
A Case for Parallelism Profilers and Advisers
with What-If Analyses

Santosh Nagarakatte
Rutgers University, USA

@ Workshop on Dependable and Secure Software Systems @ ETH Zurich, October 2019

Is Parallel Programming Hard, And, If So,
What Can You Do About It?

“Parallel programming has earned a reputation as one of the most difficult areas a hacker
can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race conditions,
non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime latencies. And
these perils are quite real; we authors have accumulated uncounted years of experience
dealing with them, and all of the emotional scars, grey hairs, and hair loss that go with
such experiences.”

[McKenny:arXiv17]

Main reasons: use of the wrong abstraction, lack of performance
analysis and debugging tools

Illustrative Example

Student in my
class

Write a parallel program

Given a range of integers (0 to n)

Find all the prime numbers in the range

Perform a computation on the primes

Output result

for(int i=0; i<n; ++i) compute(i);
#pragma omp parallel forIncremental

parallelization

Work-Sharing Tasking

SIMD Offload

4

Feature rich

Illustrative Example – Writing a Parallel
Program

Illustrative Example

Student in my
class

1 2 3 4 n……..

Divide the range into 4 parts and
perform computation

Identify the number
of processors on the

machine (4)

Run: ./primes

Speedup: 1.8X over serial
execution

Load Imbalance

Why?

Need to write Performance Portable Code -
Advocacy for Task Parallelism

1 2 3 4 n……..

T1 T2 T3 Tm

Express all the parallelism as tasks

……..

Runtime that dynamically balances
load by assigning tasks to idle threads

Ru
nt

im
e

P1 P2 Pk……..

Illustrative Example

Student in my
class

1 2 3 4 n……..

Expresses parallel work in terms of tasks

Run: ./primes_tasks

Speedup: 3.8X over serial
execution on 4 cores

T1 T2 T3 Tm……..

Is it
performance

portable?

Performance Debugging Tools

GProfCoz OProfile

Intel
VTune

ARMMap

NVProfIntel
Advisor

• Most of them provide info on frequently executed regions.

• Critical path information is useful

• Coz [SOSP 2015]: Identifies if a line of code matters in increasing
speedup on a given machine.

Our Parallelism Profilers and Advisers:
TaskProf & OMP-WHIP [FSE 2017, SC 2018, PLDI 2019]

• Making a case for measuring logical parallelism
Series-parallel relations + fine-grained measurements is a performance model

• Where should programmer focus?
Regions with low parallelism => serialization. Critical path!

Automatically identify regions to increase parallelism to a threshold

What-if Analyses - mimic the effect of parallelization

Differential analyses to identify regions with secondary effects

Profiler

Adviser

• Does it matter?

General for multiple parallelism models. This talk focuses on OpenMP

Performance Model for Logical Parallelism
and What-If Analyses

10

Performance Model for Computing Parallelism

11

• Profile on a machine with low core count and identify scalability bottlenecks

• OSPG: Logical series-parallel relations between parts of a OpenMP program
• Inspired by prior work: DPST [PLDI 2012], SP Parse tree [SPAA 2015]

OSPG Fine-grained measurements

OpenMP Series Parallel Graph (OSPG)

• A data structure to capture series-parallel relations
• Inspired by Dynamic Program Structure Tree [PLDI 2012]
• OSPG is an ordered tree in the absence of task dependencies in OpenMP

• Handles the combination of work-sharing (fork-join programs with
threads) and tasking

• Precisely captures the semantics of OpenMP
• Three kinds of nodes : W, S, and P nodes similar to Async, Finish, and Step

nodes in the DPST

Code Fragments in OpenMP Programs

13

…
a();
#pragma omp parallel

b();
c();
…

OpenMP code snippet

ca

b

b

Execution structure

A code fragment is the longest sequence of instructions in the
dynamic execution before encountering an OpenMP construct

Capturing Series-Parallel Relation with the OSPG

14

P-nodes capture the parallel relation
Nodes in the sub-tree of a P-node logically executes
in parallel with right siblings of the P-node

c4a1

b3

b2

W1

W3W2

W4

P1

S1

P2

S2

S-nodes capture the series relation
Nodes in the sub-tree of a S-node logically executes
in series with right siblings of the S-node

W-nodes capture computation
A maximal sequence of dynamic instructions between
two OpenMP directives

15

Determine the series-parallel
relation between any pair of W
nodes with an LCA query

c4a1

b3

b2

W1

W3W2

W4

P1

S1

P2

S2

S2 = LCA(W2,W3)
P1 = Left-Child(S2,W2,W3)

Check the type of the LCA’s child on
the path to the left w-node. If it’s a
p-node, they execute in parallel.
Otherwise, they execute in series

Capturing Series-Parallel Relation with the OSPG

16

W1

W3W2

W4

P1

S1

P2

S2

S1 = LCA(W2,W4)

S2 = Left-Child(S1,W2,W4)

Determine the series-parallel
relation between any pair of W
nodes with an LCA query

Check the type of the LCA’s child on
the path to the left w-node. If it’s a
p-node, they execute in parallel.
Otherwise, they execute in series

c4a1

b3

b2

Capturing Series-Parallel Relation with the OSPG

Profiling an OpenMP Merge Sort Program

• Merge sort program parallelized with OpenMP

void main(){
int* arr = init(&n);

#pragma omp parallel
#pragma omp single

mergeSort(arr, 0, n);
}

void mergeSort(int* arr, int s, int e){
if (n <= CUT_OFF)

serialSort(arr, s, e);
int mid = s + (e-s)/2;
#pragma omp task

mergeSort(arr, s, mid);
#pragma omp task

mergeSort(arr, mid+1, e);
#pragma omp taskwait
merge(arr, s, e);

} 17

OSPG Construction
void main(){

int* arr = init(&n);
#pragma omp parallel

#pragma omp single
mergeSort(arr, 0, n);

}

18

W0

S0

S1

P0 P1

W1

OSPG Construction

void mergeSort(int* arr, int s, int e){
if (n <= CUT_OFF)

serialSort(arr, s, e);
int mid = s + (e-s)/2;
#pragma omp task

mergeSort(arr, s, mid);
#pragma omp task

mergeSort(arr, mid+1, e);
#pragma omp taskwait
merge(arr, s, e);

}

W0

S0

S1

P0 P1

S2

P2 P3

W2 W5

W3 W4

W1

19

Parallelism Computation Using OSPG

20

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

Compute work for each internal node

Measure work in each Work node
with fine grained measurements

21

Compute Parallelism

W 100

W 100W 100

W 2 W 52

W 6

W 100
W 200

W 254

W 254

W 260

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

Compute work for each internal node

Measure work in each Work node

22

Compute Serial Work

Identify serial work on critical path

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

Compute work for each internal node

Measure work in each Work node

23

Compute Serial Work

W 100

W 100W 100

W 2 W 52

W 6

W 100
W 200

W 254

W 254

W 260

Compute serial work for each
Internal node

SW 100 SW 100
SW 100

SW 154

SW 160

SW 154

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3
24

Source Code Attribution

W 100 W 100

W 254

W 260

SW 100 SW 100

SW 154

SW 160

omp task L11

omp task L13

omp parallel L3

main L1

Aggregate parallelism at OpenMP
constructs

25

Parallelism Profile

Line Number Work Serial
Work

Parallelism Critical Path
Work %

program:1 260 160 1.625 3.75
omp parallel:3 254 154 1.65 33.75
omp task:11 100 100 1.00 62.5
omp task:13 100 100 1.00 0

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

26

Identify what parts of the code matter in
increasing parallelism

Adviser mode with What-If Analyses

Identify code regions that must be
optimized to increase parallelism

Select a
region to
optimize

Which region
to select?

Select step node
performing highest

work on critical path

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

6

2

100 100

52

Adviser mode with What-If Analyses

Identify code regions
that must be optimized
to increase parallelism

Select
highest step

node on
critical path

Repeat until threshold parallelism is reached

What-If Profile
Line Work Cwork Parallelism CP

1 260 85 3.05 7.05%
3 254 79 1.65 63.5%

11 100 25 4.00 29.45%
13 100 25 4.00 0%

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

6

2

100 100

52

`

25

Identify all W-nodes
corresponding to the
region and perform

what-if analyses

25

Tasking and Scheduling Overhead

Parallelism Runtime
overhead

Speedup

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

`

` `

Adviser mode with What-If Analyses
Identify code regions

that must be optimized
to increase parallelism

Select
highest step

node on
critical path

Repeat until threshold parallelism is reached

What-If Profile
Line Work Cwork Parallelism CP

1 260 85 3.05 7.05%
3 254 79 1.65 63.5%

11 100 25 4.00 29.45%
13 100 25 4.00 0%

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

6

2

100 100

52

25
25

Work of highest step node < K * average tasking overhead
OR

Recap

OpenMP
program

Logical series-parallel relations

Work measurements

Parallelism Profile
Line Work Cwork Parallelism
12 160 130 1.23

…. …. …. …..

Performance model

What-if Regions
Region Parallelization
12 - 14 4X

…. …. …. …..

What-if Profile
Line Work Cwork Parallelism
12 160 130 16.12

…. …. …. …..

Differential Analysis to Identify Secondary
Effects

Beyond Parallelism - Secondary Effects

• Program can have high parallelism, but low speedup
• Secondary effects of parallel execution on hardware

• Contention for a system resource
• Cache – False sharing
• Memory – High remote memory accesses
• LLC misses - Reduced locality
• Processor to data affinity

Differential Analysis
Oracle Performance model Parallel Execution’s Performance model

Work inflation in region with secondary effects

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

6

2

100 185

52

W0

S0

S1

P0

S2

P2 P3

W1 W4

W2 W3

6

2

100 100

52

Inflation over Multiple Metrics

Differential Profile
Regions Cycles HITM RemDRAM

main 4.19X 13.2X 1.1X
2-4 5.34X 17.8X 1X

14-15 1.02X 1.03X 1X
15-16 1.03X 1.1X 1.01X

Differential Counters
Cycles
HITM

Remote DRAM
accesses

……

Prototypes for OpenMP and Task Parallelism
OMP-WHIP for OpenMP programs: https://github.com/rutgers-apl/omp-whip/
TaskProf for Intel TBB programs: https://github.com/rutgers-apl/TaskProf2

OMPT
Callback

OMP-
WhIP
library

Input
OpenMP
program

Compile
+ Binary

Run

Inputs

Parallelism profile

What-if regions

What-if profile

+

Differential profile

+

https://github.com/rutgers-apl/omp-whip/
https://github.com/rutgers-apl/TaskProf2

Optimizing MILCmk

Parallelism Profile
File:Line Parallelism Cpath

main 44.21 28.3
vmeq.c:23 30.29 23.3
veq.c:28 32.83 19.55

vpeq.c:28 33.55 9.35
…. …. …..

Initial Parallelism Profile What-if Profile

What-if Regions
funcs.c:81 – 91
funcs.c:60 – 67
funcs.c:47 - 54

What-if Profile
File:Line Parallelism Cpath

main 89.89 21.3
vmeq.c:23 30.29 25.2
veq.c:28 32.83 21.5

vpeq.c:28 33.55 11.5
…. …. …..

Optimizing MILCmk

Replaced serial for loop with
parallel_reduce

Optimizing MILCmk

Differential Profile
File:Line Cycles rem HITM rem DRAM

main 3.0X 100.4X 84.8X
veq.c:28-35 3.8X 55X 78X
vmeq.c:20-22 3.7X 102X 61X
vpeq.c:20-27 3.6X 91X 68X
…. …. ….. …..

Initial Differential Profile • Inflation in cycles and remote
DRAM accesses in 5 parallel_for
regions

• parallel_for loops were repeated
multiple times
• Lack of affinity

• Optimized by replacing default
partitioner with affinity partitioner

Increased the speedup of MILCmk from 2.2X to 6X

We found it to be effective with numerous applications.

Open Source at
https://github.com/rutgers-apl/TaskProf2

https://github.com/rutgers-apl/omp-whip/

Currently in talks for tech transfer with the Intel Vtune team.

Is it Useful?

https://github.com/rutgers-apl/TaskProf2
https://github.com/rutgers-apl/omp-whip/

Conclusion

• Make a case for measuring logical parallelism

• Series-parallel relations + fine-grained measurements è a useful
performance model for identifying scalability bottlenecks

• What-if analyses can help you identify regions that matter

• Differential analyses to identify regions having secondary effects

• Applicable to wide variety of programming models with appropriate
series-parallel graphs

Alive-NJ: https://github.com/rutgers-
apl/alive-nj/

TaskProf2: https://github.com/rutgers-
apl/TaskProf2

OMP-WHIP:
https://github.com/rutgers-apl/omp-whip/

CASM-Verify:
https://github.com/rutgers-apl/CASM-Verify/

Other software prototypes from the
Rutgers Architecture & Programming Languages Group:

https://github.com/rutgers-apl/

Develop Abstractions for Performance &
Correctness

https://github.com/rutgers-apl/alive-nj/
https://github.com/rutgers-apl/TaskProf
https://github.com/rutgers-apl/omp-whip/
https://github.com/rutgers-apl/omp-whip/

