

ANALYSIS AND SYNTHESIS OF FLOATING-POINT ROUTINES

Zvonimir Rakamarić

FLOATING-POINT COMPUTATIONS ARE UBIQUITOUS

CHALLENGES

- FP is "weird"
 - Does not faithfully match math (finite precision)
 - Non-associative
 - Heterogeneous hardware support
- FP code is hard to get right
 - Lack of good understanding
 - Lack of good and extensive tool support
- FP software is large and complex
 - High-performance computing (HPC) simulations
 - Machine learning

FP IS WEIRD

- Finite precision and rounding
 - x + y in reals $\neq x + y$ in floating-point
- Non-associative
 - ► $(x + y) + z \neq x + (y + z)$
 - Creates issues with
 - Compiler optimizations (e.g., vectorization)
 - Concurrency (e.g., reductions)
- Standard completely specifies only +, -, *, /, comparison, remainder, and square root
 - Only recommendation for some functions (trigonometry)

FP IS WEIRD cont.

Heterogeneous hardware support

- x + y*z on Xeon ≠ x + y*z on Xeon Phi
 - Fused multiply-add
- Intel's online article "Differences in Floating-Point Arithmetic Between Intel Xeon Processors and the Intel Xeon Phi Coprocessor"
- Common sense does not (always) work
 - x "is better than" log(e^x)
 - (e^x-1)/x "can be worse than" (e^x-1)/log(e^x)
 - Error cancellation

FLOATING-POINT NUMBERS

- IEEE 754 standard
- Sign (s), mantissa (m), exponent (exp):

- Single precision: 1, 23, 8 bits
- Double precision: 1, 52, 11 bits

FLOATING-POINT NUMBER LINE

- 3 bits for precision
- Between any two powers of 2, there are 2³ = 8 representable numbers

ROUNDING IS SOURCE OF ERRORS

FLOATING-POINT OPERATIONS

- First normalize to the same exponent
 - Smaller exponent -> shift mantissa right
- Then perform the operation
- Losing bits when exponents are not the same!

UTAH FLOATING-POINT TEAM

- 1. Ganesh Gopalakrishnan (prof)
- 2. Zvonimir Rakamarić (prof)
- 3. Ian Briggs (staff programmer)
- 4. Mark Baranowski (PhD)
- 5. Rocco Salvia (PhD)
- 6. Shaobo He (PhD)
- 7. Thanhson Nguyen (PhD)

Alumni: Alexey Solovyev (postdoc), Wei-Fan Chiang (PhD), Dietrich Geisler (undergrad), Liam Machado (undergrad)

RESEARCH THRUSTS

Analysis

- Verification of floating-point programs
- Estimation of floating-point errors
 - 1. Dynamic
 - Best effort, produces lower bound (under-approximation)
 - 2. Static
 - Rigorous, produces upper bound (over-approximation)

Synthesis

Rigorous mixed-precision tuning

Constraint Solving

- Search-based solving of floating-point constraints
- Solving mixed real and floating-point constraints

RESEARCH THRUSTS

Analysis

- Verification of floating-point programs
- Estimation of floating-point errors
 - 1. Dynamic
 - Best effort, produces lower bound (under-approximation)
 - 2. Static
 - Rigorous, produces upper bound (over-approximation)

Synthesis

Rigorous mixed-precision tuning

Constraint Solving

- Search-based solving of floating-point constraints
- Solving mixed real and floating-point constraints

FLOATING-POINT ERROR

Absolute error: $|z_{fp} - z_{inf}|$ Relative error: $|(z_{fp} - z_{inf}) / z_{inf}|$

ERROR PLOT FOR MULTIPLICATION

ERROR PLOT FOR ADDITION

USAGE SCENARIOS

- Reason about floating-point computations
- Precisely characterize floating-point behavior of libraries
- Support performance-precision tuning and synthesis
- Help decide where error-compensation is needed
- "Equivalence" checking

http://github.com/soarlab/FPTaylor

CONTRIBUTIONS

- Handles non-linear and transcendental functions
- Tight error upper bounds
 - Better than previous work
- Rigorous
 - Over-approximation
 - Based on our own rigorous global optimizer
 - Emits a HOL-Lite proof certificate
 - Verification of the certificate guarantees estimate
- Tool called FPTaylor publicly available

FPTaylor TOOLFLOW

IEEE ROUNDING MODEL

Consider op(x, y) where x and y are floatingpoint values, and op is a function from floats to reals

IEEE round-off errors are specified as $op(x, y) \cdot (1 + e_{op}) + d_{op}$ For normal values For subnormal values

Only one of e_{op} or d_{op} is non-zero: $|e_{op}| \le 2^{-24}, |d_{op}| \le 2^{-150}$ (single precision) $|e_{op}| \le 2^{-53}, |d_{op}| \le 2^{-1075}$ (double precision)

• Model floating-point computation of E = x/(x + y) using reals as

$$\tilde{E} = \frac{x}{(x+y)\cdot(1+e_1)}\cdot(1+e_2)$$

$$|e_1| \leq \epsilon_1, |e_2| \leq \epsilon_2$$

- Absolute rounding error is then $|\tilde{E} E|$
- We have to find the max of this function over
 - Input variables x, y
 - Exponential in the number of inputs
 - Additional variables e_1 , e_2 for operators
 - Exponential in floating-point routine size!

SYMBOLIC TAYLOR EXPANSION

- Reduces dimensionality of the optimization problem
- Basic idea
 - Treat each e as "noise" (error) variables
 - Now expand based on Taylor's theorem
 - Coefficients are symbolic
 - Coefficients weigh the "noise" correctly and are correlated
- Apply global optimization on reduced problem
 - Our own parallel rigorous global optimizer called Gelpia
 - Non-linear reals, transcendental functions

$$\tilde{E} = \frac{x}{(x+y) \cdot (1+e_1)} \cdot (1+e_2)$$

expands into

$$\tilde{E} = E + \frac{\partial \tilde{E}}{\partial e_1}(0) \times e_1 + \frac{\partial \tilde{E}}{\partial e_2}(0) \times e_2 + M_2$$

where M_2 summarizes the second and higher order error terms and $|e_0| \le \epsilon_0, |e_1| \le \epsilon_1$

Floating-point error is then bounded by

$$\left|\tilde{E} - E\right| \le \left|\frac{\partial \tilde{E}}{\partial e_1}(0)\right| \times \epsilon_1 + \left|\frac{\partial \tilde{E}}{\partial e_2}(0)\right| \times \epsilon_2 + M_2$$

- Using global optimization find constant bounds
- ▶ M₂ can be easily over-approximated
- Greatly reduced problem dimensionality
 - Search only over inputs x, y using our Gelpia optimizer

$$\begin{aligned} \forall x, y. \ \left| \frac{\partial \tilde{E}}{\partial e_1}(0) \right| &= \left| \frac{x}{x+y} \right| \le U_1 \\ \tilde{E} - E \right| \le \left| \frac{\partial \tilde{E}}{\partial e_1}(0) \right| \times \epsilon_1 + \left| \frac{\partial \tilde{E}}{\partial e_2}(0) \right| \times \epsilon_2 + M_2 \end{aligned}$$

Operations are single-precision (32 bits)

$$\left|\tilde{E} - E\right| \le U_1 \times \epsilon_{32-bit} + U_2 \times \epsilon_{32-bit}$$

• Operations are double-precision (64 bits) $|\tilde{E} - E| \le U_1 \times \epsilon_{64-bit} + U_2 \times \epsilon_{64-bit}$

RESULTS FOR JETENGINE

jetEngine, $x_1 \in [-5, 5], x_2 \in [-20, 5]$, Double Precision

SUMMARY

New method for rigorous floating-point roundoff error estimation

Our method is embodied in new tool FPTaylor

FPTaylor performs well and returns tighter bounds than previous approaches

http://github.com/soarlab/FPTuner

MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error bound, automatically synthesize precision allocation for operations and variables

APPROACH

Replace machine epsilons with symbolic variables

$$s_0, s_1 \in \{\epsilon_{32-bit}, \epsilon_{64-bit}\}$$

$$\left|\tilde{E} - E\right| \le U_1 \times s_1 + U_2 \times s_2$$

- Compute precision allocation that satisfies given error bound
 - Take care of type casts

Implemented in FPTuner tool

FPTuner TOOLFLOW

EXAMPLE: JACOBI METHOD

- Inputs:
 - 2x2 matrix
 - Vector of size 2
- Error bound: 1e-14
- Available precisions: single, double, quad
- FPTuner automatically allocates precisions for all variables and operations

SUMMARY

Support mixed-precision allocation

Based on rigorous formal reasoning

Encoded as an optimization problem

Extensive empirical evaluation

Includes real-world energy measurements showing benefits of precision tuning

http://github.com/soarlab/OL1V3R

MOTIVATION

Poor scalability of floating-point solvers

- Bit-blasting: formula \rightarrow circuit
- Others showed that search-based solving can be effective for various SMT theories
 Perform the search directly on theory level

- Can we achieve similar efficiency using stochastic local search on floating-points?
 - Inspired by Z3's qfbv-sls tactic for bit-vectors

STOCHASTIC LOCAL SEARCH

- Basic setting: local search + random choices
- Key ingredients
 - Score function
 - Neighborhood relation
 - Heuristics

SCORE FUNCTION

• score(expr, assignment) \rightarrow rational

- Intuition: the ``degree" of satisfiability
 - 1 = satisfiable
 - ► Example: s(x>2, x←1.99) > s(x>2, x←0)
- Key idea: measure a distance between signed ordinal indices of two floats
 - Total order on floats
 - Neighboring floats have a distance of 1

NEIGHBORHOOD RELATION

 Define neighbors of an assignment in a search step

Several allowed mutations

- Bit-flipping
- ±ulp
- (*2), (/2) changing exponent

HEURISTICS

Remove equality constraints when possible
(assert (and (= x (+ y z)) (> x 2.0)))
→ (assert (> (+ y z) 2.0))

 Use models derived from real arithmetic as initial assignments

Variable neighborhood search

Refine the neighborhood relation into 3 subgroups and switch them on the fly

EVALUATION

Compare OL1V3R with 5 state-of-the-art floating-point solvers

ΤοοΙ	Version	Technique		
MathSAT	5.5.4	Hybrid		
CVC4	1.7	Bit-blasting		
Z3	4.8.4	Bit-blasting		
JFS	commit 2322167	Coverage-guided fuzzing		
COLIBRI	revision 2176	Constraint propagation		

RESULTS

ΤοοΙ	Sat	Unsat	Unknown	Timeout	Diff ^B	Diff ^H
OL1V3R ^B	115	0	2	80	-	0/16
OL1V3R ^H	131	0	2	64	16/0	
MathSAT	125	1	7	64	13/5	2/9
CVC4	117	1	10	69	10/9	2/15
Z3	88	0	10	99	3/32	0/43
JFS	113	0	0	84	4/8	0/20
COLIBRI	118	32	4	43	14/13	3/18

SUMMARY

- Implemented a prototype for solving floatingpoint constraints using SLS
 - Define key ingredients (score function, neighbors)
 - Devise custom heuristics
- Compared our tool to state-of-the-art solvers and confirmed its effectiveness