A Case for Parallelism Profilers and Advisers
with What-If Analyses

Santosh Nagarakatte
Rutgers University, USA

@ Workshop on Dependable and Secure Software Systems @ ETH Zurich, October 2019

s222,,
T 22,
WA T S
s R
NN =
§ BN
J|=! =N
R 58
E% N
£ S
% S
=L >4
“eeraa i

s Parallel Programming Hard, And, If So,
What Can You Do About It?

“Parallel programming has earned a reputation as one of the most difficult areas a hacker
can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race conditions,
non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime latencies. And
these perils are quite real; we authors have accumulated uncounted years of experience

dealing with them, and all of the emotional scars, grey hairs, and hair loss that go with
such experiences.”

[McKenny:arXivl7]

Main reasons: use of the wrong abstraction, lack of performance
analysis and debugging tools

try,
900 1166 =%
WS g 2o
V% N
&% s
{ o
2y S
= >
Lo
“zrriri?

lllustrative Example

‘ Write a parallel program

Given a range of integers (0 to n)

=) \,

{ Find all the prime numbers in the range }

A 4

Student in my

class Perform a computation on the primes

l

Output result

lllustrative Example — Writing a Parallel
Program

OpenMP

: Work-Sharing
Feature rich
. sivp J Offload

Incremental #pragma omp parallel for
parallelization for(int i=0; i<n; ++i) compute(i);

yttre,
W T6s
W Foe
s X
$ O
NS o5
N N
NE
R 5 \s
& N
& A
Seanwo 70
2710

lllustrative Example

Identify the number

m~ of processors on the

machine (4)

Divide the range into 4 parts and

‘ perform computation

{ Run: ./primes }

Student in my l

class Speedup: 1.8X over serial
execution

Load Imbalance

Need to write Performance Portable Code -
Advocacy for Task Parallelism

1 2 3 4 1 e n

Express all the parallelism as tasks

........ ®

Runtime that dynamically balances
load by assigning tasks to idle threads

sy,
1766 w32
RGP R
R% =
& oK
J& R
NA =\
NH N
R 3
S SR
2 R
Y A
ez
“2zrisi?

lllustrative Example

‘ Expresses parallel work in terms of tasks

l Is it
{ Run: ./primes_tasks } performance
portable?

Student in my
class

l

Speedup: 3.8X over serial
execution on 4 cores

sttres,
P66 e
s ‘ 2%
NS o
NE "}
NE I EN
ES TN
% T
= g
“r2s551" '

Performance Debugging Tools

@ @ OProfile ARMMap

(]I'm : PARALLELWARE
e % 1lTRATNE inScore-P

A]]

scalasca ¥

™

nce

ysrezy,
o 3
e
W5 R
NS o
R BR
& 5N
0% S
5% A
=Keanno 1!
“zrriri?

Our Parallelism Profilers and Advisers:
TaskProf & OMP-WHIP (rse 2017, sc 2018, pLDI 2019]

* Making a case for measuring logical parallelism

Series-parallel relations + fine-grained measurements is a performance model

 Where should programmer focus?
Regions with low parallelism => serialization. Critical path!
Profiler

 Does it matter?

Automatically identify regions to increase parallelism to a threshold

What-if Analyses - mimic the effect of parallelization .
Adviser

Differential analyses to identify regions with secondary effects
General for multiple parallelism models. This talk focuses on OpenMP

a2,
T 22,
WS g fo
% e
NS =
Ne N
J|=! =N
b 5
S SR
£ X
X% $
“Loanme
2r i

Performance Model for Logical Parallelism
and What-If Analyses

10

Performance Model for Computing Parallelism

* Profile on a machine with low core count and identify scalability bottlenecks

 OSPG: Logical series-parallel relations between parts of a OpenMP program
* Inspired by prior work: DPST [PLDI 2012], SP Parse tree [SPAA 2015]

+ = e -

/B)

OSPG Fine-grained measurements

OpenMP Series Parallel Graph (OSPG)

e A data structure to capture series-parallel relations

* Inspired by Dynamic Program Structure Tree [PLDI 2012]
* OSPG is an ordered tree in the absence of task dependencies in OpenMP

* Handles the combination of work-sharing (fork-join programs with
threads) and tasking

* Precisely captures the semantics of OpenMP

* Three kinds of nodes : W, S, and P nodes similar to Async, Finish, and Step
nodes in the DPST

Code Fragments in OpenMP Programs

OpenMP code snippet Execution structure

;1.(); “
fpragma omp parallel

b(); =)
=t b

A code fragment is the longest sequence of instructions in the
dynamic execution before encountering an OpenMP construct

13

Capturing Series-Parallel Relation with the OSPG

W-nodes capture computation

A maximal sequence of dynamic instructions between
two OpenMP directives

A —

P-nodes capture the parallel relation

Nodes in the sub-tree of a P-node logically executes
in parallel with right siblings of the P-node

S-nodes capture the series relation

Nodes in the sub-tree of a S-node logically executes
in series with right siblings of the S-node

stres,,
9 1166 <%
R Foe
A7 oF
% N
N R
§ BR
3 SN 14
T 23
e SR
20 R
X% $
“Loanme
“zrriri?

Capturing Series-Parallel Relation with the OSPG

- b2

Determine fhe serres-parallel

Check the type of the LCA’s child on
the path to the left w-node. If it’s a
p-node, they execute in parallel.
Otherwise, they execute in series

$2 = LCA(W2,W3)
P1 = Left-Child(S2,W2,W3)
% RUTGERS

15

Capturing Series-Parallel Relation with the OSPG

- b2

Determine theserres-parallel

Check the type of the LCA’s child on
the path to the left w-node. If it’s a
p-node, they execute in parallel.
Otherwise, they execute in series

S1 = LCA(W2,W4)

S2 = Left-Child(S1,W2,W4)
% RUTGERS

16

Profiling an OpenMP Merge Sort Program

* Merge sort program parallelized with OpenMP

void main () { void mergeSort (int* arr, int s, int e) {
int* arr = 1init(&n); 1f (n <= CUT OFF)
#fpragma omp parallel serialSort (arr, s, e);
#fpragma omp single int mid = s + (e-s)/2;
mergeSort (arr, 0, n); #pragma omp task
} mergeSort (arr, s, mid);

#fpragma omp task

mergeSort (arr, mid+1l, e);
fpragma omp taskwait
merge (arr, s, e);

isrssy,
W e,
R SPI
W& e
NS o
R BN
NE EN 17
R)
NG N
Y R
Y S
=Leanwn 7"
s it

OSPG Construction

= void main () {

int* arr = init (&n);

fpragma omp parallel
fpragma omp single
mergeSort (arr, 0, n);

s
IR
W Ao
% o
$ R
NE 2%
§) 18
N
% S
s SN
Seanwo 70
7

OSPG Construction

=P vo0id mergeSort (int* arr, int s, int e) {
if (n <= CUT OFF)
serialSort (arr, s, e);
int mid = s + (e-s)/2;
#fpragma omp task
mergeSort (arr, s, mid);
#fpragma omp task
mergeSort (arr, mid+l, e);

fpragma omp taskwait
merge (arr, s, e);

}

pissrzy,
o"i %
W e
3 N
3 o
NS 2%
N 2%
N BN
3 N
2 &
% o
& A
A0 >
7

Parallelism Computation Using OSPG

Jssrezy,
% 5
R GBI
s N
5 O
NG BN
33 N
& N
N\ WA
AR &8
20 Vo
X% $
“Loanme
“zrriri?

20

Compute Parallelism

W 6 254
Measure work in each Work node
with fine grained measurements

W 2 52
Compute work for each internal node

W | 100 100

W | 100 100

Compute Serial Work

Measure work in each Work node
Compute work for each internal node

Identify serial work on critical path

sttres,,
g
R/ e
V% R
3% R
NS BN
NH EN
R S
E% N
£ S
s S
=Leanwe 70
“eeraa i

F______———

22

Compute Serial Work

W 6 254
Measure work in each Work node 154
Compute work for each internal node
Compute serial work for each W | 2 22
Internal node
W | 100 100
SW | 100 100
W | 100 100

260

Source Code Attribution

160
-
/
/
main L1
254
omp parallel L3 | — >
154
omp task |[L11 (~
—
task |L13 B
omp tas ~
— — _
W |[100 100
Aggregate parallelism at OpenMP oy T 100

constructs

Parallelism Profile

Line Number | Work | Serial | Parallelism | Critical Path
Work Work %
program:1 260 160 1.625 3.75
omp parallel:3 254 154 1.65 33.75
omp task:11 100 100 1.00 62.5
omp task:13 100 100 1.00 0

s,
TT6s 32
) Ao
V& R
5 2
$ R
NN =\
N G
N 23
3 SN
q
S N
S
% el“\‘
74

25

R,

Identify what parts of the code matter in
increasing parallelism

Adviser mode with What-If Analyses

Identify code regions that must be
optimized to increase parallelism

Which region
to select?

00

Select a

region to 2 52
optimize
Select step node
performing highest
work on critical path
100 @ 100

1122y,
ey,
g
&/ =
N YN
NH "N
§ N
BN
W
o 8
% S
Soanme 7
g

Adviser mode with What-If Analyses

4 . , N Identify all W-nodes
Identify code regions corresponding to the

that must be optimized region and perform
to increase parallelism what-if analyses

What-If Profile
Line Work Cwork Parallelism CP
2 1 260 85 3.05 7.05%
3 254 79 1.65 63.5%
11 100 25 4.00 29.45%
100 25 4.00 0%

_/—

Select
highest step
node on
critical pat

Repeat until threshold parallelism is reached

tsrey,
WA o
R AN
R OR
$ o
NN YA
N G
: PN
3 SN
S N
S
< S
l"
7

‘asking and Scheduling Overhead

: Runtime
[Parallellsm }
overhead

[Speedup l}

sttres,,
W
V5 R
V% R
3% R
NS BN
NH EN
R S
E% N
£ S
s S
=Leanwe 70
“eeraa i

Adviser mode with What-If Analyses

~
‘ Identify code regions

that must be optimized
to increase parallelism

What-If Profile
Line Work Cwork Parallelism CP

Select 5p |1 260 8 3.05 7.05%

highest step 3 254 79 165 63.5%

node on 11 100 25 4.00 29.45%
ritical pat 2 13 100 25 4.00 0%

_/—

3

Repeat until threshold parallelism is reached
S OR
I{JTGERS Work of highest step node < K * average tasking overhead

@

OpenMP
program

&% RUTGERS

Recap

Performance model

o ~

Logical series-parallel relations

+

Work measurements

\
1
1

Parallelism Profile
Line Work Cwork Parallelism
12 160 130 1.23

What-if Regions
Region Parallelization
12-14 4x

What-if Profile
Line Work Cwork Parallelism
12 160 130 16.12

Differential Analysis to Identify Secondary
Effects

sttres,
P66 e
DA\ |/ o
NS R
& 5 RS
NH EN I | I ‘ ; E
N
BS)
D 7
=Leanwn 7"
“zrriri?

Beyond Parallelism - Secondary Effects

* Program can have high parallelism, but low speedup
* Secondary effects of parallel execution on hardware

» Contention for a system resource
* Cache - False sharing
* Memory — High remote memory accesses
* LLC misses - Reduced locality
* Processor to data affinity

sttres,
900 1166 =%
WS g 2o

s e

V5 N
NS BN

2 S

= >

“Loanme
“zrriri?

Differential Analysis

Oracle Performance model Parallel Execution’s Performance model

(P 6

52 52

N

100 100 100 185

[Work inflation in region with secondary effects }

Inflation over Multiple Metrics

Differential Counters Differential Profile
Cycles

Regions Cycles HITM RemDRAM
HITM » main 419X 132X 1.1X
Remote DRAM 2-4 534X 17.8X 1X

accesses 14-15 1.02X 1.03X 1X

tsrey,
o4 e
Yo e
NS R
NS W
§ EN
A
S S
S
L é“\‘
3
74

Prototypes for OpenMP and Task Parallelism

OMP-WHIP for OpenMP programs: https:/github.com/rutgers-apl/omp-whip/
TaskProf for Intel TBB programs: https:/github.com/rutgers-apl/TaskProf2

Parallelism profile
9)
[Iback . .
Input Compile M i What-if regions

+
Run
OpenMP — + ‘ Binary # -

+
rogram
@ PR) (\?VAQ:T; : What-if profile
Iibrary Inputs .

Differential profile

1122y,
T <N
WA gase e
W& e
NS o
NG 7|3
N 23
NE EN
R N
2 N
2 Y
Y S
=L >4
“zrriri?

https://github.com/rutgers-apl/omp-whip/
https://github.com/rutgers-apl/TaskProf2

Optimizing MILCmk

Initial Parallelism Profile What-if Profile

Parallelism Profile

What-if Regions
File:Line Parallelism Cpath funcs.c:81-91
main 44.21 28.3 funcs.c:60 — 67
vmeq.c:23 30.29 23.3 funcs.c:47 - 54
veq.c:28 32.83 19.55

vpeq.c:28 33.55 9.35

.. What-if Profile

File:Line Parallelism Cpath
main 89.89 21.3
vmeg.c:23 30.29 25.2
veq.c:28 32.83 21.5
vpeq.c:28 33.55 11.5

e, _/_
s
o =
V2 =
N 2%
NH E N
SN
o S N
s S
Soanmo >4
g

Optimizing MILCmk

QLA_Real

sum_V(QLA_ColorVector *d, int n)
{

QLA_Real | *)d;
) nn = nksizeof(QLA_ColorVe
for(int i=@; i<nn; i++) t += rl[il;
t/nn;

Replaced serial for loop with
parallel_reduce

sizeof(QLA_Real);

}
QLA_Real
sum_H(QLA_HalfFermion *d, int n)
{
QLA_Real t= al *)d;

n = nksizeof(QLA_HalfFer sizeof(QLA_Real);

QLA_Real
sum_D(QLA_DiracFermion *d, int n)
{
QLA_Real t=0 A Real *)d;
] = n*xsizeof(QLA_Dirac ;
for(int i=0; i<nn; i++) t += rl[il;
t/nn;

)/sizeof(QLA_Real);

Optimizing MILCmk

Initial Differential Profile /lnflation in cycles and remote \
DRAM accesses in 5 parallel_for

Differential Profile

File:Line Cycles rem HITM rem DRAM regions

main 3.0X 100.4X 84.8X

ved.cie83y 38X > e * parallel_for loops were repeated
vmeq.c:20-22 3.7X 102X 61X —

vpeq.c:20-27 3.6X 91X 68X multiple times

----- * Lack of affinity
* Optimized by replacing default
\\partitioner with affinity partitiony

[Increased the speedup of MILCmk from 2.2X to 6X }

isrssy,
P e
SIS
V% N
&% s
NS 2%
3 EN
N\ WA
NG N
Y R
Y S
=Leanwn 7"
“zrriri?

Is it Useful?

We found it to be effective with numerous applications.

Currently in talks for tech transfer with the Intel Vtune team.

Open Source at
https://github.com/rutgers-apl/TaskProf2
https://github.com/rutgers-apl/omp-whip/

yr1rery,
W Te
e e
NS O
N 2\
RH N
i 28
9 S
% Y
s S
Srinme >0
rreri

https://github.com/rutgers-apl/TaskProf2
https://github.com/rutgers-apl/omp-whip/

Conclusion

* Make a case for measuring logical parallelism

 Series-parallel relations + fine-grained measurements =» a useful
performance model for identifying scalability bottlenecks

« What-if analyses can help you identify regions that matter
 Differential analyses to identify regions having secondary effects

« Applicable to wide variety of programming models with appropriate
series-parallel graphs

Develop Abstractions for Performance &
Correctness

-

"f_“‘.oartment of Computer Scien

Al ive-NJ. https://github.com/rutgers-
apl/alive-nj/
Tas k P r0f2 . https://github.com/rutgers-

apl/TaskProf2
OMP-WHIP:

https://github.com/rutgers-apl/omp-whip/

CASM-Verify:

https://github.com/rutgers-apl/CASM-Verify/

Other software prototypes from the
Rutgers Architecture & Programming Languages Group:
https://github.com/rutgers-apl/

stz
“‘L‘* e
A7 oF
S/ G\
35 R
NS o5
Ne =N
B 8
A S
Y S
=Leanwe 70
“zrriri?

https://github.com/rutgers-apl/alive-nj/
https://github.com/rutgers-apl/TaskProf
https://github.com/rutgers-apl/omp-whip/
https://github.com/rutgers-apl/omp-whip/

