAcc
MNIST-1 Under-fitting 88% 74% 500+1500 5m 93% 94% 90% 83% 20000 1h2m 86% 80%

7k Over-fitting 84% 81% 500+1500 6m 92% 91% 89% 87% 20000 1h4m 85% 77%
MNIST-2 Under-fitting 89% 72% 50041500 S5m 92% 92% 90% 88% 20000 57m 85% 82%
185k Over-fitting 84% 76% 500+1500 Sm 93% 93% 87% 85% 20000 1h4m 83% 74%
MNIST-3 Under-fitting 86% 76% 50041500 5m 94% 94% 92% 87% 20000 1h10m 88% 82%
185k Over-fitting 84% 78% 500+1500 5m 94% 95% 93% 90% 20000 55m 84% 82%
MNIST-4 Under-fitting 86% 78% 500+1500 5m 94% 94% 86% 84% 20000 56m 85% 80%
185k Over-fitting 84% 74% 500+1500 5m 92% 92% 84% 83% 20000 50m 88% 78%
MNIST-5 Under-fitting 82% 77% 50041500 S5m 94% 92% 87% 88% 20000 54m 84% 74%
122k Over-fitting 85% 77% 500+1500 5m 92% 92% 88% 90% 20000 54m 82% 76%
MNIST-6 Under-fitting 84% 72% 1000+3000 10m 93% 93% 89% 84% 40000 1h58m 81% 78%
244k Over-fitting 84% 74% 1000+3000 9m 94% 94% 86% 82% 40000 2h 79% 76%
MNIST-7 Under-fitting 87% 77% 1000+3000 9m 93% 93% 88% 85% 40000 2h9m 84% 75%
185k Over-fitting 85% 72% 1000+3000 9m 93% 91% 87% 88% 40000 2h4m 87% 82%
MNIST-8 Under-fitting 86% 73% 1000+3000 10m 93% 93% 87% 82% 40000 1h54m 88% 76%
185k Over-fitting 84% 73% 1000+3000 12m 93% 94% 88% 85% 40000 2hé6m 87% 76%
MNIST-9 Under-fitting 84% 73% 1000+3000 9m 94% 95% 88% 88% 40000 2h 81% 73%
257k Over-fitting 84% 72% 1000+3000 9m 93% 93% 86% 86% 40000 2h3m 87% 77%

Effectiveness: Fashion-MINIST

Table 1: Fixing Model Bugs Summary

FM-1 Under-fitting 88% 80% 500+1500 Sm 93% 90% 2(10) 84% 88% 20000 1h2m 83% 78%
493k Over-fitting 87% 82% 500+1500 5m 94% 94% 3(10) 89% 90% 20000 1h4m 88% 84%
FM-2 Under-fitting 85% 77% 500+1500 5m 95% 95% 2(10) 89% 88% 20000 1h9m 87% 80%
1.2M Over-fitting 87% 74% 500+1500 5m 94% 94% 2(10) 90% 84% 20000 1h3m 85% 80%
FM-3 Under-fitting 87% 72% 500+1500 10m 93% 91% 2(10) 89% 78% 20000 1h12m 89% 76%
3.2M Over-fitting 85% 69% 500+1500 9m 93% 93% 2(10) 88% 88% 20000 1h7m 88% 78%
FM-4 Under-fitting 86% 73% 500+1500 S5m 92% 94% 3(10) 83% 80% 20000 1h3m 87% 73%
765k Over-fitting 85% 74% 500+1500 5m 91% 92% 1(10) 88% 80% 20000 1h9m 87% 75%
FM-5 Under-fitting 87% 80% 500+1500 5m 92% 92% 2(10) 87% 86% 20000 1h3m 79% 74%
113k Over-fitting 83% 73% 500+1500 5m 92% 93% 2(10) 83% 82% 20000 1h 86% 80%
FM-6 Under-fitting 89% 81% 500+1500 5m 93% 95% 2(10) 91% 91% 20000 1h3m 83% 75%

26M Over-fitting 82% 74% 500+1500 9m 92% 94% 3(10) 85% 83% 20000 1h2m 85% 80%

Effectiveness: CIFAR

Table 1: Fixing Model Bugs Summary

CIFAR-1 Under-fitting 79% 64% 500+1500 6m 88% 89% 0(3) 74% 64% 40000 1h14m 79% 66%
62k Over-fitting 79% 65% 500+1500 7m 92% 91% 0(3) 82% 63% 40000 1h21Im 80% 68%
CIFAR-2 Under-fitting 84% 76% 500+1500 15m 91% 90% 0(3) 80% 74% 40000 2h40m 81% 82%
0.97M Over-fitting 83% 72% 500+1500 21m 88% 89% 0(3) 88% 79% 40000 2h50m 85% 78%
CIFAR-3 Under-fitting 82% 78% 500+1500 30m 91% 90% 0(3) 81% 78% 40000 4h10m 83% 74%
1.7M Over-fitting 86% 83% 500+1500 24m 93% 92% 0(3) 84% 74% 40000 4h9m 80% 72%
CIFAR-4 Under-fitting 84% 74% 1000+3000 12h40m 92% 93% 0(3) 87% 75% 38000 24h 86% 74%
20M Over-fitting 87% 78% 1000+3000 12h9m 91% 92% 0(3) 90% 77% 38000 24h 87% 77%
CIFAR-5 Under-fitting 88% 79% 1000+3000 10h 92% 94% 0(3) 85% 78% 40000 24h 88% 78%
20M Over-fitting 86% 79% 1000+3000 9h40m 93% 94% 0(3) 88% 78% 40000 24h 86% 73%

Effectiveness: Experiment Two

* Three new large data sets and models: face recognition (FR), objection
detection CelebA (OD), age classification (AC)
* No available GANs

Table 2: Accuracy Improvement without GANs

Model Bug Original MODE Random
MAcc LAcc MAcc LAcc MAcc Lacc
FR OF 76% 65% 88% 84% 79% 72%
2.1M UF 72% 64% 85% 86% 78% 70%
oD OF 83% 74% 89% 88% 84% 77%
3.2M UF 82% 75% 88% 83% 84% 79%
AC OF 33%/44% 13%/22% 46%/60% 38%/47% 32%/40% 33%/42%

30M UF 25%/36% 11%/20% 42%/52% 36%/44% 32%/41% 25%/32%

Experiment Three: Improving Pre-trained
Models

Table 3: Real-world Models Bug Fix

DataSet Model Original Acc. # Samples = MODE Acc. Random Acc.
MNIST MNIST-10 [23] 95.2% 2000 97.4% 94.8%
MNIST-11 [23] 93.4% 2000 96.8% 94.3%
Fashion FM-7 [15] 87.6% 2000 92.3% 88.9%
MNIST FM-8 [15] 91.6% 2000 92.6% 88.5%
CIFAR CIFAR-6 [5] 87.3% 4000 93.2% 87.3%

CIFAR-7 [5] 88.4% 4000 92.8% 88.2%

Sample Ratios

100%
90%
80%
<+Model (0.05) -Label (0.05) ><Model (0.25)
~<Label(0.25) —Model (0.45) —Label(0.45)
70%
O O O O O O O O O O O O O O o o o o o o
o O O O O O O O O O O O O O O 0o o o o o
AN < O 0 O N < O 60 O N < O 0 O N < VU 0 O
— f = <« AN &N &N &N on on o0 on o <

Number of Samples

Theme of the Talk

- Leveraging what we have learned in program analysis and software
engineering to open the box

. Qutline

- MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection (FSE'18)

- Aml: Attacks Meet Interpretability, Attribute-steered Detection of Adversarial
Samples (NIPS"18)

Adversarial Samples

- Adversarial samples are model inputs generated by adversaries to fool
neural networks (i.e., unexpected prediction results).

Pixel-wise differences
(x50 times)

Model ‘- v

C&W, attack A.J. Buckley

40

Existing Adversarial Attacks

- Patching
- Restricted area to manipulate pixels
- Utilize semantics of input space

- Pervasive perturbations
- Full access to pixel alteration
- Different distance metrics: Ly, L,, L.,

Az, 2') = [|lz — 2|, = (Z i = ﬂ?é\p>

1=1

42

Different Attacks

Targeted
Untargeted

43

Understanding Adversarial Samples

gt

Model

C&W, attack Human A.J. Buckley

- |dea: is the classification result of a model mainly based on human
perceptible attributes?

44

Architecture of Aml

Attribute-steered model

-

o A
Eeéﬁfiiegﬁﬁ@ PP e

v" Mouth
Landmark Attribute Attribute witness
generation annotation \ extraction)

hf

Original model

*Attribute witness: learned features that correspond to human perceptible attributes

45

Consistency
observer

Challenges

- Are there correspondences between attributes and neurons?
- If yes, how to extract the correspondence?

- Forward: attribute changes —> neuron activation changes

- Backward: neuron activation changes —> attribute changes
- Backward: no attribute changes —> no neuron activation changes

Attribute Witness Extraction

Feature variants
Model O

A 4

a4

®

» N
>

Attribute witnesses

Attribute preservation

Feature invariants

a7

Attribute-steered Model

. Constructed by transforming the original model (without additional
training)
- Neuron weakening (non-witness)

/ — =k

. : activation of a neuron
vV =m= e «o -

: mean of witness neurons

Q = <

: deviation of witness neurons
a : weakening factor

v—min) €, 0 : strengthening factor
-V

v’:e-v—l—(l—e_ Bo

- Neuron strengthening (witness)

min : minimum of witness neurons

Evaluation

- Model
- VGG-Face: 16 layers, 97.27% on LFW

- Datasets
- VGG Face dataset (VF)
- Labeled Faces in the Wild (LFW)
.- CelebFaces Attributes dataset (CelebA)

. Attacks
- Patch, Glasses, C&W,, C&W,, C&W,,, FGSM, BIM

Extracted Attribute Witnesses

. Extracted witnesses of VGG-Face mode|

Layer Name convl_1 convl_2 pooll conv2_1 conv2_2 pool2 conv3_1 conv3_2 conv3_3 pool3
#Neuron 64 64 64 128 128 128 256 256 256 256
#Left Eye 1 - - - 2 3 4 2 3 2
#Right Eye | - - - 3 3 4 3 2 3
#Nose 1 - - - 1 3 2 . 1 3
#Mouth 1 - - - 3 2 4 3 15 7
#Shared 1 - - - 1 | 1 - - -
Layer Name conv4d_1 convd_2 convd_3 pool4 conv5_1 conv5_2 conv5_3 pool5 fco fc7
#Neuron 512 512 512 512 512 512 512 512 4096 4096
#Left Eye 9 5 15 7 12 4 1 | - |
#Right Eye 7 3 10 9 9 1 - - - -
#Nose 10 8 17 13 7 2 2 | - 1
#Mouth 19 12 12 11 8 2 1 2 1 1

#Shared | - - -

51

Attribute Detection

- Predict the presence of attributes
- Train only on VF dataset, test on VF (disjoint set) and LFW
- Face descriptor: fc7 layer of VGG-Face model

Dataset VF [19] LFW [33]
Attribute Left Eye Right Eye Nose Mouth Left Eye Right Eye Nose Mouth
Face Descriptor 0.830 0.830 0.955 0.855 0.825 0.835 0.915 0.935

Attribute Witness 0.940 0.935 0.985 0.990 0.870 0.845 0.975 0.965

52

Accuracy of Adversary Detection

Targeted Untargeted

Detector FP Patch Glasses C&Wy C&W2 C&W oo

FGSM BIM
First Next First Next First Next First Next First Next

FS[18] 23.32% 0.77 0.71 0.73 058 0.68 065 060 050 042 0.37 0.36 0.20
AS 2041% 096 098 097 097 093 099 099 1.00 096 1.00 0.85 0.76
AP 30.61% 089 096 069 0.75 096 094 099 097 095 099 0.87 0.89
WKN 787% 094 097 071 076 083 089 099 097 097 0.96 0.86 0.87
STN 233% 008 019 0.16 0.19 090 094 097 1.00 0.76 0.87 0.46 0.41
Aml 991% 097 098 085 0.8 091 095 099 099 097 1.00 0.91 0.90

FP: false positive
First: the first label of classes

Next: the next label of the correct prediction

53

FS: feature squeezing (NDSS '18)
AS/AP: attribute substitution/preservation
WKN/STN: neuron weakening/strengthening

Conclusion

- Looking into the internals of Al models to provide important hints to
address debugging problems and adversarial sample attack problems

- Both projects open-sourced on github

- On-going works: develop tools to fix a wide range of Al model bugs

Thank you!

