Programming language
developed at Carnegie Mellon

Nomos: Resource-Aware Session Types for
Programming Digital Contracts

Stephanie Balzer, Ankush Das, Jan Hoffmann, and Frank Pfenning

With some slides
from Ankush.

Carnegie Mellon University ETH 2019

Digital Contracts (or Smart Contracts)

Smart contracts (Ethereum): programs stored on a blockchain

- Carry out (financial) transactions between (untrusted) agents

- Cannot be modified but have state

» Community needs to reach consensus on the result of execution

> Users need to pay for the execution cost upfront

Digital Contracts (or Smart Contracts)

Smart contracts (Ethereum): programs stored on a blockchain

- Carry out (financial) transactions between (untrusted) agents

- Cannot be modified but have state
> Community needs to reach consensus on the result of execution

> Users need to pay for the execution cost upfront

remaining gas

money (estimated gas cost)

transaction

sufficient

smart contract

new block

gas”?

-

Bugs in Digital Contracts are Expensive

« Bugs result in financial disasters (DAQO, Parity Wallet, King of Ether, ...)

» Bugs are difficult to fix because they alter the contract

A $50 MILLION HACK JUST
SHOWED THAT THE DAO WAS

ALL TOO HUMAN '$300min cryptocurrency' accidentally

lost forever due to bug

User mistakenly takes control of hundreds of wallets containing
cryptocurrency Ether, destroying them in a panic while trying to give

A coding error led to $30 millionin
ethereum being stolen

Can Programming Languages Prevent Bugs?

Can Programming Languages Prevent Bugs?

Yes!

Can Programming Languages Prevent Bugs?

Yes!

Example: memory safety

» Most security vulnerabilities are based on memory safety issues
(Microsoft: 70% over past in the past 12 years in MS products)

« Why stick with unsafe languages?
Legacy code, developers (training, social factors, ...)

Can Programming Languages Prevent Bugs?

Yes!

Example: memory safety

» Most security vulnerabilities are based on memory safety issues
(Microsoft: 70% over past in the past 12 years in MS products)

« Why stick with unsafe languages?

Legacy code, developers (training, social factors, ...)
Languages for Digital Contracts
 Great opportunity to start from a clean slate

« Correctness and readability of contracts are priorities

Can Programming Languages Prevent Bugs”

Yes!

Example: memory safety

» Most security vulnerabilities are based on memory safety issues
(Microsoft: 70% over past in the past 12 years in MS products)

« Why stick with unsafe languages?
Legacy code, developers (training, social factors, ...)

Languages for Digital Contracts
 Great opportunity to start from a clean slate

« Correctness and readability of contracts are priorities

Nomos
- Build on state-of-the art: statically-typed, strict, functional language

- Address domain-specific issues

Domain Specific Bugs: Auction Contract

status: running

Domain Specific Bugs: Auction Contract

Bidder |

Bid 2
Bidder 2

Bid 3

Bidder 3

status: running

Domain Specific Bugs: Auction Contract

fut

Bidder |

Bidder 2

Bidder 3

status: running

Domain Specific Bugs: Auction Contract

fut

Bidder |

Bidder 2

Bidder 3

status: ended

Domain Specific Bugs: Auction Contract

e —
4
/n**ﬁ
. \
p \V £ 4
I ——— ¥

Bidder |
Bid 2
Bid 3
Bidder 2
Bidder 3 g8

status: ended

Domain Specific Bugs: Auction Contract

Bidder |

Bid 2 Bid 3
Bidder 2

Bidder 3 g8

status: ended

Auction Contract in Solidity

function bid() public payable {
bid = msg.value;
bidder = msg.sender;
pendingReturns[bidder] = bid;
if (bid > highestBid) {
highestBidder = bidder;
highestBid = bid;
s
I3

function collect() public returns (bool) {
require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
return true;

}

Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount) ;

return true;

}

Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount);

return true;

}

00100, 5100110
001,010 40 1S

Auction in Solidity

function collect() public returns (bool) {

require (msg.sender != highestBidder);
uint amount = pendingReturns([msg.sender];
msg.sender. (amount) ;

return true;

}

What happens if
collect is called when

auction is running?

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
uint amount = pendingReturns[msg.sender];

msg.sender.-cnd(amount);
return true;

}

Auction in Solidity

Protocol Is not
statically enforced!

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

msg.sender. (amount) ;
return true;

}

What happens if
collect is called
twice?

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender.ccnd (amount) ;
return true;

}

Auction in Solidity

Linearity is not
enforced!

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
pendingReturns|[msg.sender] = 0;
return true;

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
pendingReturns[msg.sender] = 0;
return true;

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender. (amount) ;
pendingReturns|[msg.sender] = 0;
return true;

Method ‘send’ potentially
transfers control to other
contract.

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);
require (status == ended);
uint amount = pendingReturns[msg.sender];
msg.sender.-cnd (amount);
pendingReturns[msg.sender] = 0;
return true;

Auction in Solidity

Re-entrancy attack

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.senderl];

pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

}

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender !'= highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.senderl];

pendingReturns[msg.sender] = 0;
msg.sender. (amount) ;
return true;

}

Method ‘send’ potentially
transfers control to other
contract.

Auction in Solidity

function collect() public returns (bool) {
require (msg.sender != highestBidder);

require (status == ended);
uint amount = pendingReturns[msg.sender];

pendingReturns[msg.sender] = 0;
msg.sender.-cnd(amount);
return true;

}

Auction in Solidity

Out-of-gas exception.

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

» Participants have to agree on the result of a computation
= Denial of service attacks

= Would like to have static gas bounds

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

» Participants have to agree on the result of a computation
= Denial of service attacks

= Would like to have static gas bounds

2. Contract protocols and interfaces

- Contract protocols should be described and enforced

= Prevent issues like reentrancy bugs (DAO)

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

» Participants have to agree on the result of a computation
= Denial of service attacks

= Would like to have static gas bounds

2. Contract protocols and interfaces

- Contract protocols should be described and enforced

= Prevent issues like reentrancy bugs (DAO)

3. Keeping track of assets (crypto coins)

» Assets should not be duplicated

« Assets should not be lost

Nomos: A Type-Based Approach

Lead developer:
A statically-typed, strict, functional language Ankush Das

 Functional fragment of ML

Additional features for domain-specific requirements

Language feature Expertise
Gas bounds Automatic amortized resource analysis Jan Hoffmann
Tracking assets Linear type system Frank Pfenning

Stephanie Balzer

Contract interfaces Shared binary session types Frank Pfenning

Nomos: A Type-Based Approach

Lead developer:
A statically-typed, strict, functional language Ankush Das

 Functional fragment of ML

Additional features for domain-specific requirements

Language feature Expertise
Gas bounds Automatic amortized resource analysis Jan Hoffmann
Tracking assets Linear type system Frank Pfenning

. . . Stephanie Balzer
Contract interfaces Shared binary session types Frank Pfenning

Based on a linear type system

1. Automatic amortized resource analysis (AARA)

Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Resource Bound Analysis

Clock cycles, heap

Given: A (functional) program P space, gas, ...

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Resource Bound Analysis

Clock cycles, heap

Given: A (functional) program P space, gas, ...

Question: What is the (worst-case) resource

consumption of P as a function of
the size of its inputs?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Not only

Computer asymptotic bounds
Programming but concrete

VOLUME 3

Sorting and Scarching constant factors.

DONALD E. KNUTH

Automatic
~ Y'Resource Bound Analysis

Clock cycles, heap

Given: A (functional) program P space, gas, ...

Question: What is the (worst-case) resource

consumption of P as a function of
the size of its inputs?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of Not only
Computer asymptotic bounds
Programming

| but concrete
Sorting and Searching constant factors.

Second Edition

DONALD E. KNUTH

Automatic
~ Y'Resource Bound Analysis

Clock cycles, heap

Given: A (functional) program P space, gas, ...

Question: What is the (worst-case) resource

consumption of P as a function of
the size of its inputs?

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

Goal: produce proofs

The Art of Not only (easily checkable)
Computer asymptotic bounds

Programming but concrete

VOLUME 3

Sorting and Searching constant factors.

Second Edition

DONALD E. KNUTH

AARA: Use Potential Method

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @>(before) > O®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

- Initial potential is an upper bound (‘b("nit"a/ state) >) COSt)

AARA: Use Potential Method

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and @>(before) > O®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

- Initial potential is an upper bound (q’("nit"a/ state) >) COSt)

Type systems for automatic analysis
 Fix a format of potential functions (basis like in linear algebra)

» Type rules introduce linear constraint on coefficients

AARA: Use Potential Method

 Assign potential functions to data structures

(d(state) > 0)

= States are mapped to non-negative numbers

» Potential pays the resource consumption and Gb(before) > ®(after) + cosa
. . s
the potential at the following program poin ¥ telescoping

- Initial potential is an upper bound (Cb(initia/ state) >) COSO

Clear soundness theorem.
Type systems for automatic analysis < Compositional. Efficient inference.

 Fix a format of potential functions (basis like in linear algebra)

» Type rules introduce linear constraint on coefficients

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)
(b) (e
(o)

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—~(d)c)
(b) (e
(o)

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y ())b
(b) (e
(o)

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

O 0202020
(5 (&
()

Example: Append for Persistent Lists

Heap-space usage is 2n if

append(x,y)

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)

Example: Append for Persistent Lists

append(x,y) Heap-space usage is 2n if

> nis the length of list x

> One list element requires two heap cells
(data and pointer)

Example evaluation:

x—(a) y—(d)}—c)~(o)—(a)— append(x,y)
(b) (e
(o)

Heap usage: 2'n =2*3 =6

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z) > m is the length of list y

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in > nis the length of list x
append(t,z) > m is the length of list y

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z) > m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z) > m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z) > m is the length of list y

append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

f(X9YaZ) =

let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y
@ append(x,y)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

fCX,YaZ) =

let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y
x—~(&)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

fCX,YaZ) =

let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y
X_> append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

fCX,YaZ) =

let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y
X_> append(t,z)

® 220

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y

append(t,z)

@ = @@

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y

append(t,z)

@ SUSOSOS0

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if

fCX,YaZ) =

let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y
X_> append(t,z)

@ - @-©-O-O©

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z)

» m is the length of list y

x—(a) y ()~) ~a)—t append(t,z)
(o) (e

2020202080

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x
append(t,z)

» m is the length of list y

O 02020200
(o) (&

z—»@«—@«—@«—@h append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

Heap usage of f(x,y,z) is 2n + 2(n+m) if
fCX,YaZ) =
let t = append(x,y) in * n is the length of list x

append(t,z) > m is the length of list y

X_’ y @ @ @ ‘_t Implicit reasoning

@ e about size-changes.
z—»@«—@@«—@<— append(t,z)

Initial potential: 4'n + 2"mM =4*3 + 2*2 = 16

Example: Composing Calls of Append

FOx,y,2) = { " append: (cint). £ cinty) 2425 (2 (int)}

let t = append(x,y) 1n

append(t,z)

} append: (LZ (wLn’c),L0 (int)) —Q4Q> L® (int)}

The most general type of append is specialized at call-sites:

append: (19 (int), 1 (int)) 245 1" (int) | o Linear

constraints.

User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Polynomial Potential
-unctions

Linear Potential
Functions

User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Strong soundness
theorem.

Polynomial Potential
-unctions

Linear Potential
Functions

User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Strong soundness
theorem.

Polynomial Potential
-unctions

Linear Potential
Functions

Multivariate Polynomial
Potential Functions

User-defined resource metrics
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Strong soundness
theorem.

Polynomial Potential
-unctions

Linear Potential
Functions

For example m*n=.

Multivariate Polynomial
Potential Functions

Implementations: RaML and Absynth

[Resource Aware ML

Resource Aware ML (RaML)
RESOURCE AWARE ML

ABOUT WEB INTERFACE SOURCE CODE PUBLICATIONS

>~ Polymorphic and higher-order functions

> Based on Inria’s OCaml compiler

Contents

« Web interface

> User-defined data types

> Side effects (arrays and references)

Absynth

>~ Based on control-flow graph IR

> Different front ends

http://raml.co

> Bounds are integer expressions

> Supports probabilistic programs

Sorting A-nodes (asort)
Quick sort (lists of lists)
Merge sort (list.ml)

Split and sort

Longest common
subsequence

Matrix multiplication

Evaluator for boolean
expressions (tutorial)

Dijkstra’s shortest-path
algorithm

Echelon form

Binary multiplication
(CompCert)

Square root (CompCert)

Computed Bound

11+22kn +13k2nv+13m +15n
3 -7.5nm +7.5nm2 +19.5m +16.5m2
43 + 30.5n + 8.5n2

11 + 47n + 29n2

23 + 10n + 52nm + 25m
3 +2nm +18m + 22mxy +16my

10+11n+16m+16mx+16my+20x+20y

46 + 33n +111n2

8 + 43m2n + 59m + 63m?2

2+17kr+10ks+25K +8l+2+7r+8

134+66mM+16mn +4m2 +59n +4n2

Micro Benchmarks

Actual Analysis :
Behavior Runtime eI
O(kZ2n-+m) 0.14 s 5656

O(hm?2) 0.27 s 8712
O(n log n) 0.11s 3066

O(n2) 0.69 s 3793
O(nm) 0.16 s 901

O(mxy) 1.11s 3901

O(mx+my) 0.33s 1864
O(n2) 0.11s 2808

O(nm?2) 1.81s 8838

O(kr+ks) 14.04 s 89,507
O(n2) 18.25 s 135,529

Evaluation-Step Bounds

500000 | | | | |
12xA2 + 14X + 3 ———

450000 measured worst-case cost

400000
350000
300000
250000
200000
150000
100000

50000

0

0

Evaluation-step bound vs.

Quick Sort for Integers . .acured behavior

measured worst-case steps
39xy + 6y + 21x + 19 ———

100000
80000
60000
40000
20000

O L

Longest Common
Subseqguence

Evaluation-step bound vs.
measured behavior

measured worst-case steps

100000
80000
60000
40000
20000

0O &

39xy + 6y + 21x + 19 ———

Longest Common
Subseqguence

First automatically
derived bound for
LCS.

Evaluation-step bound vs.
measured behavior

Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds
» Compositional: Integrated with type systems or program logics
» Expressive: Bounds are multivariate resource polynomials
> Reliable: Formal soundness proof wrt. cost semantics
> Verifiable: Produces easily-checkable certificates

> Automatic: No user interaction required

Applicable in practice
> Implemented: Resource Aware ML and Absynth
> Effective: Works for many typical programs

> Efficient: Inference via linear programming

Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds
» Compositional: Integrated with type systems or program logics
» Expressive: Bounds are multivariate resource polynomials
> Reliable: Formal soundness proof wrt. cost semantics
> Verifiable: Produces easily-checkable certificates

> Automatic: No user interaction required

Applicable in practice
>~ Implemented: Resource Aware ML and Absynth
> Effective: Works for many typical programs Type checking in
> Efficient: Inference via linear programming linear time!

2. Shared (resource-aware) binary session types

Binary Session Types

* Implement message-passing concurrent programs
- Communication via typed bidirectional channels
+ Curry-Howard correspondence with intuitionistic linear logic

- Client and provider have dual types

Example type: qUEUEN — &{ins: A —o queue,,
del : ®{none : 1,
some : A ® queuep }}

Binary Session Types

* Implement message-passing concurrent programs

- Communication via typed bidirectional channels

+ Curry-Howard correspondence with intuitionistic linear logic
- Client and provider have dual types

External choice

Example type: qUEUEN — &{ins: A —o queue,,
del : ®{none : 1,

Internal choice some : A @ queuey }}

Binary Session Types

* Implement message-passing concurrent programs
- Communication via typed bidirectional channels
+ Curry-Howard correspondence with intuitionistic linear logic

- Client and provider have dual types
Receive msg of type A

Example type: qUEUEN — &{ins: A —o queue,,
del : ®{none : 1, /| Send msg of type A

some : A ® queuep }}

Binary Session Types

* Implement message-passing concurrent programs
- Communication via typed bidirectional channels
» Curry-Howard correspondence with intuitionistic linear logic

- Client and provider have dual types
Receive msg of type A

Example type: qUEUEN — &{ins: A —o queue,,
del : ®{none : 1, / Send msg of type A

some : A ® queuep }}

Type soundness (progress and preservation) implies deadlock freedom

Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

(x: A) (t:queuey) - elem :: (s : queuey)
sé—elem—xt =
case s (ins = y < recv s ;
t.ins ;
send t y ;
s<—elem < xt
| del = s.some ;
send s T ;
S < t)

queue, = &{ins: A —o queue,,
del : ®{none : 1,
some : A ® queuey }}

Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) F elem :: (s : queuey)
s<—elem <+ zrt=
case s (ins = y < recv S ;
t.ins ;
send t y ;
s4—elem < xt
| del = s.some ;

send s T ;
S <+ t)

/‘

del : ®{none : 1,

recv ‘ins’ and y

some : A ® queuey }}

Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) F elem :: (s : queuey)
s<—elem <+ zrt=

del : ®{none : 1,

recv ‘ins’ and y

case s (ins = y <—recv s ;~ I
t.ins ; .
send t y ; "

s« elem<+xt
| del = s.some ;

send s T ;

S <+ t)

send ‘ins’ and y

some : A ® queuey }}

Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) F elem :: (s : queuey)
s<—elem <+ zrt=

del : ®{none : 1,

recv ‘ins’ and y

case s (ins = y <—recv s ;~ I
t.ins ; .
send t y ; "

S« elem<+—xt —
| del = s.some ;

send s T ;

S < t)

send ‘ins’ and y

recurse

some : A ® queuey }}

Example: Queue

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) F elem :: (s : queuey)
s<—elem <+ zrt=

del : ®{none : 1,

recv ‘ins’ and y

case s (ins = y <—recv s ;~ I
t.ins ; .
send t y ; "

s<elem<+ xt —
| del = s.some ;

send ‘ins’ and y

recurse

send s T ;
S < t)

send ‘some’, X

some : A ® queuey }}

Example: Queue

.\X - A (element stored)
t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) F elem :: (s : queuey) del : ®{none : 1,
s ¢ elem 2 = some : A ® queuep }}
case s (ins = y <—recv s ;~ T recy ‘ins’ and v
t.ins ; .
send t y ; *l send ‘ins’ and y
s < elem <+ xt — recUrse
| del = s.some ; .
send s T ; send ‘some’, X

v

terminate

S < t)

Example: Queue

Type checking in
linear timel

.\X . A (element stored)

t : queuep m S : queuep
tail of queue head of queue

queue, = &{ins: A —o queue,,

(x: A) (t:queuey) - elem :: (s : queuey)
sé—elem—xt =

del : ®{none : 1,

recv ‘ins’ and y

case s (ins = y <—recv s ;~ \’
t.ins ; .
send t y ; "

s<elem<+—xt —
| del = s.some ;

send ‘ins’ and y

recurse

send s T ;

send ‘some’, X

S < t)

terminate

some : A ® queuey }}

Example: Auction

auction = @{running : &{bid : id D money —o auction},
ended : &{collect : id D &{won : monalisa ® auction,

lost : money ® auction}}}

Example: Auction

sends status
of auction

)

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

lost : money ® auction}}}

Example: Auction

sends status
of auction

)

offers choice
of bidding

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

lost : money ® auction}}}

Example: Auction

sends status offers choice receive id
of auction of bidding / and money

auction = @{running : &{bid : id D money —o auction},
ended : &{collect : id D &{won : monalisa ® auction,

lost : money ® auction}}}

Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

lost : money ® auction}}}

Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

/ lost : money ® auction}}}

offers choice
to collect

Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

/ / lost : money ® auction}}}

offers choice sends result
to collect of bidding

Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

/ / Iost/money ® auction}}}

offers choice sends result send
to collect of bidding Mona Lisa

Example: Auction

sends status offers choice receive id

recurse

of auction of bidding and money
) F e

auction = @{running : &{bid : id D money —o auction},

ended : &{collect : id D &{won : monalisa ® auction,

/ / Iost/money ® auction}}}
N

offers choice sends result send send back
to collect of bidding Mona Lisa money

Resource-Aware Session Types

- Each process stores potential in functional data
- Potential can be transferred via messages

- Potential is used to pay for performed work

Resource-Aware Session Types

Potential transfer
* Each process stores potential in functional data only at the type level,

_ _ not at runtime.
- Potential can be transferred via messages

- Potential is used to pay for performed work

Resource-Aware Session Types

Potential transfer
* Each process stores potential in functional data only at the type level,

_ _ not at runtime.
- Potential can be transferred via messages

User-defined

- Potential is used to pay for performed work .

Resource-Aware Session Types

Potential transfer
* Each process stores potential in functional data only at the type level,

_ _ not at runtime.
- Potential can be transferred via messages

User-defined

- Potential is used to pay for performed work Y —

- Message potential is a function of (functional) payload

A B, C:=7DA input value of type 7 and continue as A
__output value of type 7 and continue as A

LZ (int)

Resource-Aware Session Types

Potential transfer
* Each process stores potential in functional data only at the type level,

_ _ not at runtime.
- Potential can be transferred via messages

User-defined

- Potential is used to pay for performed work Y —

- Message potential is a function of (functional) payload

A B, C:=7DA input value of type 7 and continue as A
__output value of type 7 and continue as A

LZ (int)

 Syntactic sugar (no payload) * Only in intermediate language:

Auz=...|p"A| <A get x, {r}; P
pay Xm {r}; P

Efficient type inference

Resource-Aware Session Types via LP solving

Potential transfer
* Each process stores potential in functional data only at the type level,

_ _ not at runtime.
- Potential can be transferred via messages

User-defined

- Potential is used to pay for performed work Y —

- Message potential is a function of (functional) payload

A B, C:=7DA input value of type 7 and continue as A
__output value of type 7 and continue as A

LZ (int)

 Syntactic sugar (no payload) * Only in intermediate language:

Auz=...|p"A| <A get x, {r}; P
pay Xm {r}; P

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

Sharing: Need to acquire
contract before use.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

Equi-synchronizing:
Release contract at the
same type.

Sharing: Need to acquire
contract before use.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract

Sending a
functional value.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract

Sending a Sending a
functional value. linear value.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

—xample: Type of an
Auction Contract

Sending a Sending a
functional value. linear value.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° lﬁ auction,

Action can be open lost : money® li auction},
(running) or closed cancel : »® |2 auction}}
(ended).

Can collect lot or
reclaim your bid.

—xample: Type of an
Auction Contract

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = 1} <'' @ {running : &{bid : id > money —o »' |> auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

—xample: Type of an
Auction Contract

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

If the worst-case path is
not taken then the
leftover is returned.

—xample: Type of an
Auction Contract

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

At the beginning, you have
to pay 11 units to cover the
worst-case gas cosit.

auction = TE <" @ {running : &{bid : id D money —o »' lﬁ auction,
cancel : »® |2 auction},
ended : &{collect : id D
®{won : lot ® »° li auction,
lost : money® | auction},
cancel : »® | auction}}

If the worst-case path is This is the worst-
not taken then the case path
leftover is returned.

—xample: Type of an
Auction Contract

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa < runb < M [=

la < accept sa ;

[a.running ;

case la

(bid = r < recv la ;

m < recv la ;
sa < detach la ;
m.value ;
V < recv m ;
b' = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

-

la < accept sa ;— accept ‘acquire’ (%)

[a.running ;
case la
(bid = r < recv la ;

m < recv la ;
sa < detach la ;
m.value ;
V < recv m ;
b' = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

-

la < accept sa ;— accept ‘acquire’ (%)

la.running +— -

case la send status ‘running’

(bid = r < recv la ;
m < recv la ;
sa < detach la ;
m.value ;
V < recv m ;
b' = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = TS<111 @ {running : &{bid : id O money —o > |>auction},

(b : bids) ; (M : money), (ml : monalisa) - run ::

sa<—runb <+ M [=

(sa : auction)

la < accept sa —

-

accept ‘acquire’ (%)

[a.running —
-} '
case la send status ‘running’
(bid = r < recv la ;
~—— PN ‘ y
> recv ‘id” and ‘'money

m < recv la ;
sa < detach la ;
m.value ;

V < recv m ;

b' = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

la < accept sa — > accept ‘acquire’ (%)
[a.running — -
case la send status ‘running’
(bid = r < recv la ;
S~——o TPRE ¢)
m < recv la ; > recv ‘id” and ‘money
sa < detach la ~—___
m.value ; ﬂ detach from client (13)

V 4— recv m ;

b' = addbid b (r,v) ;
M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

la < accept sa ;—— 7 accept ‘acquire’ (17)
[a.running — .
case la send status ‘running’
(bid = r < recv la o
m < recv la ; > recv ‘Id’ and ‘money’
sa < detach la ~—__
m.value ; — detach from client (15)
V 4 recvm ;
V' = addbid b (r,v) ;_ N add bid and money

M' < add < M m ;
sa < runb’ < M' ml)

Implementation of a Running Auction

auction = 1?<*! @ {running : &{bid : id > money —o ! |Pauction},

(b : bids) ; (M : money), (ml : monalisa) - run :: (sa : auction)
sa<—runb<+ M=

la + accept sa — > accept ‘acquire’ (%)
[a.running — -
case la send status ‘running’
(bid = r < recv la o
m < recv la > recv ‘id” and ‘money’
sa < detach la ~—__
m.value ; " detach from client (13)
V4 recvm ;
V' = addbid b (r,v) ;_ N add bid and money
M' < add < M m ;
sa < run b’ < M' ml) no work constructs!

How to Use the Potential

Payment schemes (amortized cost)
» Ensure constant gas cost in the presence of costly operations
- Overcharge for cheap operations and store gas in contract

- Similar to storing ether in memory in EVM but part of contract

Explicit gas bounds
» Add an additional argument that carries potential

» User arg N ~ maximal number of players => gas bound is 87*N + 28

Enforce constant gas cost
- Simply disable potential in contract state

» Require messages to only carry constant potential

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired

(contrl(ﬁl, \71)) (Contrz(ﬁz, \72)) (COHtI‘n(Un, Vn))
dc :c s cn

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(COHtI'l(ﬁl, \71)) (COHtTQ(HQ, \72)) . (COHtrn(ﬁn, Vn)) linear data.
s i | ¢ cn

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(COHtl‘l(ﬁl, \71)) (Contrz(t_iz, \72)) (Contrn(ﬁn, \7,7)) linear data.

l C1 l C2 l Cn Channel name =
address

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(COHtl‘l(ﬁl, \71)) (Contrz(t_iz, \72)) (Contrn(ﬁn, \7,7)) linear data.
l C1 l C2 l Cn Channel name =
address

Transaction: client submits code of a linear process

(Contrl(ﬁl, \71)) (Contrz(ﬁz, \72)) (COIltl“n(l_jn, \7,,)) (client)
¢ cn :

C1 C2

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(contrl(t_h, \71)) (Contrz(t_iz, \72)) (Contrn([in, \7,,)) linear data.
l C1 l C2 l Cn Channel name =
address

Transaction: client submits code of a linear process

(Contrl(ﬁl, \71)) (Contrz(ﬁz, \72)) (COIltI‘n(l_jn, \7,,)) (client)
¢ cn :

lC1 162

- Client process can acquire existing contracts
« Client process can spawn new (shared) processes -> new contracts

» Client process needs to terminates in a new valid state

Computation on a Blockchain

Blockchain state: shared processes waiting to be acquired | Contracts store
functional and

(contrl(t_h, \71)) (Contrz(t_iz, \72)) (Contrn([in, \7,7)) linear data.
l C1 l C2 l Cn Channel name =
address

Transaction: client submits code of a linear process

(Contrl(ﬁl, \71)) (Contrz(ﬁz, \72)) (COIltl“n(l_jn, \7,,)) (client)
¢ cn :

lC1 162

. , . Contract should have
- Client process can acquire existing contracts default clients.

« Client process can spawn new (shared) processes -> new contracts

» Client process needs to terminates in a new valid state

Blockchain, Type Checking, and Verification

Type checking is part of the attack surface
» Contract code can checked at publication time
» User code needs to be checked for each transaction
 Denial of service attacks are possible

e Nomos type checking is linear in the size of the program

Verification of Nomos program is possible
» Dynamic semantics specifies runtime behavior
- Directly applicable to verification in Coq

* Nomos’ type system guaranties some important properties

Nomos

A statically-typed, strict, functional language for digital contracts

- Automatic amortized resource analysis for static gas bounds
- Shared binary session types for transparent & safe contract interfaces

- Linear type system for accurately reflecting assets

References
- POPL ’17: AARA for OCaml (RaML) « arXiv '19: Nomos

» LICS '18: Resource-Aware Session Types

Ongoing work: implementation

» Parser Type checker * Interpreter « Compiler

Collaborators: Stephanie Balzer, Ankush
Nomos Das, and Frank Pfenning

A statically-typed, strict, functional language for digital contracts

- Automatic amortized resource analysis for static gas bounds
- Shared binary session types for transparent & safe contract interfaces

- Linear type system for accurately reflecting assets

References
- POPL ’17: AARA for OCaml (RaML) « arXiv '19: Nomos

» LICS '18: Resource-Aware Session Types

Ongoing work: implementation

» Parser * Type checker * Interpreter « Compiler

