Numerical Program Analysis via Mathematical Execution

Zhendong Su

ETH Zurich

Floating-point code

Important: bugs can lead to disasters
 Challenging: hard to get right

Why difficult?

□ FP Math ≠ Real Math
Non-linear relations
Transcendental functions
sin, log, exp,

1 double foo(double x){

3

4

5

6

7

9

}

8 return x;

Challenging for all known approaches

New perspective: ME

Analyzing numerical programs

- Coverage-based testing
- (ρ, φ)
 Boundary value analysis
 Numerical exception detection

Floating-point constraint solving

Mathematical **Execution (ME)**

Mathematical optimization (MO)

input x drives p to satisfy $\phi \leftrightarrow x$ minimizes r

FP constraints

Solving the floating-point constraint π

$$(SIN(x) = x) \land (x \ge 10^{-10})$$

Satisfiable if x is floating-point

For $x \in \mathbb{F}$, $SIN(x) = x \Leftrightarrow x \simeq 0$

Unsatisfiable if x is real

For $x \in \mathbb{R}$, $SIN(x) = x \Leftrightarrow x = 0$

Step 1

Simulate π with a floating-point program ${\bf R}$

- $R(x) \ge 0$ for all x
- $R(x) = 0 \Leftrightarrow x \models \pi$

Minimize R as if it is a mathematical function

► Let *x*^{*} be the minimum point

$$\pi$$
 satisfiable $\Leftrightarrow \mathsf{R}(x^*) = 0$

Construct R

Necessary Conditions to meet :

1.
$$R(x) \ge 0$$
 for all x
2. $R(x) = 0 \Leftrightarrow x \models \pi$

Constraint π	Program R
x == y	$(x - y)^2$
$x \leq y$	$x \le y ? 0 : (x - y)^2$
$\pi_1 \wedge \pi_2$	$R_1 + R_2$
$\pi_1 \lor \pi_2$	$R_1 * R_2$
R can be constru	icted from a CNF form

Minimize R

Unconstrained programming techniques:

- Local optimization
- Monte Carlo Markov Chain (MCMC)
- We use them as black-box
- Do not analyze π ; execute R

Theoretical guarantees

Let R satisfy (1) $R(x) \ge 0$, and (2) $R(x) = 0 \Leftrightarrow x \models \pi$, and x^* be a minimum point of R. Then

 π satisfiable $\Leftrightarrow \mathsf{R}(x^*) = 0$.

Threats

- ► Floating-point inaccuracy when calculating with **R**
- Sub-optimal x*

XSat & results

- Developed the ME-based XSat tool
- Evaluated against MathSat and Z3
- Used SMT-Comp 2015 FP benchmarks
- Result summary
 - 100% consistent results
 - 700+X faster than MathSat
 - 800+X faster than Z3

Generalizations

Coverage-based testing of FP code

Boundary value analysis

□FP exception detection

Path divergence detection

Coverage-based testing

Goal

To generate test inputs to cover all branches of a program like this:

- pointer operations: &, *
- type casting: (int*), (unsigned)
- bit operations ^, &, >>
- floating-point comparison

```
double __ieee754_fmod(double x, double y){
 Zero[] = \{0.0, -0.0,\};
  hx = *(1+(int*)\&x);
  lx = *(int*)\delta x;
  hy = *(1+(int*)\&y);
  ly = *(int*) \& y;
  sx = hx \& 0x 8000000;
  hx ^=sx;
  hy &= 0x7ffffff;
  if((hy|ly)==0||(hx>=0x7ff00000)||
     ((hy|((ly|-ly)>>31))>0x7ff00000))
    return (x*y)/(x*y);
  if(hx<=hy) {
    if((hx<hy)||(lx<ly)) return x;</pre>
    if(lx==ly)
      return Zero[(unsigned)sx>>31];
}
  if(hx<0x00100000) {
   if(hx==0) {
```

State-of-the-art & Challenges

Symbolic execution

- Path explosion
- Constraint solving

Search-based testing

- Fitness function
- Search strategies

Our approach

- No path issues
- No need to solve

constraints

Effective for FP

programs

Our approach

Step 1: Derive a program F00_R from F00 s.t.
F00_R(x) ≥ 0 for all x, and
F00_R(x) = 0 ⇔ x covers a new branch
Step 2: Repeatedly minimize F00_R until > 0

F00_I: Instrumented program

F00_R: Representing function

double F00_R(double x) {

}

 $r = 1; F00_I(x); return r;$

Generated test inputs

X: A set of FOO_R 's global minimum points, which saturates (therefore covers) all branches of FOO

Example

Generate an input set to cover $\{0_T, 0_F, 1_T, 1_F\}$

Step 1: Construct F00_R

covered at I_i	$pen(l_i, op, a, b)$
Ø	0
{ <i>i</i> _F }	R _{a op b}
$\{i_T\}$	$R_{\neg(a \ op \ b)}$
$\{i_T, i_F\}$	r

- r: global variable
- FOO_R: $x \rightarrow r$
- $R_{a op b}$: Branch distance

Branch distance $R_{a op b}$

A helper function to quantify how far a and b are from attaining branch *a op b*.

$$R_{a==b}$$
 defined as $(a-b)^2$
 $R_{a\geq b}$ defined as $(a\geq b)$? $0: (a-b)^2$

covered at I_i	$pen(l_i, op, a, b)$
Ø	0
{ <i>i</i> _F }	R _{a op b}
$\{i_T\}$	$R_{\neg(a \ op \ b)}$
$\{i_T, i_F\}$	r

- No branch is covered
- Any input is a minimum point
- Assume $x^* = 0.7$

covered at I_i	$pen(l_i, op, a, b)$
Ø	0
{ <i>i</i> _F }	R _{a op b}
$\{i_T\}$	$R_{\neg(a \ op \ b)}$
$\{i_T, i_F\}$	r

- $1_F, 0_T$ are covered
- F00_R attains minimum at -3 or 2
- Assume $x^* = -3$

covered at I_i	$pen(l_i, op, a, b)$
Ø	0
{ <i>i</i> _F }	R _{a op b}
$\{i_T\}$	$R_{\neg(a \ op \ b)}$
$\{i_T, i_F\}$	r

- $1_F, 1_T, 0_T$ are covered
- F00_R attains minimum at ≥ 1
- Assume $x^* = 5.1$

covered at I_i	$pen(l_i, op, a, b)$
Ø	0
{ <i>i</i> _F }	R _{a op b}
$\{i_T\}$	$R_{\neg(a \ op \ b)}$
$\{i_T, i_F\}$	r

- All branches are covered
- $\forall x, FOO_R(x) = 1$
- Termination

Our implementation CoverMe

Experiments

Benchmarks: Fdlibm

- Sun's math library
- Reference for Java SE 8's math library
- Used in Matlab, JavaScript and Android
- Heavy on branches (max=114, avg=23)

CoverMe covers

- \approx 90% branches in 7 seconds
- \approx 18% more branches than AFL with 1/10 time
- \approx 40% more branches than Austin with speedups of several orders of magnitudes

ME in the long run

Offers a new general analysis paradigm

Complements existing approaches

Random concrete execution (CE)

Symbolic execution (SE)

Abstract execution (AE)

New perspective: ME

Analyzing numerical programs

- Coverage-based testing
- (ρ, φ)
 Boundary value analysis
 Numerical exception detection

Floating-point constraint solving

Mathematical **Execution (ME)**

Mathematical optimization (MO)

input x drives p to satisfy $\phi \leftrightarrow x$ minimizes r