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FLOATING-POINT 
COMPUTATIONS 
ARE UBIQUITOUS



CHALLENGES

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Machine learning



FP IS WEIRD

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /, 

comparison, remainder, and square root

 Only recommendation for some functions 

(trigonometry)



FP IS WEIRD cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point 

Arithmetic Between Intel Xeon Processors and the 

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation



FLOATING-POINT NUMBERS

 IEEE 754 standard

 Sign (s), mantissa (m), exponent (exp):

(-1)s * 1.m * 2exp

 Single precision: 1, 23, 8 bits

 Double precision: 1, 52, 11 bits



FLOATING-POINT NUMBER LINE

 3 bits for precision

 Between any two powers of 2, there are 23 = 8 

representable numbers



ROUNDING IS SOURCE OF ERRORS
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FLOATING-POINT OPERATIONS

 First normalize to the same exponent

 Smaller exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!
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RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints
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ERROR ANALYSIS



FLOATING-POINT ERROR

Input values: x, y

zfp zinf≠

Absolute error: | zfp – zinf |

Relative error: | (zfp – zinf) / zinf |

Finite precision

zfp = ffp(x, y)

Infinite precision

zinf = finf(x, y)



ERROR PLOT FOR MULTIPLICATION
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Absolute
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ERROR PLOT FOR ADDITION
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USAGE SCENARIOS

 Reason about floating-point computations

 Precisely characterize floating-point behavior of 

libraries

 Support performance-precision tuning and 

synthesis

 Help decide where error-compensation is 

needed

 “Equivalence” checking



STATIC ANALYSIS

http://github.com/soarlab/FPTaylor



CONTRIBUTIONS

 Handles non-linear and transcendental functions

 Tight error upper bounds

 Better than previous work

 Rigorous

 Over-approximation

 Based on our own rigorous global optimizer

 Emits a HOL-Lite proof certificate

 Verification of the certificate guarantees estimate

 Tool called FPTaylor publicly available



FPTaylor TOOLFLOW
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IEEE ROUNDING MODEL

Consider 𝑜𝑝 𝑥, 𝑦 where 𝑥 and 𝑦 are floating-

point values, and 𝑜𝑝 is a function from floats to 

reals

IEEE round-off errors are specified as

Only one of 𝑒𝑜𝑝 or 𝑑𝑜𝑝 is non-zero:

𝑒𝑜𝑝 ≤ 2−24, 𝑑𝑜𝑝 ≤ 2−150 (single precision)

𝑒𝑜𝑝 ≤ 2−53, 𝑑𝑜𝑝 ≤ 2−1075 (double precision)

For normal values For subnormal values

𝑜𝑝 𝑥, 𝑦 ⋅ 1 + 𝑒𝑜𝑝 + 𝑑𝑜𝑝



ERROR ESTIMATION EXAMPLE

 Model floating-point computation of
𝐸 = 𝑥/ 𝑥 + 𝑦 using reals as

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

𝑒1 ≤ 𝜖1, 𝑒2 ≤ 𝜖2

 Absolute rounding error is then ෨𝐸 − 𝐸

 We have to find the max of this function over 

 Input variables 𝑥, 𝑦
 Exponential in the number of inputs

 Additional variables 𝑒1, 𝑒2 for operators

 Exponential in floating-point routine size!



SYMBOLIC TAYLOR EXPANSION

 Reduces dimensionality of the optimization 

problem

 Basic idea

 Treat each 𝑒 as “noise” (error) variables

 Now expand based on Taylor’s theorem

 Coefficients are symbolic

 Coefficients weigh the “noise” correctly and are 

correlated

 Apply global optimization on reduced problem

 Our own parallel rigorous global optimizer called 

Gelpia

 Non-linear reals, transcendental functions



ERROR ESTIMATION EXAMPLE

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

expands into

where 𝑀2 summarizes the second and higher order 

error terms and 𝑒0 ≤ 𝜖0, 𝑒1 ≤ 𝜖1

Floating-point error is then bounded by

෨𝐸 = 𝐸 +
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝑒1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝑒2 +M2

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2



ERROR ESTIMATION EXAMPLE

 Using global optimization find constant bounds

 M2 can be easily over-approximated

 Greatly reduced problem dimensionality

 Search only over inputs 𝑥, 𝑦 using our Gelpia optimizer

∀𝑥, 𝑦. 𝜕෩𝐸

𝜕𝑒1
0 = 𝑥

𝑥+𝑦
≤ 𝑈1

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2



ERROR ESTIMATION EXAMPLE

 Operations are single-precision (32 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖32−𝑏𝑖𝑡 +𝑈2 × 𝜖32−𝑏𝑖𝑡

 Operations are double-precision (64 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖64−𝑏𝑖𝑡 +𝑈2 × 𝜖64−𝑏𝑖𝑡



RESULTS FOR JETENGINE



SUMMARY

 New method for rigorous floating-point round-

off error estimation

 Our method is embodied in new tool FPTaylor

 FPTaylor performs well and returns tighter 

bounds than previous approaches



SYNTHESIS

http://github.com/soarlab/FPTuner



MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error 

bound, automatically synthesize precision 

allocation for operations and variables



APPROACH

 Replace machine epsilons with symbolic 

variables

𝑠0, 𝑠1 ∈ 𝜖32−𝑏𝑖𝑡 , 𝜖64−𝑏𝑖𝑡

 Compute precision allocation that satisfies 

given error bound

 Take care of type casts

 Implemented in FPTuner tool

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝑠1 + 𝑈2 × 𝑠2



FPTuner TOOLFLOW

Optimization ProblemGurobi

Generic 

Error 

Model

Efficiency 

Model

Gelpia

Global 

Optimizer

Optimal Mixed-

precision

Routine: Real-valued 

Expression

Error Threshold

Operator Weights

Extra Constraints

User Specifications



EXAMPLE:

JACOBI METHOD

 Inputs:

 2x2 matrix

 Vector of size 2

 Error bound: 1e-14

 Available precisions: single, 

double, quad

 FPTuner automatically 

allocates precisions for all 

variables and operations



SUMMARY

 Support mixed-precision allocation

 Based on rigorous formal reasoning

 Encoded as an optimization problem

 Extensive empirical evaluation

 Includes real-world energy measurements showing 

benefits of precision tuning



SOLVING

http://github.com/soarlab/OL1V3R



MOTIVATION

 Poor scalability of floating-point solvers

 Bit-blasting: formula → circuit

 Others showed that search-based solving can 

be effective for various SMT theories

 Perform the search directly on theory level

 Can we achieve similar efficiency using 

stochastic local search on floating-points?

 Inspired by Z3’s qfbv-sls tactic for bit-vectors



STOCHASTIC LOCAL SEARCH

 Basic setting: local search + random choices

 Key ingredients

 Score function

 Neighborhood relation

 Heuristics



SCORE FUNCTION

 score(expr, assignment) → rational

 Intuition: the ``degree’’ of satisfiability

 1 = satisfiable

 Example: s(x>2, x←1.99) > s(x>2, x←0)

 Key idea: measure a distance between signed 

ordinal indices of two floats

 Total order on floats

 Neighboring floats have a distance of 1



NEIGHBORHOOD RELATION

 Define neighbors of an assignment in a search 

step

 Several allowed mutations

 Bit-flipping

 ±ulp

 (*2), (/2) – changing exponent



HEURISTICS

 Remove equality constraints when possible

 (assert (and (= x (+ y z)) (> x 2.0)))

→ (assert (> (+ y z) 2.0))

 Use models derived from real arithmetic as 

initial assignments

 (assert (> (+ y z) 2.0)) → y = 1, z = 3/2

 Variable neighborhood search

 Refine the neighborhood relation into 3 subgroups 

and switch them on the fly



EVALUATION

 Compare OL1V3R with 5 state-of-the-art 

floating-point solvers

Tool Version Technique

MathSAT 5.5.4 Hybrid

CVC4 1.7 Bit-blasting

Z3 4.8.4 Bit-blasting 

JFS commit 2322167 Coverage-guided fuzzing 

COLIBRI revision 2176 Constraint propagation



RESULTS

Tool Sat Unsat Unknown Timeout DiffB DiffH

OL1V3RB 115 0 2 80 - 0/16

OL1V3RH 131 0 2 64 16/0 -

MathSAT 125 1 7 64 13/5 2/9

CVC4 117 1 10 69 10/9 2/15

Z3 88 0 10 99 3/32 0/43

JFS 113 0 0 84 4/8 0/20

COLIBRI 118 32 4 43 14/13 3/18



SUMMARY

 Implemented a prototype for solving floating-

point constraints using SLS

 Define key ingredients (score function, neighbors)

 Devise custom heuristics

 Compared our tool to state-of-the-art solvers 

and confirmed its effectiveness


