
Zvonimir Rakamarić

ANALYSIS AND SYNTHESIS

OF

FLOATING-POINT ROUTINES

FLOATING-POINT
COMPUTATIONS
ARE UBIQUITOUS

CHALLENGES

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Machine learning

FP IS WEIRD

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /,

comparison, remainder, and square root

 Only recommendation for some functions

(trigonometry)

FP IS WEIRD cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point

Arithmetic Between Intel Xeon Processors and the

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation

FLOATING-POINT NUMBERS

 IEEE 754 standard

 Sign (s), mantissa (m), exponent (exp):

(-1)s * 1.m * 2exp

 Single precision: 1, 23, 8 bits

 Double precision: 1, 52, 11 bits

FLOATING-POINT NUMBER LINE

 3 bits for precision

 Between any two powers of 2, there are 23 = 8

representable numbers

ROUNDING IS SOURCE OF ERRORS

0 ∞-∞

0

-∞ ∞

Real Numbers

Floating-Point Numbers

𝒙 𝒚

𝒚𝒙

(𝒙 − 𝒙) (𝒚 − 𝒚)

FLOATING-POINT OPERATIONS

 First normalize to the same exponent

 Smaller exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!

UTAH FLOATING-POINT TEAM

1. Ganesh Gopalakrishnan (prof)

2. Zvonimir Rakamarić (prof)

3. Ian Briggs (staff programmer)

4. Mark Baranowski (PhD)

5. Rocco Salvia (PhD)

6. Shaobo He (PhD)

7. Thanhson Nguyen (PhD)

Alumni: Alexey Solovyev (postdoc), Wei-Fan

Chiang (PhD), Dietrich Geisler (undergrad), Liam

Machado (undergrad)

RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints

RESEARCH THRUSTS

Analysis

 Verification of floating-point programs

 Estimation of floating-point errors

1. Dynamic

 Best effort, produces lower bound (under-approximation)

2. Static

 Rigorous, produces upper bound (over-approximation)

Synthesis

 Rigorous mixed-precision tuning

Constraint Solving

 Search-based solving of floating-point constraints

 Solving mixed real and floating-point constraints

ERROR ANALYSIS

FLOATING-POINT ERROR

Input values: x, y

zfp zinf≠

Absolute error: | zfp – zinf |

Relative error: | (zfp – zinf) / zinf |

Finite precision

zfp = ffp(x, y)

Infinite precision

zinf = finf(x, y)

ERROR PLOT FOR MULTIPLICATION

X values

Y values

Absolute

Error

ERROR PLOT FOR ADDITION

X values

Y values

Absolute

Error

USAGE SCENARIOS

 Reason about floating-point computations

 Precisely characterize floating-point behavior of

libraries

 Support performance-precision tuning and

synthesis

 Help decide where error-compensation is

needed

 “Equivalence” checking

STATIC ANALYSIS

http://github.com/soarlab/FPTaylor

CONTRIBUTIONS

 Handles non-linear and transcendental functions

 Tight error upper bounds

 Better than previous work

 Rigorous

 Over-approximation

 Based on our own rigorous global optimizer

 Emits a HOL-Lite proof certificate

 Verification of the certificate guarantees estimate

 Tool called FPTaylor publicly available

FPTaylor TOOLFLOW

Given FP

Expression

and Input

Intervals

Obtain

Symbolic

Taylor Form

Obtain

Error

Function

Maximize

the Error

Function

Generate

Certificate

in HOL-Lite

IEEE ROUNDING MODEL

Consider 𝑜𝑝 𝑥, 𝑦 where 𝑥 and 𝑦 are floating-

point values, and 𝑜𝑝 is a function from floats to

reals

IEEE round-off errors are specified as

Only one of 𝑒𝑜𝑝 or 𝑑𝑜𝑝 is non-zero:

𝑒𝑜𝑝 ≤ 2−24, 𝑑𝑜𝑝 ≤ 2−150 (single precision)

𝑒𝑜𝑝 ≤ 2−53, 𝑑𝑜𝑝 ≤ 2−1075 (double precision)

For normal values For subnormal values

𝑜𝑝 𝑥, 𝑦 ⋅ 1 + 𝑒𝑜𝑝 + 𝑑𝑜𝑝

ERROR ESTIMATION EXAMPLE

 Model floating-point computation of
𝐸 = 𝑥/ 𝑥 + 𝑦 using reals as

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

𝑒1 ≤ 𝜖1, 𝑒2 ≤ 𝜖2

 Absolute rounding error is then ෨𝐸 − 𝐸

 We have to find the max of this function over

 Input variables 𝑥, 𝑦
 Exponential in the number of inputs

 Additional variables 𝑒1, 𝑒2 for operators

 Exponential in floating-point routine size!

SYMBOLIC TAYLOR EXPANSION

 Reduces dimensionality of the optimization

problem

 Basic idea

 Treat each 𝑒 as “noise” (error) variables

 Now expand based on Taylor’s theorem

 Coefficients are symbolic

 Coefficients weigh the “noise” correctly and are

correlated

 Apply global optimization on reduced problem

 Our own parallel rigorous global optimizer called

Gelpia

 Non-linear reals, transcendental functions

ERROR ESTIMATION EXAMPLE

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

expands into

where 𝑀2 summarizes the second and higher order

error terms and 𝑒0 ≤ 𝜖0, 𝑒1 ≤ 𝜖1

Floating-point error is then bounded by

෨𝐸 = 𝐸 +
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝑒1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝑒2 +M2

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Using global optimization find constant bounds

 M2 can be easily over-approximated

 Greatly reduced problem dimensionality

 Search only over inputs 𝑥, 𝑦 using our Gelpia optimizer

∀𝑥, 𝑦. 𝜕෩𝐸

𝜕𝑒1
0 = 𝑥

𝑥+𝑦
≤ 𝑈1

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Operations are single-precision (32 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖32−𝑏𝑖𝑡 +𝑈2 × 𝜖32−𝑏𝑖𝑡

 Operations are double-precision (64 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖64−𝑏𝑖𝑡 +𝑈2 × 𝜖64−𝑏𝑖𝑡

RESULTS FOR JETENGINE

SUMMARY

 New method for rigorous floating-point round-

off error estimation

 Our method is embodied in new tool FPTaylor

 FPTaylor performs well and returns tighter

bounds than previous approaches

SYNTHESIS

http://github.com/soarlab/FPTuner

MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error

bound, automatically synthesize precision

allocation for operations and variables

APPROACH

 Replace machine epsilons with symbolic

variables

𝑠0, 𝑠1 ∈ 𝜖32−𝑏𝑖𝑡 , 𝜖64−𝑏𝑖𝑡

 Compute precision allocation that satisfies

given error bound

 Take care of type casts

 Implemented in FPTuner tool

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝑠1 + 𝑈2 × 𝑠2

FPTuner TOOLFLOW

Optimization ProblemGurobi

Generic

Error

Model

Efficiency

Model

Gelpia

Global

Optimizer

Optimal Mixed-

precision

Routine: Real-valued

Expression

Error Threshold

Operator Weights

Extra Constraints

User Specifications

EXAMPLE:

JACOBI METHOD

 Inputs:

 2x2 matrix

 Vector of size 2

 Error bound: 1e-14

 Available precisions: single,

double, quad

 FPTuner automatically

allocates precisions for all

variables and operations

SUMMARY

 Support mixed-precision allocation

 Based on rigorous formal reasoning

 Encoded as an optimization problem

 Extensive empirical evaluation

 Includes real-world energy measurements showing

benefits of precision tuning

SOLVING

http://github.com/soarlab/OL1V3R

MOTIVATION

 Poor scalability of floating-point solvers

 Bit-blasting: formula → circuit

 Others showed that search-based solving can

be effective for various SMT theories

 Perform the search directly on theory level

 Can we achieve similar efficiency using

stochastic local search on floating-points?

 Inspired by Z3’s qfbv-sls tactic for bit-vectors

STOCHASTIC LOCAL SEARCH

 Basic setting: local search + random choices

 Key ingredients

 Score function

 Neighborhood relation

 Heuristics

SCORE FUNCTION

 score(expr, assignment) → rational

 Intuition: the ``degree’’ of satisfiability

 1 = satisfiable

 Example: s(x>2, x←1.99) > s(x>2, x←0)

 Key idea: measure a distance between signed

ordinal indices of two floats

 Total order on floats

 Neighboring floats have a distance of 1

NEIGHBORHOOD RELATION

 Define neighbors of an assignment in a search

step

 Several allowed mutations

 Bit-flipping

 ±ulp

 (*2), (/2) – changing exponent

HEURISTICS

 Remove equality constraints when possible

 (assert (and (= x (+ y z)) (> x 2.0)))

→ (assert (> (+ y z) 2.0))

 Use models derived from real arithmetic as

initial assignments

 (assert (> (+ y z) 2.0)) → y = 1, z = 3/2

 Variable neighborhood search

 Refine the neighborhood relation into 3 subgroups

and switch them on the fly

EVALUATION

 Compare OL1V3R with 5 state-of-the-art

floating-point solvers

Tool Version Technique

MathSAT 5.5.4 Hybrid

CVC4 1.7 Bit-blasting

Z3 4.8.4 Bit-blasting

JFS commit 2322167 Coverage-guided fuzzing

COLIBRI revision 2176 Constraint propagation

RESULTS

Tool Sat Unsat Unknown Timeout DiffB DiffH

OL1V3RB 115 0 2 80 - 0/16

OL1V3RH 131 0 2 64 16/0 -

MathSAT 125 1 7 64 13/5 2/9

CVC4 117 1 10 69 10/9 2/15

Z3 88 0 10 99 3/32 0/43

JFS 113 0 0 84 4/8 0/20

COLIBRI 118 32 4 43 14/13 3/18

SUMMARY

 Implemented a prototype for solving floating-

point constraints using SLS

 Define key ingredients (score function, neighbors)

 Devise custom heuristics

 Compared our tool to state-of-the-art solvers

and confirmed its effectiveness

