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FLOATING-POINT 
COMPUTATIONS 
ARE UBIQUITOUS



CHALLENGES

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Machine learning



FP IS WEIRD

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /, 

comparison, remainder, and square root

 Only recommendation for some functions 

(trigonometry)



FP IS WEIRD cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point 

Arithmetic Between Intel Xeon Processors and the 

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation



FLOATING-POINT NUMBERS

 IEEE 754 standard

 Sign (s), mantissa (m), exponent (exp):

(-1)s * 1.m * 2exp

 Single precision: 1, 23, 8 bits

 Double precision: 1, 52, 11 bits



FLOATING-POINT NUMBER LINE

 3 bits for precision

 Between any two powers of 2, there are 23 = 8 

representable numbers



ROUNDING IS SOURCE OF ERRORS
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FLOATING-POINT OPERATIONS

 First normalize to the same exponent

 Smaller exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!
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RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints
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ERROR ANALYSIS



FLOATING-POINT ERROR

Input values: x, y

zfp zinf≠

Absolute error: | zfp – zinf |

Relative error: | (zfp – zinf) / zinf |

Finite precision

zfp = ffp(x, y)

Infinite precision

zinf = finf(x, y)



ERROR PLOT FOR MULTIPLICATION
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ERROR PLOT FOR ADDITION
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USAGE SCENARIOS

 Reason about floating-point computations

 Precisely characterize floating-point behavior of 

libraries

 Support performance-precision tuning and 

synthesis

 Help decide where error-compensation is 

needed

 “Equivalence” checking



STATIC ANALYSIS

http://github.com/soarlab/FPTaylor



CONTRIBUTIONS

 Handles non-linear and transcendental functions

 Tight error upper bounds

 Better than previous work

 Rigorous

 Over-approximation

 Based on our own rigorous global optimizer

 Emits a HOL-Lite proof certificate

 Verification of the certificate guarantees estimate

 Tool called FPTaylor publicly available



FPTaylor TOOLFLOW
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IEEE ROUNDING MODEL

Consider 𝑜𝑝 𝑥, 𝑦 where 𝑥 and 𝑦 are floating-

point values, and 𝑜𝑝 is a function from floats to 

reals

IEEE round-off errors are specified as

Only one of 𝑒𝑜𝑝 or 𝑑𝑜𝑝 is non-zero:

𝑒𝑜𝑝 ≤ 2−24, 𝑑𝑜𝑝 ≤ 2−150 (single precision)

𝑒𝑜𝑝 ≤ 2−53, 𝑑𝑜𝑝 ≤ 2−1075 (double precision)

For normal values For subnormal values

𝑜𝑝 𝑥, 𝑦 ⋅ 1 + 𝑒𝑜𝑝 + 𝑑𝑜𝑝



ERROR ESTIMATION EXAMPLE

 Model floating-point computation of
𝐸 = 𝑥/ 𝑥 + 𝑦 using reals as

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

𝑒1 ≤ 𝜖1, 𝑒2 ≤ 𝜖2

 Absolute rounding error is then ෨𝐸 − 𝐸

 We have to find the max of this function over 

 Input variables 𝑥, 𝑦
 Exponential in the number of inputs

 Additional variables 𝑒1, 𝑒2 for operators

 Exponential in floating-point routine size!



SYMBOLIC TAYLOR EXPANSION

 Reduces dimensionality of the optimization 

problem

 Basic idea

 Treat each 𝑒 as “noise” (error) variables

 Now expand based on Taylor’s theorem

 Coefficients are symbolic

 Coefficients weigh the “noise” correctly and are 

correlated

 Apply global optimization on reduced problem

 Our own parallel rigorous global optimizer called 

Gelpia

 Non-linear reals, transcendental functions



ERROR ESTIMATION EXAMPLE

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

expands into

where 𝑀2 summarizes the second and higher order 

error terms and 𝑒0 ≤ 𝜖0, 𝑒1 ≤ 𝜖1

Floating-point error is then bounded by

෨𝐸 = 𝐸 +
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝑒1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝑒2 +M2

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2



ERROR ESTIMATION EXAMPLE

 Using global optimization find constant bounds

 M2 can be easily over-approximated

 Greatly reduced problem dimensionality

 Search only over inputs 𝑥, 𝑦 using our Gelpia optimizer

∀𝑥, 𝑦. 𝜕෩𝐸

𝜕𝑒1
0 = 𝑥

𝑥+𝑦
≤ 𝑈1

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2



ERROR ESTIMATION EXAMPLE

 Operations are single-precision (32 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖32−𝑏𝑖𝑡 +𝑈2 × 𝜖32−𝑏𝑖𝑡

 Operations are double-precision (64 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖64−𝑏𝑖𝑡 +𝑈2 × 𝜖64−𝑏𝑖𝑡



RESULTS FOR JETENGINE



SUMMARY

 New method for rigorous floating-point round-

off error estimation

 Our method is embodied in new tool FPTaylor

 FPTaylor performs well and returns tighter 

bounds than previous approaches



SYNTHESIS

http://github.com/soarlab/FPTuner



MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error 

bound, automatically synthesize precision 

allocation for operations and variables



APPROACH

 Replace machine epsilons with symbolic 

variables

𝑠0, 𝑠1 ∈ 𝜖32−𝑏𝑖𝑡 , 𝜖64−𝑏𝑖𝑡

 Compute precision allocation that satisfies 

given error bound

 Take care of type casts

 Implemented in FPTuner tool

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝑠1 + 𝑈2 × 𝑠2



FPTuner TOOLFLOW

Optimization ProblemGurobi

Generic 

Error 

Model

Efficiency 

Model

Gelpia

Global 

Optimizer

Optimal Mixed-

precision

Routine: Real-valued 

Expression

Error Threshold

Operator Weights

Extra Constraints

User Specifications



EXAMPLE:

JACOBI METHOD

 Inputs:

 2x2 matrix

 Vector of size 2

 Error bound: 1e-14

 Available precisions: single, 

double, quad

 FPTuner automatically 

allocates precisions for all 

variables and operations



SUMMARY

 Support mixed-precision allocation

 Based on rigorous formal reasoning

 Encoded as an optimization problem

 Extensive empirical evaluation

 Includes real-world energy measurements showing 

benefits of precision tuning



SOLVING

http://github.com/soarlab/OL1V3R



MOTIVATION

 Poor scalability of floating-point solvers

 Bit-blasting: formula → circuit

 Others showed that search-based solving can 

be effective for various SMT theories

 Perform the search directly on theory level

 Can we achieve similar efficiency using 

stochastic local search on floating-points?

 Inspired by Z3’s qfbv-sls tactic for bit-vectors



STOCHASTIC LOCAL SEARCH

 Basic setting: local search + random choices

 Key ingredients

 Score function

 Neighborhood relation

 Heuristics



SCORE FUNCTION

 score(expr, assignment) → rational

 Intuition: the ``degree’’ of satisfiability

 1 = satisfiable

 Example: s(x>2, x←1.99) > s(x>2, x←0)

 Key idea: measure a distance between signed 

ordinal indices of two floats

 Total order on floats

 Neighboring floats have a distance of 1



NEIGHBORHOOD RELATION

 Define neighbors of an assignment in a search 

step

 Several allowed mutations

 Bit-flipping

 ±ulp

 (*2), (/2) – changing exponent



HEURISTICS

 Remove equality constraints when possible

 (assert (and (= x (+ y z)) (> x 2.0)))

→ (assert (> (+ y z) 2.0))

 Use models derived from real arithmetic as 

initial assignments

 (assert (> (+ y z) 2.0)) → y = 1, z = 3/2

 Variable neighborhood search

 Refine the neighborhood relation into 3 subgroups 

and switch them on the fly



EVALUATION

 Compare OL1V3R with 5 state-of-the-art 

floating-point solvers

Tool Version Technique

MathSAT 5.5.4 Hybrid

CVC4 1.7 Bit-blasting

Z3 4.8.4 Bit-blasting 

JFS commit 2322167 Coverage-guided fuzzing 

COLIBRI revision 2176 Constraint propagation



RESULTS

Tool Sat Unsat Unknown Timeout DiffB DiffH

OL1V3RB 115 0 2 80 - 0/16

OL1V3RH 131 0 2 64 16/0 -

MathSAT 125 1 7 64 13/5 2/9

CVC4 117 1 10 69 10/9 2/15

Z3 88 0 10 99 3/32 0/43

JFS 113 0 0 84 4/8 0/20

COLIBRI 118 32 4 43 14/13 3/18



SUMMARY

 Implemented a prototype for solving floating-

point constraints using SLS

 Define key ingredients (score function, neighbors)

 Devise custom heuristics

 Compared our tool to state-of-the-art solvers 

and confirmed its effectiveness


