
Zvonimir Rakamarić

ANALYSIS AND SYNTHESIS

OF

FLOATING-POINT ROUTINES

FLOATING-POINT
COMPUTATIONS
ARE UBIQUITOUS

CHALLENGES

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Machine learning

FP IS WEIRD

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /,

comparison, remainder, and square root

 Only recommendation for some functions

(trigonometry)

FP IS WEIRD cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point

Arithmetic Between Intel Xeon Processors and the

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation

FLOATING-POINT NUMBERS

 IEEE 754 standard

 Sign (s), mantissa (m), exponent (exp):

(-1)s * 1.m * 2exp

 Single precision: 1, 23, 8 bits

 Double precision: 1, 52, 11 bits

FLOATING-POINT NUMBER LINE

 3 bits for precision

 Between any two powers of 2, there are 23 = 8

representable numbers

ROUNDING IS SOURCE OF ERRORS

0 ∞-∞

0

-∞ ∞

Real Numbers

Floating-Point Numbers

𝒙 𝒚

෥𝒚෥𝒙

(෥𝒙 − 𝒙) (෥𝒚 − 𝒚)

FLOATING-POINT OPERATIONS

 First normalize to the same exponent

 Smaller exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!

UTAH FLOATING-POINT TEAM

1. Ganesh Gopalakrishnan (prof)

2. Zvonimir Rakamarić (prof)

3. Ian Briggs (staff programmer)

4. Mark Baranowski (PhD)

5. Rocco Salvia (PhD)

6. Shaobo He (PhD)

7. Thanhson Nguyen (PhD)

Alumni: Alexey Solovyev (postdoc), Wei-Fan

Chiang (PhD), Dietrich Geisler (undergrad), Liam

Machado (undergrad)

RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints

RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints

ERROR ANALYSIS

FLOATING-POINT ERROR

Input values: x, y

zfp zinf≠

Absolute error: | zfp – zinf |

Relative error: | (zfp – zinf) / zinf |

Finite precision

zfp = ffp(x, y)

Infinite precision

zinf = finf(x, y)

ERROR PLOT FOR MULTIPLICATION

X values

Y values

Absolute

Error

ERROR PLOT FOR ADDITION

X values

Y values

Absolute

Error

USAGE SCENARIOS

 Reason about floating-point computations

 Precisely characterize floating-point behavior of

libraries

 Support performance-precision tuning and

synthesis

 Help decide where error-compensation is

needed

 “Equivalence” checking

STATIC ANALYSIS

http://github.com/soarlab/FPTaylor

CONTRIBUTIONS

 Handles non-linear and transcendental functions

 Tight error upper bounds

 Better than previous work

 Rigorous

 Over-approximation

 Based on our own rigorous global optimizer

 Emits a HOL-Lite proof certificate

 Verification of the certificate guarantees estimate

 Tool called FPTaylor publicly available

FPTaylor TOOLFLOW

Given FP

Expression

and Input

Intervals

Obtain

Symbolic

Taylor Form

Obtain

Error

Function

Maximize

the Error

Function

Generate

Certificate

in HOL-Lite

IEEE ROUNDING MODEL

Consider 𝑜𝑝 𝑥, 𝑦 where 𝑥 and 𝑦 are floating-

point values, and 𝑜𝑝 is a function from floats to

reals

IEEE round-off errors are specified as

Only one of 𝑒𝑜𝑝 or 𝑑𝑜𝑝 is non-zero:

𝑒𝑜𝑝 ≤ 2−24, 𝑑𝑜𝑝 ≤ 2−150 (single precision)

𝑒𝑜𝑝 ≤ 2−53, 𝑑𝑜𝑝 ≤ 2−1075 (double precision)

For normal values For subnormal values

𝑜𝑝 𝑥, 𝑦 ⋅ 1 + 𝑒𝑜𝑝 + 𝑑𝑜𝑝

ERROR ESTIMATION EXAMPLE

 Model floating-point computation of
𝐸 = 𝑥/ 𝑥 + 𝑦 using reals as

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

𝑒1 ≤ 𝜖1, 𝑒2 ≤ 𝜖2

 Absolute rounding error is then ෨𝐸 − 𝐸

 We have to find the max of this function over

 Input variables 𝑥, 𝑦
 Exponential in the number of inputs

 Additional variables 𝑒1, 𝑒2 for operators

 Exponential in floating-point routine size!

SYMBOLIC TAYLOR EXPANSION

 Reduces dimensionality of the optimization

problem

 Basic idea

 Treat each 𝑒 as “noise” (error) variables

 Now expand based on Taylor’s theorem

 Coefficients are symbolic

 Coefficients weigh the “noise” correctly and are

correlated

 Apply global optimization on reduced problem

 Our own parallel rigorous global optimizer called

Gelpia

 Non-linear reals, transcendental functions

ERROR ESTIMATION EXAMPLE

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

expands into

where 𝑀2 summarizes the second and higher order

error terms and 𝑒0 ≤ 𝜖0, 𝑒1 ≤ 𝜖1

Floating-point error is then bounded by

෨𝐸 = 𝐸 +
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝑒1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝑒2 +M2

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Using global optimization find constant bounds

 M2 can be easily over-approximated

 Greatly reduced problem dimensionality

 Search only over inputs 𝑥, 𝑦 using our Gelpia optimizer

∀𝑥, 𝑦. 𝜕෩𝐸

𝜕𝑒1
0 = 𝑥

𝑥+𝑦
≤ 𝑈1

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Operations are single-precision (32 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖32−𝑏𝑖𝑡 +𝑈2 × 𝜖32−𝑏𝑖𝑡

 Operations are double-precision (64 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖64−𝑏𝑖𝑡 +𝑈2 × 𝜖64−𝑏𝑖𝑡

RESULTS FOR JETENGINE

SUMMARY

 New method for rigorous floating-point round-

off error estimation

 Our method is embodied in new tool FPTaylor

 FPTaylor performs well and returns tighter

bounds than previous approaches

SYNTHESIS

http://github.com/soarlab/FPTuner

MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error

bound, automatically synthesize precision

allocation for operations and variables

APPROACH

 Replace machine epsilons with symbolic

variables

𝑠0, 𝑠1 ∈ 𝜖32−𝑏𝑖𝑡 , 𝜖64−𝑏𝑖𝑡

 Compute precision allocation that satisfies

given error bound

 Take care of type casts

 Implemented in FPTuner tool

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝑠1 + 𝑈2 × 𝑠2

FPTuner TOOLFLOW

Optimization ProblemGurobi

Generic

Error

Model

Efficiency

Model

Gelpia

Global

Optimizer

Optimal Mixed-

precision

Routine: Real-valued

Expression

Error Threshold

Operator Weights

Extra Constraints

User Specifications

EXAMPLE:

JACOBI METHOD

 Inputs:

 2x2 matrix

 Vector of size 2

 Error bound: 1e-14

 Available precisions: single,

double, quad

 FPTuner automatically

allocates precisions for all

variables and operations

SUMMARY

 Support mixed-precision allocation

 Based on rigorous formal reasoning

 Encoded as an optimization problem

 Extensive empirical evaluation

 Includes real-world energy measurements showing

benefits of precision tuning

SOLVING

http://github.com/soarlab/OL1V3R

MOTIVATION

 Poor scalability of floating-point solvers

 Bit-blasting: formula → circuit

 Others showed that search-based solving can

be effective for various SMT theories

 Perform the search directly on theory level

 Can we achieve similar efficiency using

stochastic local search on floating-points?

 Inspired by Z3’s qfbv-sls tactic for bit-vectors

STOCHASTIC LOCAL SEARCH

 Basic setting: local search + random choices

 Key ingredients

 Score function

 Neighborhood relation

 Heuristics

SCORE FUNCTION

 score(expr, assignment) → rational

 Intuition: the ``degree’’ of satisfiability

 1 = satisfiable

 Example: s(x>2, x←1.99) > s(x>2, x←0)

 Key idea: measure a distance between signed

ordinal indices of two floats

 Total order on floats

 Neighboring floats have a distance of 1

NEIGHBORHOOD RELATION

 Define neighbors of an assignment in a search

step

 Several allowed mutations

 Bit-flipping

 ±ulp

 (*2), (/2) – changing exponent

HEURISTICS

 Remove equality constraints when possible

 (assert (and (= x (+ y z)) (> x 2.0)))

→ (assert (> (+ y z) 2.0))

 Use models derived from real arithmetic as

initial assignments

 (assert (> (+ y z) 2.0)) → y = 1, z = 3/2

 Variable neighborhood search

 Refine the neighborhood relation into 3 subgroups

and switch them on the fly

EVALUATION

 Compare OL1V3R with 5 state-of-the-art

floating-point solvers

Tool Version Technique

MathSAT 5.5.4 Hybrid

CVC4 1.7 Bit-blasting

Z3 4.8.4 Bit-blasting

JFS commit 2322167 Coverage-guided fuzzing

COLIBRI revision 2176 Constraint propagation

RESULTS

Tool Sat Unsat Unknown Timeout DiffB DiffH

OL1V3RB 115 0 2 80 - 0/16

OL1V3RH 131 0 2 64 16/0 -

MathSAT 125 1 7 64 13/5 2/9

CVC4 117 1 10 69 10/9 2/15

Z3 88 0 10 99 3/32 0/43

JFS 113 0 0 84 4/8 0/20

COLIBRI 118 32 4 43 14/13 3/18

SUMMARY

 Implemented a prototype for solving floating-

point constraints using SLS

 Define key ingredients (score function, neighbors)

 Devise custom heuristics

 Compared our tool to state-of-the-art solvers

and confirmed its effectiveness

