ETH-zurich

Testing Database Management
Systems via Pivoted Query Synthesis

Manuel Rigger

Oct 18., 2019 -
Workshop on Dependable and Secure Software

n
Systems 2019 .-: .'A‘ST
A N

. ADVANCED SOFTWARE
@RiggerManuel @ast_eth TECHNOLOGIES

Database Management Systems

PostgreSQL
WSQLite

AN

My

ETHzurich -

Database Management Systems
PostgreSQL

?SQLite . Wﬁl\l "

m Who has heard about/used these

MySQL Database Management Systems?

ETHzurich -

Databases are Used Ubiquitously

“SQlite is the most used database
W engine in the world. SQLite is built
: into all mobile phones and most
SQthe computers and comes bundled

inside countless other applications
that people use every day.”

https://www.sqglite.org

ETH:zurich

https://www.sqlite.org/

Relational Data Model

animal_pictures

animal description picture

A cute toast

Cat
cat
Dog Cute dog pic
Cat plants
Cat P
(cutel!)

ETHzurich -

Relatio

A database schema
describes the tables
(relations) in the
database

nal Data Model
animal_pictures
animal description picture
Cat A cute toast
cat
Dog Cute dog pic
Cat plants
Cat (cutel!)

ETHzurich «

Relational Data Model

animal_pictures

Structured Query Language (SQL)
is a declarative DSL to query and
manipulate data

animal description picture

A cute toast

Cat
cat
Dog Cute dog pic
Cat plants
Cat
(cute!)

SELECT picture, description
FROM animal pictures
WHERE animal = 'Cat’

AND description LIKE ‘Z%cute’’

ETHzurich -

Database Management Systems

SELECT * FROM <table>
WHERE <cond>

Client
Application

q

h

Database
Management System
(DBMS)

> e

ETH:zurich :

Database Management Systems

SELECT * FROM <table>
WHERE <cond>

Client
Application

q

h

Database
Management System
(DBMS)

row, <cond>

row, <cond>

row; | =<cond>

> e

ETH:zurich -

Database Management Systems

SELECT * FROM <table>
WHERE <cond>

Client — Database
A I'Ie:t'on Management System
icati
PP Pa— (DBMS)
row, <cond>

row, <cond> /

row, <cond>

row, <cond>

row, -<cond>

> oo

ETH:zurich

Goal

Aim: Detect logic bugs in DBMS

ETH:zurich

Database Management Systems

SELECT * FROM <table>
WHERE <cond>

Client — Database
A I'Ie:t'on Management System
icati
PP Pa— (DBMS)
row, <cond>

row, <cond> /

row, <cond>

row, <cond>

row, -<cond>

> oo

E'"ZUFI.C/"I 12

Database Management Systems

SELECT * FROM <table>
WHERE <cond>

Client — Database

A I'Ie;t'on Management System
icati

PP Pa— (DBMS)
row,

row,

row, <cond>
row, <cond>
row; | =<cond>

> oo

ETH:zurich ::

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));

INSERT INTO t1(c3) VALUES (@), (@), (@), (o), (@), (o),
(0), (@), (0), (8), (NULL), (1), (@);

UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (©), (@), (NULL), (9), (0);

ANALYZE t1;

UPDATE t1 SET c3 = 1;

SELECT DISTINCT * FROM t1 WHERE tl.c3 = 1;

E'HZUFiCh 14

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));
INSERT INTO t1(c3) VALUES (@), (©), (0), (0), (0), (0),

(@), (@), (8), (@), (NULL), (1), (@);
UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (@), (@), (NULL), (@), (@);
| ANALYZE t1; |

UPDATE t1 SET c3 = 1;
SELECT DISTINCT * FROM t1 WHERE t1.c3 = 1;

ANALYZE gathers statistics about tables,
which are then used for query planning

ETH:zurich

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));

INSERT INTO t1(c3) VALUES (@), (@), (@), (o), (@), (o),
(0), (@), (0), (8), (NULL), (1), (@);

UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (©), (@), (NULL), (9), (0);

ANALYZE t1;

UPDATE t1 SET c3 = 1;

SELECT DISTINCT * FROM t1 WHERE tl.c3 = 1;

ETH:zurich

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));

INSERT INTO t1(c3) VALUES (@), (@), (@), (o), (@), (o),
(0), (@), (0), (8), (NULL), (1), (@);

UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (©), (@), (NULL), (9), (0);

ANALYZE t1;

UPDATE t1 SET c3 = 1;

SELECT DISTINCT * FROM t1 WHERE tl.c3 = 1;

Expected result set

cl c2 c3 c4d

NULL| O 1 | NULL
O (NULL| 1 |NULL
NULL | NULL| 1 |NULL

ETH:zurich

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));

INSERT INTO t1(c3) VALUES (@), (@), (@), (o), (@), (o),
(0), (@), (0), (8), (NULL), (1), (@);

UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (@), (@), (NULL), (), (0);

ANALYZE t1;

UPDATE t1 SET c3 = 1;

SELECT DISTINCT * FROM t1 WHERE tl.c3 = 1;

Expected result set Actual result set

cl c2 c3 c4 cl c2 c3 c4
NULL| O 1 | NULL NULL| O 1 | NULL
O |[NULL| 1 |NULL
NULL [NULL| 1 |NULL

ETH:zurich =

Example Bug: SQLite

CREATE TABLE t1(cl, c2, c3, c4, PRIMARY KEY (c4, c3));

INSERT INTO t1(c3) VALUES (@), (@), (@), (o), (@), (o),
(0), (@), (0), (8), (NULL), (1), (@);

UPDATE t1 SET c2 = 0;

INSERT INTO t1(cl) VALUES (@), (@), (NULL), (), (0);

ANALYZE t1;

UPDATE t1 SET c3 = 1;

SELECT DISTINCT * FROM t1 WHERE tl.c3 = 1;

Expected result set Actual result set

cl c2 c3 c4 cl c2 c3 c4
NULL| O 1 | NULL NULL| O 1 | NULL
O |[NULL| 1 |NULL
NULL [NULL| 1 |NULL

A bug in the skip-scan
optimization caused
this logic bug

ETH:zurich

Challenges

e DBMS are tested well

ETH:zurich »

Databases are Tested Well

SQLite (~150,000 LOC) has 662 times
as much test code as source code

?SQL‘: https://www.sqlite.org/testing.html o
1te ETH-zurich »

https://www.sqlite.org/testing.html

Databases are Tested Well

SQLite (~150,000 LOC) has 662 times

A 4 . o
as much test code as source code SQLite’s test cases achieve 100%

branch test coverage

?SQL‘: https://www.sqlite.org/testing.html o
1te ETHzurich »

https://www.sqlite.org/testing.html

Databases are Tested Well

SQLite (~150,000 LOC) has 662 times

A 4 . o
as much test code as source code SQLite’s test cases achieve 100%

branch test coverage

SQLite is extensively fuzzed (e.g., by
Google’s OS-Fuzz Project)

?SQL‘: https://www.sqlite.org/testing.html o
1Le ETHz(irich

https://www.sqlite.org/testing.html

Databases are Tested Well

SQLite (~150,000 LOC) has 662 times

A 4 . o
as much test code as source code SQLite’s test cases achieve 100%

branch test coverage

SQLite is extensively fuzzed (e.g., by
Google’s OS-Fuzz Project)

SQLite’s performs anomaly testing (out-
of-memory, 1/O error, power failures)

?SQL‘: https://www.sqlite.org/testing.html o
1te ETH:zurich

https://www.sqlite.org/testing.html

Databases are Tested Well

SQLite (~150,000 LOC) has 662 times

A 4 . o
as much test code as source code SQLite’s test cases achieve 100%

branch test coverage

SQLite is extensively fuzzed (e.g., by
Google’s OS-Fuzz Project)

SQLite’s performs anomaly testing (out-
of-memory, 1/O error, power failures)

‘Small. Fast. Reliable. Choose any three. ‘

?SQL‘: https://www.sqlite.org/testing.html o
1Le ETHz(irich

https://www.sqlite.org/testing.html

Challenges

* DBMS are tested well
* Fuzzers are ineffective in finding logic bugs

ETH:zurich

Existing Work: Fuzzers and Query Generators

Random
SQL Query

Fuzzer

q

Database Management
System (DBMS)

AFL, SQLSmith, QGEN (Poess et al. 2014), ...

>

ETH:zurich »

Existing Work: Fuzzers and Query Generators

Random
SQL Query

Database Management
Fuzzer —
System (DBMS) : E)atabasei

SEGMENTATION FAULT

AFL, SQLSmith, QGEN (Poess et al. 2014), ... ETH-Zurich =

Existing Work: Fuzzers and Query Generators

Fuzzers are effective in detecting

Random bugs that result in crashes

SQL Query

Database Management
Fuzzer —
System (DBMS) : E)atabasei

SEGMENTATION FAULT

AFL, SQLSmith, QGEN (Poess et al. 2014), ... ETH-Zurich

Challenges

* DBMS are tested well
* Fuzzers are ineffective in finding logic bugs
* Knowing the precise result set for a query is difficult

ETH:zurich o

Differential Testing

?SQLite —p RS,

Query
Generator

PostgreSQL ====p RS, RS, = RS, = RS;?

My m —— RS

ETHzurich -

Differential Testing

?SQLite —p RS,

Query
Generator

PostgreSQL ======p RS, RS, = RS, = RS;?

My m —— RS

Differential testing applies only when
systems implement the same language ETH 7iirich
32

Problem: Differential Testing

DBMS-
specific SQL
Problem: The common SQL
core is small

Common
SQL Core

ETH:zurich :

Differential Testing: RAGS (Slutz 1998

“[Differential testing] proved to be extremely useful,
but only for the small set of common SQL”

Massive Stochastic Testing of SQL

Don Slutz
Microsoft Research
dslutz @Microsoft.com

Abstract distribute the SQL statements in useful regions of the
input domain. If the distribution is adequate, stochas-
tic testing has the advantage that the quality of the
tests improves as the test size increases [TFW93].

A system called RAGS (Random Generation of
SQL) was built to explore automated testing. RAGS
is currently used by the Microsoft SQL Server

Deterministic testing of SQL database systems is
human intensive and cannot adequately cover the
SQL input domain. A system (RAGS), was built
to stochastically generate valid SQL statements 1
million times faster than a human and execute

them. . . .
[MSS98] testing group. This paper describes RAGS
. . and some illustrative test results.

1 Tes"ng SQL is Hard Figure 1 illustrates the test coverage problem.
Good test coverage for commercial SQL database Customers use the hexagon, bugs are in the oval, and
systems is very hard. The input domain, all SQL the test libraries cover the shaded circle.
statements, from any number of users, combined with
all states of the database, is gigantic. It is also diffi- Input Domain
cult to'verify output for pgsitive tests because the All possible SQL
semantics of SQL are complicated.” <41 statements and

Software engineering technology exists to pre- database states

dictably improve quality ([Bei90] for example). The
techniques involve a software development process Iy]
including unit tests and final system validation tests \\ Used by

(to verify the absence of bugs). This process requires customers Zu r I C 3 4
a substantial investment so commercial SQL vendors
with tight schedules tend to use a more ad hoc proc-

Constraint Solving (Khalek et al. 2010

ldea: Use a solver to generate queries, generate data, and provide a

test oracle

Could reproduce already reported bugs, injected
bugs, but only one (potentially) new bug

Query-aware Test Generation Using a Relational Constraint Solver

Automated SQL Query Generation for Systematic Testing

of Database Engines

Shadi Abdul Khalek Bassem Elkarablieh Yai O. Laleye Sarfraz Khurshid

The University of Texas at Austin

Shadi Abdul Khalek {sabdulkhalek, elkarabl, lalaye, khurshid} @ece.utexas.edu

Sarfraz Khurshid

Department of Electrical and Computer
Engineering
The University of Texas at Austin
Austin TX, USA
shadi@mail.utexas.edu

ABSTRACT

We present a novel approach for generating syntactically and se-
mantically correct SQL queries for testing relational database sys-
tems. We leverage the SAT-based Alloy tool-set to reduce the prob-
lem of generating valid ” ™~ o s -
proach translates SQL q

Given a database sche

Department of Electrical and Computer
Engineering
The University of Texas at Austin
Austin TX, USA
khurshid@ece.utexas.edu

inputs, such as database management systems (DBMSs) or compil-

ers, is particularly expensive. Automation can significantly reduce

the cost of testing as well as enable systematic testing, which can
significantly increase the effectiveness of testing.

Thic naner nresents a novel SAT-based approach to automate

\gement systems. There are

1 DBMS: (1) generating test

enable it to generate valii M N
erated using convention: u e r e n e ra I 0 n hema, (2) generating a set of
ing oracles to verify the result

previous work on ADU L oL

cally and semantically valid SQL queries for testing, (2) input data
to populate test databases, and (3) expected result of executing the
given query on the generated data.

Experimental results show that not only can we automatically
generate valid queries which detect bugs in database en, S
also we are able to combine this work with our previous
ADUSA to automatically generate input queries and tables
as expected query execution outputs to enable automated testing of
database engines.

Categories and Subject Descriptors
™y o ok

t databases using the DBMS.
Previous work has addressed each of these three steps but largely
in isolation of the other steps [7.8]. While a brute-force combina-
tion of existing approaches to automate DBMS testing is possible
in principle, the resulting framework is unlikely to be practical: it
will generate a prohibitively large number of test cases, which have
a high percentage of tests that are redundant or invalid, and hence
represent a significant amount of wasted effort. Some approaches,
such as [6], target generating queries with cardinality constraints.
Integrating query generators with data generators, however, is still
either specialized [8], or sometimes not possible [6]. Several aca-
demic and commercial tools target the problem of test database
generation [9, 10, 12]. Nevertheless, they do not support query

e - - -

Abstract

We present a novel approach for black-box testing of
database management systems (DBMS) using the Alloy
tool-set. Given a database schema and an SOI. auerv as
inputs, our a

Several approaches exist for automatic query genera-
tion. For example, RAGS [21] and QGen [20] stochasti-
cally combine SQL statements to generate valid queries.
These tools enable generating thousands of SQL queries
in a few s<econds A maore recent annroach [5] targets

ntegrating

wi: Database and Test Oracle "

result of exe
The Alloy
(input/oracle
query proce:

By incorp
the analysis, our approach performs query-aware data
generation where executing the query on the generated
data produces meaningful non-empty resuits.

We developed a prototype tool, ADUSA, and used it
to evaluate our approach. Experimental results show the
ability of our approach to detect bugs in both open-source
as well as commercial database management systems.

Generation

the prob-
2]. Given
izes, and
statistical
atisfy the
given schema and constraints. Such generation methods,
however, are query unaware, ie., they don’t take the
queries (which usually relate to the components under test)
into consideration while generating the data, and thus,
executing these queries might not return meaningful re-
sults. Recent approaches introduced guery-aware database
generation [2], [3]. These approaches use the information
from the queries to constrain the data generator to gener-

ETHzurich s

Challenges

* DBMS are tested well
* Fuzzers are ineffective in finding logic bugs
* Knowing the precise result set for a query is difficult

The problem of automatically testing
DBMS has not yet been well addressed

ETH:zurich :

Approach: Pivoted Query Synthesis

Pivoted Query Synthesis is an automatic testing
approach that can be used to effectively test DBMS

Pivoted Query
Synthesis (PQS)

>100 bugs in
N widely used
DBMS

ETHzurich »

ldea: PQS

ldea: Construct an automatic testing approach
considering only a single row

Column, Column, Column,

Value,, | Value , | Value, Pivot Row

ETHzurich s

Intultion

* Simpler conceptually and implementation-wise

Column,

Column,

Column,

Value,

Value, ,

Value, ,

SELECT * FROM <table>

WHERE <cond>

<cond>?

ETH:zurich s

Intultion

e Simpler conceptually and implementation-wise
* Same effectiveness as checking all rows

SELECT * FROM <table>
Column, | Column; | Column, WHERE <cond>

Value,, | Value,, | Value,, /

ETH:zurich s

Intultion

* Simpler conceptually and implementation-wise

* Same effectiveness as checking all rows

Column,

Column,

Column,

Value,

Value, ,

Value,,

SELECT * FROM <table>

WHERE <cond>

E'HZUFiCh 41

Intultion

e Simpler conceptually and implementation-wise
* Same effectiveness as checking all rows

E'HZUFI.C/"I 42

Intultion

* Simpler conceptually and implementation-wise
* Same effectiveness as checking all rows
* Precise oracle for a single row

ETH:zurich i

Approach

Database Generation

Randomly
Generate
Database

animal description picture
Cat A cute toast
cat
Dog Cute dog pic
Cat plants
Cat
: (cute!)

ETHzurich s

Database Generation

Randomly
Generate
Database

To explore “all possible database states”
we randomly create databases

animal description picture
Cat A cute toast
cat
Dog Cute dog pic
Cat Cat plants

(cute!)

ETHzurich s

Pivot Row Selection

Randomly
Generate
Database

ﬁ

Select

Pivot Row

animal

description

picture

A cute toast

Cat cat

Dog Cute dog pic
Cat plants

Cat (cute!)

ETH:zurich »

Query Generation

Randomly
Generate
Database

ﬁ

Pivot Row

Select

ﬁ

Generate
Query for the
Pivot Row

SELECT picture, description
FROM animal pictures
WHERE animal = 'Cat’

AND description LIKE ‘Z%cute’’

animal description picture
Cat plants
Cat P
(cute!)

ETH:zurich s

Verifying the Result

Randomly
Generate
Database

ﬁ

SELECT picture, description

FROM animal_ pictures
WHERE animal =
AND description LIKE ‘Z%cuteX’

"Cat’

pivot row

animal

description

picture

Cat

Cat plants
(cute!)

Cat

| Generate Verify that
.Se ect gy Query for the me==pp the Pivot Row
Pivot Row Pivot Row is contained
result set
animal description picture

A cute toast
cat

Cat

Cat plants
(cute!)

ETH:zurich s

Verifying the Result

Randomly
Generate
Database

ﬁ

SELECT picture, description

Select
Pivot Row

FROM animal_ pictures
WHERE animal =
AND description LIKE ‘Z%cuteX’

"Cat’

pivot row

animal

description

picture

Cat

Cat plants
(cute!)

q

Generate

Query for the =P the Pivot Row

Pivot Row

DBMS

pivot row € result set ‘/

Verify that

is contained

result set

animal

description picture

Cat

A cute toast
cat

Cat

Cat plants
(cute!)

ETHzurich s

Verifying the Result

Randomly
Generate
Database

ﬁ

SELECT picture, description

FROM animal_ pictures
WHERE animal =
AND description LIKE ‘Z%cuteX’

"Cat’

pivot row

animal

description

picture

Cat

Cat plants
(cute!)

| Generate Verify that
.Se ect) Query for the =P the Pivot Row

Plvot Row Pivot Row is contained

result set
animal description picture
A cute toast
Cat
cat
Dog Cute dog pic hgl

ETHzurich s

Verifying the Result

Randomly Generate Verify that
Select)
Generate |—) bi R)| Query for the m==—pp the Pivot Row
Database Vot Row Pivot Row is contained
result set

SELECT pictur'e, descpiption animal description picture

FROM animal_pictures — DBMS |

WHERE animal = 'Cat’ Cat A cute toast

cat

AND description LIKE ‘Z%cuteX’

Dog Cute dog pic

pivot row

animal description picture

pivot row & result set

X

Cat plants

Cat (cute!)

Verifying the Result

Randomly
Generate
Database

ﬁ

Generate
Select

Pivot Row Pivot Row

pivot row & result set

X

The “containment oracle” is
PQS’ primary oracle

) Query for the mpp

Verify that
the Pivot Row
is contained

ETHzurich s

Approach

Randomly Select Generate Verify that

Generate | T—p , clec) Query for the =Py the Pivot Row
Pivot Row : . .

Database Pivot Row is contained

ETH:zurich -

Approach

Randomly | Generate Verify that
Generate |—) .Se ect ' Query for the me==pp the Pivot Row
Database Pivot Row Pivot Row is contained

ETH:zurich s

Approach

Randomly | Generate Verify that
Generate |—) .Se ect ' Query for the me==pp the Pivot Row
Database Pivot Row Pivot Row is contained

ETH:zurich s

Approach

How do we generate this query?

Randomly Sel Generate Verify that
Generate | ——) , elect Query for the we===pp the Pivot Row
Database Pivot Row Pivot Row is contained

ETHzurich s

How do we Generate Queries?

SELECT picture, description
FROM animal pictures
WHERE

Generate an expression that
yields TRUE for the pivot row

ETH:zurich -

How do we Generate Queries?

Randomly Evaluate Modify Use in
Generate ey EXpression on Py expression to mp \WHERE
Expression Pivot Row yield TRUE clause

ETH:zurich s

Random Expression Generation

animal_pictures

animal

description

picture

We first generate a
random expression

https://www.sglite.org/syntax/expr.html

ETHzurich «

https://www.sqlite.org/syntax/expr.html

Random Expression Generation

animal = 'Cat’
AND description LIKE 'Z%cute’’

descrip
tion

ETH:zurich s

Random Expression Generation

animal = 'Cat’
AND description LIKE 'Z%cute’’

Evaluate the tree based

. ° on the pivot row
descrip Y cuted
tion
ETHzurich -

Random Expression Evaluation

Constant nodes return
their assigned literal
values

animal description picture

Cat plants

Cat (cute!)

"'Cat' * 1 1
., *, '%cute%

descrip
tion

"%cuted’

ETH:zurich s

Random Expression Evaluation

"Cat’ =

'Cat
plants

v cat' (cutel)’q

descrip
tion

Column references return the
values from the pivot row

animal description picture

Cat plants
Cat (cute!)
*, '%cutek'
"%cute’’
ETHzurich -

Random Expression Evaluation

Compound nodes
compute their result
based on their children

TRUE ¥ ... TRUE
animal description picture
Cat Cat C?t ptlaln)ts
plants cure:
| | I !
, , .'Cat (cute!) ' . ,
Cat’ ., 'd%cutedk
descrip o o s
. wcute’
tion

ETH:zurich s

Random Expression Evaluation

4
: TRUE
TRUE ¥ ... TRUE
animal description picture
Cat Cat C?t ptlaln)ts
plants cure:
| | I !
1 1 " Cat (Cute.) ;‘ " : :
Cat’ ., '%cutedk
descrip o o s
. wcute’
tion

ETH:zurich s

Query Synthesis

SELECT picture, description
FROM animal pictures
WHERE |animal = 'Cat’ AND description LIKE 'Jcute’’

ETH:zurich -

Random Expression Evaluation

"Cat’ =

.t
"
e
-“‘
.
.t
"

4
: TRUE

What about when the expression
does not evaluate to TRUE?

.
»
I
Y

....
....
L]

descrip
tion

animal description picture

Cat plants

Cat (cute!)

*, '%cutek'

"%cuted’

ETHzurich «

Random Expression Evaluation

4
: FALSE

What about when the expression
does not evaluate to TRUE?

animal = 'Dog’

animal description picture

Cat plants

Cat (cute!)

ETHzurich «

Random Expression Rectification

switch (result) {

case TRUE:

result = randexpr;
case FALSE:

result = NOT randexpr;
case NULL:

result = randexpr ISNULL;

E'"ZUFI.C/"I 70

Random Expression Rectification

switch (result) {

A

case TRUE:
result = randexpr; , ' '

| case FALSE: | animal = Dog
result = NOT randexpr;

case NULL: animal | description | picture
result = randexpr ISNULL;

Cat plants
} Cat (cute!)

ETH:zurich »

Random Expression Rectification

switch (result) {

case TRUE: ?TRUE
result = randexpr; '
case FALSE: animal = 'Dog’)
result =randexpr;
case NULL: animal | description | picture
result = randexpr ISNULL; | ot
} @ (cute!)

ETH:-zurich »

How do we Generate Queries?

SELECT picture, description
FROM animal pictures
WHERE [NOT(animal = 'Dog")]|

animal description picture

Cat plants

Cat (cute!)

E'HZUFiCh 73

Evaluation

Tested DBMS

PostgreSQL

?SQLite R

MySQL.

ETHzurich

Tested DBMS

PostgreSQL

We tested these (and other DBMS)
in a period of 3-4 months

?SQLite R

My

ETHzurich

DBMS

Popularity Rank
DBMS DB-Engines Stack | LOC First Age
Overflow Release
SQLite 11 41 03M 2000 19 years
MySQL 2 1] 3.8M 1995 24 years
PostgreSQL 4 21 1.4M 1996 23 years

ETH:zurich »

DBMS

Popularity Rank
DBMS DB-Engines Stack | LOC First Age
Overflow Release
SQLite 11 4 | 0.3M 2000 19 years
MySQL 2 1] 3.8M 1995 24 years
PostgreSQL 4 2| 1.4M 1996 23 years

ETH:zurich =

DBMS

Popularity Rank
DBMS DB-Engines Stack LOC First Age
Overflow Release
SQLite 11 4 03M 2000 19 years
MySQL 2 1 3.83M 1995 24 years
PostgreSQL 4 2 1.4M 1996 23 years

ETH:zurich »

Bugs Overview

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

Real Bugs

ETH:zurich s

Bugs Overview

Real Bugs

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

99 real bugs: addressed by code or
documentation fixes, or verified as bugs

ETH:zurich =

Bugs Overview

Real Bugs

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

The SQLite developers quickly responded to all
our bug reports =2 we focused on this DBMS

ETHzurich

Bugs Overview Real Bugs

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

All MySQL bug reports were verified quickly ‘

ETHzurich s

Bugs Overview Real Bugs

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

MySQL's trunk is not available, and it
has a long release cycle

ETHzurich «

Bugs Overview Real Bugs

DBMS Fixed Verified
SQLlite 65 0
MySQL 15 10
PostgreSQL ‘ 5 4 ‘
Sum 85 14

We found the fewest bugs in PostgreSQL and
not all could be easily addressed

ETHzurich s

Oracles eal Bugs

DBMS Containment Error SEGFAULT
SQLite 46 17 2
MySQL 14 10 1
PostgreSQL 1 7 1
Sum 61 34 4

ETH:zurich s

Oracles

DBMS Containment Error SEGFAULT
SQLite 46 17 2
MySQL 14 10 1
PostgreSQL 1 7/ 1
Sum 61 34 4

Our Containment oracle allowed
us to detect most errors

Real Bugs

!

Containment
Oracle

ETHzurich

Result: Bug in SQLite3 Real Bugs
}

CREATE TABLE t@(cl TEXT PRIMARY KEY) WITHOUT ROWID; comainment
CREATE INDEX i@ ON t@(cl COLLATE NOCASE);

INSERT INTO t@(cl) VALUES ('A");

INSERT INTO t@(cl) VALUES ('a');

ETH:zurich s

Result: Bug in SQLite3

Real Bugs
CREATE TABLE t@(cl TEXT PRIMARY KEY) WITHOUT ROWID; Containment
| CREATE INDEX i@ ON t@(cl COLLATE NOCASE);|

INSERT INTO to(cl) VALUES ('A');
INSERT INTO to(cl) VALUES ('a');

An index is an auxiliary data structure
that should not affect the query’s result

ETHzurich s

Result: Bug in SQLite3

CREATE TABLE tO(cl TEXT PRIMARY KEY) WITHOUT ROWID;

CREATE INDEX i@ ON tO(cl COLLATE NOCASE);

INSERT INTO to(cl) VALUES ('A');
INSERT INTO to(cl) VALUES ('a');

cl

Real Bugs

!

Containment
Oracle

ETHzurich «

Result: Bug in SQLite3

CREATE TABLE tO(cl TEXT PRIMARY KEY) WITHOUT ROWID;

CREATE INDEX i@ ON tO(cl COLLATE NOCASE);
INSERT INTO to(cl) VALUES ('A');
INSERT INTO to(cl) VALUES ('a');

SELECT * FROM t0; ==p- . —
?SQthe

cl

Real Bugs

!

Containment
Oracle

ETHzurich -

Result: Bug in SQLite3

CREATE TABLE tO(cl TEXT PRIMARY KEY) WITHOUT ROWID;
CREATE INDEX i@ ON tO(cl COLLATE NOCASE);
INSERT INTO tO(cl) VALUES ('A");
INSERT INTO to(cl) VALUES ('a');

SELECT * FROM t0; ==p- . —
?SQthe

SQLite failed to fetch "a " !

cl

Real Bugs

!

Containment
Oracle

X

ETHzurich -

Result: Bug in PostgreSQL

t0

cO cl
t1

cO cl

CREATE TABLE tO(c@ INT PRIMARY KEY, cl INT);
CREATE TABLE t1(c@ INT) INHERITS (t0);

Real Bugs

!

Containment
Oracle

ETH:zurich -

Result: Bug in PostgreSQL

CREATE TABLE tO(c@ INT PRIMARY KEY, cl INT);
CREATE TABLE t1(c@ INT) INHERITS (t0);

INSERT INTO t0(c@, cl) VALUES(@, 0);|

t0
cO cl
0 0
t1
cO cl

Real Bugs

!

Containment
Oracle

ETHzurich o

Result: Bug in PostgreSQL

Real Bugs
t0
CREATE TABLE t@(c@ INT PRIMARY KEY, cl INT); }
© 1 | CREATE TABLE t1(c@ INT) INHERITS (t0); Containment
o | o INSERT INTO t@(c@, cl) VALUES(®, 0); Oracle
| INSERT INTO t1(c@, cl) VALUES(@, 1);]
0| 1
tl
cO | cl
0| 1

ETHzurich o

Result: Bug in PostgreSQL

Real Bugs
t0
CREATE TABLE t@(c@® INT PRIMARY KEY, cl INT); |
cO | cl CREATE TABLE t1(c© INT) INHERITS (t0); Containment
o | o INSERT INTO t@(c@, cl) VALUES(®, 0); Oracle
| INSERT INTO t1(c@, cl) VALUES(Q, 1);|
0 | 1
tl
| The inheritance relationship
causes the row to be inserted
0 | 1 both in t0 and t1

ETHzurich o

Result: Bug in PostgreSQL

Real Bugs
t0
CREATE TABLE t0(c@ INT PRIMARY KEY, cl1 INT); |
€O | ¢l | CREATE TABLE t1(c@ INT) INHERITS (t0); Containment
ol o INSERT INTO t0(c@®, cl) VALUES(9, 9); Oracle
|[INSERT INTO t1(c@, cl) VALUES(@, 1);]|
0| 1
t1
cO | cl
SELECT ¢©, c1 FROM to > > cO | cl
0 1 GROUP BY cO, cl; 0 0

ETHzurich -

Result: Bug in PostgreSQL Real Bugs

t0
CREATE TABLE t@(c@ INT PRIMARY KEY, cl INT); }
s CREATE TABLE t1(c@ INT) INHERITS (t0); Containment
o | o INSERT INTO t@(c@, cl) VALUES(®, 0); Oracle
| INSERT INTO t1(c@, cl) VALUES(@, 1);]|
0| 1
t1
cO | cl
SELECT c@, c1 FROM to __ 0| cl
0 1 GROUP BY cO, c1l; 0 0

X

PostgreSQL failed to fetch
therowO | 1

ETHzurich

Result: Bug in MySQL Real Bugs

{0 |
CREATE TABLE t0(c@ TINVINT); Containment
cO INSERT INTO t0(c@) VALUES(NULL); Oracle
NULL

ETH:zurich o

Result: Bug in MySQL

Real Bugs
t0 }
CREATE TABLE t0(cO TINYINT); Containment
€0 INSERT INTO t0(c@) VALUES(NULL); Oracle
NULL
SELECT * FROM te m
WHERE M S
NOT(t0.cO <=> 2035382037); = y
\ J

|
FALSE

ETH:zurich 1o

Result: Bug in MySQL

Real Bugs
t0 }
CREATE TABLE t0(cO TINYINT); Containment
€0 INSERT INTO t0(c@) VALUES(NULL); Oracle
NULL
SELECT * FROM te m
WHERE M S
NOT(t0.cO <=> 2035382037); = y %
\ J

|
FALSE

The MySQL-specific equality operator <=>
malfunctioned for large numbers

ETH:zurich 1

Oracles

DBMS Containment Error SEGFAULT
SQLite 46 17 2
MySQL 14 10 1
PostgreSQL 1 7/ 1
Sum 61 34 4

We also found many bugs using
an Error oracle

Real Bugs

!

Error Oracle

ETH:zurich 1o

SQLItGB Bug Real Bugs

CREATE TABLE t1 (c@, cl REAL PRIMARY KEY); |
INSERT INTO t1(c@, c1) VALUES

(TRUE, 9223372036854775807), (TRUE, 0);

UPDATE t1 SET c@ = NULL;

UPDATE OR REPLACE t1 SET cl1 = 1;

SELECT DISTINCT * FROM t1 WHERE (t1.c® IS NULL);

Error Oracle

E'HZUFiCh 103

SQLItGB Bug Real Bugs

CREATE TABLE t1 (c@, cl REAL PRIMARY KEY); |
INSERT INTO t1(c@, c1) VALUES

(TRUE, 9223372036854775807), (TRUE, 0);

UPDATE t1 SET c@ = NULL;

UPDATE OR REPLACE t1 SET cl1 = 1;

SELECT DISTINCT * FROM t1 WHERE (t1.c® IS NULL);

SQLite = B Database disk image is malformed

Error Oracle

ETH:zurich 10

SQLItGB Bug Real Bugs

CREATE TABLE t1 (c@, cl REAL PRIMARY KEY); |
INSERT INTO t1(c®@, cl) VALUES

(TRUE, 9223372036854775807), (TRUE, 0);
UPDATE t1 SET c@ = NULL;

UPDATE OR REPLACE t1 SET cl1 = 1;

SELECT DISTINCT * FROM t1 WHERE (tl.c® IS NULL);

SQLite = B Database disk image is malformed

The INSERT and UPDATE statements
corrupted the database

Error Oracle

ETH:zurich s

Oracles el Bugs

!
SEGFAULTs
DBMS Containment Error SEGFAULT
SQLite 46 17 2
MySQL 14 10 1
PostgreSQL 1 7/ 1
Sum 61 34 4

We found only a low number of
crash bugs, likely because DBMS
are fuzzed extensively

ETH:zurich s

Average Number of Statements

Real Bugs

1.00 =

0.75 =

0.50 =

0.25

cumulative distribution

0.00 -

I
4

I
6

LOC of the reduced test case

Half of all bugs can be reproduced

with only 4 SQL statements

ETHzurich

SQLite3 Bug with a Single Statement el Bugs

SELECT "' - 2851427734582196970;

¢

SQLite == -2851427734582196936

Subtracting a large integer from a
string resulted in an incorrect result

ETH:zurich

Discussion

* Are the bugs relevant?

E'HZUF/C/"I 109

Discussion

* Are the bugs relevant?

Severity #
Level

Critical 14
Severe 3
Important 14

The SQLite developers (inconsistently)
assigned severity levels

ETH:zurich 1.

Discussion

* Are the bugs relevant?
e Statement coverage

E'"ZUFI.C/"I 111

Discussion

* Are the bugs relevant?
e Statement coverage

Low coverage 20%-50%, DBMS provide a lot
more than pure database management

E'HZUFI.C/"I 112

Discussion

* Are the bugs relevant?
e Statement coverage
* Implementation effort

ETHzurich 1

Discussion

* Are the bugs relevant?
e Statement coverage
* Implementation effort

4,000-6,000 LOC per DBMS -
significantly smaller than the DBMS

E'HZUFI.C/"I 114

Discussion

* Are the bugs relevant?
e Statement coverage

* Implementation effort
* Limitations

ETHzurich i

Discussion

* Are the bugs relevant?
e Statement coverage

* Implementation effort
* Limitations

 Aggregate and window functions
e Difficult-to-implement functionality

ETHzurich s

Larger Picture

Pivoted Query

Synthesis (PQS)

ETH:zurich 1

Larger Picture

PQS is one of multiple
DBMS testing approaches
we have been working on

Pivoted Query

Synthesis (PQS)

Metamorphic Aggregate

Testing Testing

ETH:zurich 1

Larger Picture

We have found about 15 bugs
by a novel metamorphic
testing approach that can

compute a precise result set

Metamorphic

Testing

ETH:zurich 1.

Larger Picture

PQS is not applicable for
testing aggregate and
window functions

Aggregate

Testing

ETH:zurich 1

Aim: Find Logic Bugs in DBMS

row, | -<cond> x

Idea: Consider Only a Single Row

Idea: Construct an automatic testing approach
considering only a single row

Column,

Column, Column,

Value, ,

Value;; | Value,, Pivot Row

, @RiggerManuel

row, <cond>

SELECT * FROM <table> row, <cond>

WHERE <cond> row; | ~<cond>

. — Database < >

Client Management System :
Application DEMS Database

— (DBMS)
row, <cond> » VIR

Create Expressions that
Yield TRUE for the Pivot Row

Challenge: Precise Oracle is Difficult to Construct

 TRUE

DBMS-
specific SQL

Common
SQL Core

Problem: The common SQL
core is small

PQS is Highly Effective

DBMS Fixed Verified
SQLite 65 0
MySQL 15 10
PostgreSQL 5 4
Sum 85 14

99 real bugs: addressed by code or
documentation fixes, or verified as bugs

ETH:zurich

