SCHOOL OF COMPUTING SOFTWARE ANALYSIS
UNIVERSITY OF UTAH RESEARCH LABORATORY

ANALYSIS AND SYNTHESIS
OF
FLOATING-POINT ROUTINES

Zvonimir Rakamaric



FLOATING-POINT
COMPUTATIONS
ARE UBIQUITOUS /&

W oAs U A3 12%



CHALLENGES

» FP is “weird”
» Does not faithfully match math (finite precision)
» Non-associative
» Heterogeneous hardware support

» FP code is hard to get right

» Lack of good understanding

» Lack of good and extensive tool support
» FP software Is large and complex

» High-performance computing (HPC) simulations
» Machine learning



FP IS WEIRD

» Finite precision and rounding

» X +yinreals # X +y in floating-point
» Non-associative

» (X+y)+z#EFEX+ (Y +2)

» Creates issues with

» Compiler optimizations (e.g., vectorization)
» Concurrency (e.g., reductions)

» Standard completely specifies only +, -, *, /,
comparison, remainder, and square root

» Only recommendation for some functions
(trigonometry)



FP IS WEIRD cont.

» Heterogeneous hardware support

» X +y*z on Xeon # X + y*z on Xeon Phi
» Fused multiply-add

» Intel’s online article “Differences in Floating-Point
Arithmetic Between Intel Xeon Processors and the
Intel Xeon Phi Coprocessor”

» Common sense does not (always) work
» X “is better than” log(e”x)
» (e”x-1)/x “can be worse than” (e*x-1)/log(e”x)
» Error cancellation



FLOATING-POINT NUMBERS

» IEEE 754 standard
» Sign (S), mantissa (m), exponent (exp):

(-1)s* 1.m * 2exp

» Single precision: 1, 23, 8 bits
» Double precision: 1, 52, 11 bits



FLOATING-POINT NUMBER LINE

» 3 bits for precision

» Between any two powers of 2, there are 23 =8
representable numbers

0% 1 2 4 8

16

0 2-120 o 22 23




ROUNDING IS SOURCE OF ERRORS

-00 0 X y 00
<€ >
Real Numbers |
0 |
AL L L PPN el £ | =
Floating-Point Numbers

X=x) (¥-y)



FLOATING-POINT OPERATIONS

» First normalize to the same exponent
» Smaller exponent -> shift mantissa right

» Then perform the operation
» Losing bits when exponents are not the same!



UTAH FLOATING-POINT TEAM

Ganesh Gopalakrishnan (prof)
Zvonimir Rakamaric¢ (prof)

lan Briggs (staff programmer)
Mark Baranowski (PhD)
Rocco Salvia (PhD)

Shaobo He (PhD)

Thanhson Nguyen (PhD)

N o 0~ 0 DN F

Alumni: Alexey Solovyev (postdoc), Wel-Fan
Chiang (PhD), Dietrich Geisler (undergrad), Liam
Machado (undergrad)



RESEARCH THRUSTS

Analysis
» Verification of floating-point programs

» Estimation of floating-point errors

1. Dynamic
» Best effort, produces lower bound (under-approximation)

2. Static
» Rigorous, produces upper bound (over-approximation)

Synthesis

» Rigorous mixed-precision tuning

Constraint Solving

» Search-based solving of floating-point constraints
» Solving mixed real and floating-point constraints



RESEARCH THRUSTS

Analysis
» Verification of floating-point programs

» Estimation of floating-point errors

1. Dynamic
» Best effort, produces lower bound (under-approximation)

2. Static
» Rigorous, produces upper bound (over-approximation)

Synthesis

» Rigorous mixed-precision tuning

Constraint Solving

» Search-based solving of floating-point constraints
» Solving mixed real and floating-point constraints



I ERROR ANALYSIS




FLOATING-POINT ERROR

Input values: X, y

Finite precision

Infinite precision

Zip = ffp(x’ y) Zint = fine(X, Y)

Zfp 7

Absolute error: | z;, — z; ]
Relative error: | (Zg, — Ziy) / Zis |



ERROR PLOT FOR MULTIPLICATION

Absolute

Error fwil ‘
ame—, | {?‘ ’l“ 'llm
;X . | M ’)4 ' "’I
piedt il ‘i i M , ;

- A G f“\ ‘/‘\M
>y 1/! ) ‘*“&‘ﬁ” ’/[ ;/ i ‘N
"':?///;. \!;/;;’;“?‘J, ?‘%v ";ﬁ%

o) "M{‘@*‘*«.'AM'.,

,/ N
1.5
0‘ - L S
..... AR O S VN K L :
AA AR SNASES AA T AL T 14
S A ol MR '

Y values



ERROR PLOT FOR ADDITION

Absolute
Error

c
'
a

3
e frf e

S
'
=




USAGE SCENARIOS

» Reason about floating-point computations

» Precisely characterize floating-point behavior of
ibraries

» Support performance-precision tuning and
synthesis

» Help decide where error-compensation is
needed

» “Equivalence” checking




I STATIC ANALYSIS

http://github.com/soarlab/FPTaylor



CONTRIBUTIONS

» Handles non-linear and transcendental functions

» Tight error upper bounds
» Better than previous work

» Rigorous
» Over-approximation
» Based on our own rigorous global optimizer
» Emits a HOL-Lite proof certificate
» Verification of the certificate guarantees estimate

» Tool called FPTaylor publicly available



FPTaylor TOOLFLOW




IEEE ROUNDING MODEL

Consider op(x, y) where x and y are floating-

point values, and op Is a function from floats to
reals

IEEE round-off errors are specified as
op(x,y) (1 + eop) + dop

~_

For normal values For subnormal values

Only one of e,, or d,, IS non-zero:
eop| < 27%%, |dop| < 27120 (single precision)
eop| < 2723, |dop| < 27197° (double precision)




ERROR ESTIMATION EXAMPLE

» Model floating-point computation of
E = x/(x + y) using reals as
X

E =iy arey e

|€1| < €1, |€2| < €-

» Absolute rounding error is then |E — E|

» We have to find the max of this function over
» Input variables x, y
» Exponential in the number of inputs

» Additional variables e,, e, for operators
» Exponential in floating-point routine size!



SYMBOLIC TAYLOR EXPANSION

» Reduces dimensionality of the optimization
problem

» Basic idea

» Treat each e as “noise” (error) variables

» Now expand based on Taylor’'s theorem
» Coefficients are symbolic

» Coefficients weigh the “noise” correctly and are
correlated

» Apply global optimization on reduced problem

» Our own parallel rigorous global optimizer called
Gelpia
» Non-linear reals, transcendental functions



ERROR ESTIMATION EXAMPLE

X

‘ (x+y)-(1+e)

- (14+ey,)

expands into

~

~

E E+6E (0) +aE (0) X e, +M
—  — X e —_— e

deq 17 de, 2 2
where M, summarizes the second and higher order
error terms and |ey| < €p, |e1]| < €

Floating-point error is then bounded by

|E—E| < O (0)| x e, + O (0)| X €, +M
— — — €
~ |deq “1 de, 2 2




ERROR ESTIMATION EXAMPLE

» Using global optimization find constant bounds
» M, can be easily over-approximated

» Greatly reduced problem dimensionality
» Search only over inputs x, y using our Gelpia optimizer

Vx,y.

0E
6—31(0)|

X

OF
|E—E| < 6—81(0)

xX+y

X €1+

X €- +M2



ERROR ESTIMATION EXAMPLE

» Operations are single-precision (32 bits)

|E — El < U; X €32_pit YUz X €32 pit

» Operations are double-precision (64 bits)

‘E — E‘ < U; X €6a—pit TUz X €Ega_pit



RESULTS FOR JETENGINE

jetEngine, x; € [-5,5], x2 € [—20, 5], Double Precision

;rTest results : {:I‘est results
'FPTaylor (improved rounding) FPTaylor (improved rounding)

L)

ax 10—12.

6x10-12-

Ll

4x10712—




SUMMARY

» New method for rigorous floating-point round-
off error estimation

» Our method is embodied in new tool FPTaylor

» FPTaylor performs well and returns tighter
bounds than previous approaches



SYNTHESIS

http://github.com/soarlab/FPTuner




MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error
bound, automatically synthesize precision
allocation for operations and variables



APPROACH

» Replace machine epsilons with symbolic
variables

S0, S1 € 1€32—bit) E6a—bit)
‘E—E‘ < U1X51+U2XSZ

» Compute precision allocation that satisfies
given error bound

» Take care of type casts

» Implemented in FPTuner tool



FPTuner TOOLFLOW

Routine: Real-valued

Expression |
| ~




EXAMPLE:
JACOBI METHOD

» Inputs:
» 2X2 matrix
» Vector of size 2

» Error bound: 1e-14

» Avallable precisions: single,
double, quad

» FPTuner automatically
allocates precisions for all
variables and operations




SUMMARY

» Support mixed-precision allocation
» Based on rigorous formal reasoning
» Encoded as an optimization problem

» Extensive empirical evaluation

» Includes real-world energy measurements showing
benefits of precision tuning



SOLVING

http://github.com/soarlab/OL1V3R




MOTIVATION

» Poor scalability of floating-point solvers
» Bit-blasting: formula - circuit

» Others showed that search-based solving can
be effective for various SMT theories

» Perform the search directly on theory level

» Can we achieve similar efficiency using
stochastic local search on floating-points?

» Inspired by Z3'’s gfbv-sls tactic for bit-vectors



STOCHASTIC LOCAL SEARCH

» Basic setting: local search + random choices

» Key ingredients
» Score function
» Neighborhood relation
» Heuristics



SCORE FUNCTION

» score(expr, assignment) — rational

» Intuition: the ~"degree” of satisfiability
» 1 = satisfiable
» Example: s(x>2, x<—1.99) > s(x>2, x<0)

» Key Idea: measure a distance between signed
ordinal indices of two floats

» Total order on floats
» Neighboring floats have a distance of 1



NEIGHBORHOOD RELATION

» Define neighbors of an assignment in a search
step

» Several allowed mutations
» Bit-flipping
» zulp
» (*2), (/2) — changing exponent



HEURISTICS

» Remove equality constraints when possible
» (assert (and (=x (+Vy 2)) (> x 2.0)))
- (assert (> (+y z) 2.0))

» Use models derived from real arithmetic as
Initial assignments

» (assert(>(+yz)20)>y=1,z2=3/2

» Variable neighborhood search

» Refine the neighborhood relation into 3 subgroups
and switch them on the fly



EVALUATION

» Compare OL1V3R with 5 state-of-the-art

floating-point solvers

Tool Version Technique
MathSAT 554 Hybrid

CVC4 .7 Bit-blasting

Z3 484 Bit-blasting

JFS commit 2322167
COLIBRI revision 2176

Coverage-guided fuzzing

Constraint propagation




RESULTS

Tool Sat Unsat Unknown Timeout pjgB pigH

4 A

OL1V3RB 115 0 2 80 - 0/16
oL1v3rH 0 2 64 | 16/0 -
MathSAT 125 1 7 64 13/5 2/9
CvC4 117 1 10 69 10/9 2115
)

/3 88 0 10 99 3/32 0/43

JFS 113 0 0 84 4/8 0/20
—/

COLIBRI 118 32 4 43 14/13 3/18




SUMMARY

» Implemented a prototype for solving floating-
point constraints using SLS

» Define key ingredients (score function, neighbors)
» Devise custom heuristics

» Compared our tool to state-of-the-art solvers
and confirmed its effectiveness



