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Digital Contracts (or Smart Contracts)

Smart contracts (Ethereum): programs stored on a blockchain

- Carry out (financial) transactions between (untrusted) agents

- Cannot be modified but have state

» Community needs to reach consensus on the result of execution

> Users need to pay for the execution cost upfront
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Bugs in Digital Contracts are Expensive

« Bugs result in financial disasters (DAQO, Parity Wallet, King of Ether, ...)

» Bugs are difficult to fix because they alter the contract

A $50 MILLION HACK JUST
SHOWED THAT THE DAO WAS

ALL TOO HUMAN  '$300min cryptocurrency' accidentally

lost forever due to bug

User mistakenly takes control of hundreds of wallets containing
cryptocurrency Ether, destroying them in a panic while trying to give

A coding error led to $30 millionin
ethereum being stolen
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Can Programming Languages Prevent Bugs”

Yes!

Example: memory safety

» Most security vulnerabilities are based on memory safety issues
(Microsoft: 70% over past in the past 12 years in MS products)

« Why stick with unsafe languages?
Legacy code, developers (training, social factors, ...)

Languages for Digital Contracts
 Great opportunity to start from a clean slate

« Correctness and readability of contracts are priorities

Nomos
- Build on state-of-the art: statically-typed, strict, functional language

- Address domain-specific issues
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Auction Contract in Solidity

function bid() public payable {
bid = msg.value;
bidder = msg.sender;
pendingReturns[bidder] = bid;
if (bid > highestBid) {
highestBidder = bidder;
highestBid = bid;
s
I3

function collect() public returns (bool) {
require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}
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Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount);

return true;

}
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Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount) ;

return true;

}

What happens if
collect is called when

auction is running?




Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
uint amount = pendingReturns[msg.sender];

msg.sender.-cnd(amount);
return true;

}




Auction in Solidity

Protocol Is not
statically enforced!



Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}



Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}




Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

What happens if
collect is called
twice?




Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender.ccnd (amount) ;
return true;

}




Auction in Solidity

Linearity is not
enforced!
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Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

pendingReturns[msg.sender] = 0;
msg.sender.-cnd(amount);
return true;

}




Auction in Solidity

Out-of-gas exception.
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Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

» Participants have to agree on the result of a computation
= Denial of service attacks

= Would like to have static gas bounds

2. Contract protocols and interfaces

- Contract protocols should be described and enforced

= Prevent issues like reentrancy bugs (DAO)

3. Keeping track of assets (crypto coins)

» Assets should not be duplicated

« Assets should not be lost
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Nomos: A Type-Based Approach

Lead developer:
A statically-typed, strict, functional language Ankush Das

 Functional fragment of ML

Additional features for domain-specific requirements

Language feature Expertise
Gas bounds Automatic amortized resource analysis Jan Hoffmann
Tracking assets Linear type system Frank Pfenning

. . . Stephanie Balzer
Contract interfaces Shared binary session types Frank Pfenning

Based on a linear type system



1. Automatic amortized resource analysis (AARA)
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consumption of P as a function of
the size of its inputs?
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Automatic
~ Y'Resource Bound Analysis

Clock cycles, heap

Given: A (functional) program P space, gas, ...

Question: What is the (worst-case) resource

consumption of P as a function of
the size of its inputs?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

Goal: produce proofs

The Art of Not only (easily checkable)
Computer asymptotic bounds

Programming but concrete

VOLUME 3

Sorting and Searching constant factors.

Second Edition

DONALD E. KNUTH




AARA: Use Potential Method

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @>(before) > O®(after) + cosa
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AARA: Use Potential Method

 Assign potential functions to data structures

( d(state) > 0 )

= States are mapped to non-negative numbers

» Potential pays the resource consumption and Gb(before) > ®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

- Initial potential is an upper bound (Cb(initia/ state) > ) COSO

Clear soundness theorem.
Type systems for automatic analysis < Compositional. Efficient inference.

 Fix a format of potential functions (basis like in linear algebra)

» Type rules introduce linear constraint on coefficients
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Example: Append for Persistent Lists

append(x,y) Heap-space usage is 2n if

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)

Heap usage: 2'n =2*3 =6



Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z) > m is the length of list y
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Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z)

» m is the length of list y

x—(a) y ()~ ) ~a)—t append(t,z)
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Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z)

» m is the length of list y
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Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y

X_’ y @ @ @ ‘_t Implicit reasoning

@ e about size-changes.
z—»@«—@@«—@<— append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16



Example: Composing Calls of Append

FOx,y,2) = { " append: ( cint). £ cinty) 2425 (2 (int)}

let t = append(x,y) 1n

append(t,z)

} append: (LZ (wLn’c),L0 (int)) —Q4Q> L® (int)}

The most general type of append is specialized at call-sites:

append: (19 (int), 1 (int)) 245 1" (int) | o Linear

constraints.
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Polynomial Potential
-unctions

Linear Potential
Functions
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User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Strong soundness
theorem.

Polynomial Potential
-unctions

Linear Potential
Functions

For example m*n=.

Multivariate Polynomial
Potential Functions



Implementations: RaML and Absynth

[ Resource Aware ML

Resource Aware ML (RaML)
RESOURCE AWARE ML

ABOUT WEB INTERFACE SOURCE CODE PUBLICATIONS

>~ Polymorphic and higher-order functions

> Based on Inria’s OCaml compiler

Contents

« Web interface

> User-defined data types

> Side effects (arrays and references)

Absynth

>~ Based on control-flow graph IR

> Different front ends

http://raml.co

> Bounds are integer expressions

> Supports probabilistic programs




Sorting A-nodes (asort)
Quick sort (lists of lists)
Merge sort (list.ml)

Split and sort

Longest common
subsequence

Matrix multiplication

Evaluator for boolean
expressions (tutorial)

Dijkstra’s shortest-path
algorithm

Echelon form

Binary multiplication
(CompCert)

Square root (CompCert)

Computed Bound

11+22kn +13k2nv+13m +15n
3 -7.5nm +7.5nm2 +19.5m +16.5m2
43 + 30.5n + 8.5n2

11 + 47n + 29n2

23 + 10n + 52nm + 25m
3 +2nm +18m + 22mxy +16my

10+11n+16m+16mx+16my+20x+20y

46 + 33n +111n2

8 + 43m2n + 59m + 63m?2

2+17kr+10ks+25K +8l+2+7r+8

134+66mM+16mn +4m2 +59n +4n2

Micro Benchmarks

Actual Analysis :
Behavior Runtime eI
O(kZ2n-+m) 0.14 s 5656

O(hm?2) 0.27 s 8712
O(n log n) 0.11s 3066

O(n2) 0.69 s 3793
O(nm) 0.16 s 901

O(mxy) 1.11s 3901

O(mx+my) 0.33s 1864
O(n2) 0.11s 2808

O(nm?2) 1.81s 8838

O(kr+ks) 14.04 s 89,507
O(n2) 18.25 s 135,529

Evaluation-Step Bounds



500000 | | | | |
12xA2 + 14X + 3 ———

450000 measured worst-case cost

400000
350000
300000
250000
200000
150000
100000

50000

0

0

Evaluation-step bound vs.

Quick Sort for Integers . .acured behavior




measured worst-case steps
39xy + 6y + 21x + 19 ———

100000
80000
60000
40000
20000

O L

Longest Common
Subseqguence

Evaluation-step bound vs.
measured behavior




measured worst-case steps

100000
80000
60000
40000
20000

0O &

39xy + 6y + 21x + 19 ———

Longest Common
Subseqguence

First automatically
derived bound for
LCS.

Evaluation-step bound vs.
measured behavior




Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds
» Compositional: Integrated with type systems or program logics
» Expressive: Bounds are multivariate resource polynomials
> Reliable: Formal soundness proof wrt. cost semantics
> Verifiable: Produces easily-checkable certificates

> Automatic: No user interaction required

Applicable in practice
> Implemented: Resource Aware ML and Absynth
> Effective: Works for many typical programs

> Efficient: Inference via linear programming




Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds
» Compositional: Integrated with type systems or program logics
» Expressive: Bounds are multivariate resource polynomials
> Reliable: Formal soundness proof wrt. cost semantics
> Verifiable: Produces easily-checkable certificates

> Automatic: No user interaction required

Applicable in practice
>~ Implemented: Resource Aware ML and Absynth
> Effective: Works for many typical programs Type checking in
> Efficient: Inference via linear programming linear time!




2. Shared (resource-aware) binary session types
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- Communication via typed bidirectional channels
+ Curry-Howard correspondence with intuitionistic linear logic

- Client and provider have dual types
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del : ®{none : 1,
some : A ® queuep }}
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Binary Session Types

* Implement message-passing concurrent programs
- Communication via typed bidirectional channels
» Curry-Howard correspondence with intuitionistic linear logic

- Client and provider have dual types
Receive msg of type A

Example type:  qUEUEN — &{ins: A —o queue,,
del : ®{none : 1, / Send msg of type A

some : A ® queuep }}

Type soundness (progress and preservation) implies deadlock freedom



Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

(x: A) (t:queuey) - elem :: (s : queuey)
sé—elem—xt =
case s (ins = y < recv s ;
t.ins ;
send t y ;
s<—elem < xt
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t : queuep m S : queuep
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s ¢ elem 2 = some : A ® queuep }}
case s (ins = y <—recv s ;~ T recy ‘ins’ and v
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Example: Queue

Type checking in
linear timel

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) - elem :: (s : queuey)
sé—elem—xt =

del : ®{none : 1,

recv ‘ins’ and y

case s (ins = y <—recv s ;~ \’
t.ins ; .
send t y ; "

s<elem<+—xt —
| del = s.some ;

send ‘ins’ and y

recurse

send s T ;

send ‘some’, X

S < t)

terminate

some : A ® queuey }}
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Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

/ / Iost/money ® auction}}}
N

offers choice sends result send send back
to collect of bidding Mona Lisa money
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Efficient type inference

Resource-Aware Session Types via LP solving
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—xample: Type of an
Auction Contract



Sharing: Need to acquire
contract before use.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract



Equi-synchronizing:
Release contract at the
same type.

Sharing: Need to acquire
contract before use.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract



auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract



Sending a
functional value.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract



Sending a Sending a
functional value. linear value.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract



Sending a Sending a
functional value. linear value.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° lﬁ auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

Can collect lot or
reclaim your bid.

—xample: Type of an
Auction Contract



auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract



At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract



Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract



Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

If the worst-case path is
not taken then the
leftover is returned.

—xample: Type of an
Auction Contract



Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
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leftover is returned.

—xample: Type of an
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Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

la + accept sa — > accept ‘acquire’ (%)
[a.running — -
case la send status ‘running’
(bid = r < recv la o
m < recv la > recv ‘id” and ‘money’
sa < detach la ~—__
m.value ; " detach from client (13)
V4 recvm ;
V' = addbid b (r,v) ;_ N add bid and money
M' < add < M m ;
sa < run b’ < M' ml) no work constructs!




How to Use the Potential

Payment schemes (amortized cost)
» Ensure constant gas cost in the presence of costly operations
- Overcharge for cheap operations and store gas in contract

- Similar to storing ether in memory in EVM but part of contract

Explicit gas bounds
» Add an additional argument that carries potential

» User arg N ~ maximal number of players => gas bound is 87*N + 28

Enforce constant gas cost
- Simply disable potential in contract state

» Require messages to only carry constant potential
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Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(contrl(t_h, \71)) (Contrz(t_iz, \72)) (Contrn([in, \7,7)) linear data.
l C1 l C2 l Cn Channel name =
address

Transaction: client submits code of a linear process

(Contrl(ﬁl, \71)) (Contrz(ﬁz, \72)) (COIltl“n(l_jn, \7,,)) ( client )
¢ cn :

lC1 162

. , . Contract should have
- Client process can acquire existing contracts default clients.

« Client process can spawn new (shared) processes -> new contracts

» Client process needs to terminates in a new valid state



Blockchain, Type Checking, and Verification

Type checking is part of the attack surface
» Contract code can checked at publication time
» User code needs to be checked for each transaction
 Denial of service attacks are possible

e Nomos type checking is linear in the size of the program

Verification of Nomos program is possible
» Dynamic semantics specifies runtime behavior
- Directly applicable to verification in Coq

* Nomos’ type system guaranties some important properties
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