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Publications:

S&P’18: AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

NeurIPS’18: Fast and Effective Robustness Certification

POPL’19: An Abstract Domain for Certifying Neural Networks

ICLR’19: Boosting Robustness Certification of Neural Networks

ICML’18: Differentiable Abstract Interpretation for Provably Robust Neural Networks

ICML’19: DL2: Training and Querying Neural Network with Logic

Systems:

ERAN: Generic neural network verifier

DiffAI: System for training provably robust networks

DL2: System for training and querying networks with logical 
constraints



Deep learning systems

https://www.amazon.com/
Amazon-Echo-And-Alexa-Devices

https://waymo.com/tech/

Self driving cars Voice assistantTranslation

https://translate.google.com
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Attacks on deep learning

Adding small noise to the input 
audio makes the network 
transcribe any arbitrary phrase 

Audio Adversarial Examples: 
Targeted Attacks on Speech-to-Text, 
ICML 2018

The self-driving car incorrectly 
decides to turn right on Input 2 
and crashes into the guardrail

DeepXplore: Automated Whitebox
Testing of Deep Learning Systems, 
SOSP’17

Adversarial Examples for Evaluating 
Reading Comprehension Systems, 
EMNLP’17 

The Ensemble model is fooled by 
the addition of an adversarial 
distracting sentence in blue. 
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Attacks based on intensity changes in images

𝐼"

8

𝐼 = 𝐼" + 0.01

0

𝐿)-norm: consider all images 𝐼 in the 𝜖-ball	ℬ(./,))(𝜖) around 𝐼2 5

To verify absence of attack:



Attacks based on geometric transformations

𝐼"

7

𝐼 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼",-35)

3

Consider all images 𝐼 obtained by applying geometric transformations to 𝐼26

To verify absence of attack:



Attacks based on intensity changes to sound
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“Stop”

“Go”

Consider all signals 𝑠 in the 𝜖-ball	ℬ(;/,))(𝜖) around 𝑠2

𝑠"

𝑠 = 𝑠" − 110	𝑑𝐵

To verify absence of attack:



Neural network verification: problem statement

Given:

Prove: ∀𝐼 ∈ ℛ, 
prove that 𝑓(𝐼) satisfies 𝜓
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Image classification network 𝒇
Region ℛ based on changes to pixel intensity
Region ℛ	based on geometric: e.g., rotation

Speech recognition network 𝒇
Region ℛ based on added noise to audio signal

Aircraft collision avoidance network 𝒇
Region ℛ based on input sensor values

Neural Network 𝑓,
Input Region ℛ
Safety Property 𝜓

Example networks and regions:

Input Region ℛ can contain an infinite number of inputs, thus enumeration is infeasible



Tries to find violating inputs

Like testing, no full guarantees

E.g. Goodfellow 2014, Carlini & Wagner 2016, Madry et al. 2017

Prove absence of violating inputs

Actual verification guarantees

E.g.: Reluplex [2017], Wong et al. 2018, AI2 [2018]

Experimental robustness Certified robustness
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Experimental vs. certified robustness

In this talk we will focus on certified robustness



General approaches to network verification
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Complete verifiers, but suffer from scalability issues:
SMT: Reluplex [CAV’17], MILP: MIPVerify [ICLR’19],
Splitting: Neurify [NeurIPS’18],…

Incomplete verifiers, trade-off precision for scalability:
Box/HBox [ICML'18], SDP [ICLR’18], Wong et.al. [ICML'18], FastLin
[ICML'18], Crown [NeurIPS'18],…

Key Challenge: scalable and precise automated verifier
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Based on Pixel
Intensity changes Box

DeepZ [NeurIPS’18]

DeepPoly [POPL’19]

RefineZono [ICLR’19]: MILP + DeepZ

ERAN verification framework
https://github.com/eth-sri/eran

KPoly [submitted]: MILP + DeepPoly

Yes

Fully connected
Convolutional
Residual
LSTM

ReLU
Sigmoid
Tanh
Maxpool

Neural Network

Sound w.r.t. floating point arithmetic

Extensible to other verification tasks

Possible sensor valuesAircraft
sensors

Safety Property 

GPUPoly [submitted]

No

Based on Geometric
transformations: vector 
fields, rotations, etc.

Based on Audio processing

Input region

Network verification with ERAN

State-of-the-art complete and 
incomplete verification



Complete and incomplete verification with ERAN

Reluplex Neurify ERAN
> 32 hours 921 sec 227 sec

Aircraft collision avoidance system (ACAS)

𝝐 %verified Time (s)
0.03 66% 79 sec

CIFAR10 ResNet-34 
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Faster Complete Verification

Scalable Incomplete Verification
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𝝐 %verified Time(s)
0.001 86 10 sec

Rotation between -30° and 30° on MNIST 
CNN with 4,804 neurons

𝝐 %verified Time (s)
-110 dB 90% 9 sec

LSTM with 64 hidden neurons

Geometric Verification

Geometric and audio verification with ERAN

Audio Verification



Example:  analysis of a toy neural network
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𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

We want to prove that 𝑥HH > 𝑥HK for all values of 𝑥H, 𝑥K in the input set



15Complete verification with solvers often does not scale

𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

Each 𝑥W = 𝐦𝐚𝐱(0, 𝑥[) corresponds to
(𝑥[ ≤ 0 and 𝑥W = 0) or
(𝑥[ > 0 and 𝑥W = 𝑥[)

Solver has to explore two paths per ReLU
resulting in exponential number of paths 



Abstract interpretation
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Patrick and Radhia Cousot
Inventors

An elegant framework for approximating concrete behaviors

Abstract element: approximates set of concrete points
Concretization function 𝛾: concretizes an abstract 
element to the set of points that it represents.
Abstract transformers:  approximate the effect of 
applying concrete transformers e.g. affine, ReLU

Tradeoff between the precision and the scalability of an abstract domain

Key Concept:  Abstract Domain
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Output constraint 𝜑_

𝑥2 = 0
𝑥H = 2.60 + 0.015𝜂2 + 0.023𝜂H + 5.181𝜂K + ⋯
𝑥K = 4.63 − 0.005𝜂2 − 0.006𝜂H + 0.023𝜂K + ⋯
…
𝑥M = 0.12 − 0.125𝜂2 + 0.102𝜂H + 3.012𝜂K + ⋯
∀𝑖. 𝜂[ ∈ [0,1]

Attacker region 𝐿) ball with 𝜖 = 0.1:
𝑥2 = [0.1,0.3]
𝑥H = [0.4,0.6]
𝑥K = [0.18,0.36]
…
𝑥LPN = [0.7,0.9]

All possible outputs
(before softmax)

Network verification with ERAN: high level idea



𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[0,4]

[−2,2]

[0,4]

[0,2]

[1,7]

[0,2]

Verification with the Box domain fails as it cannot capture relational information

Box approximation (scalable but imprecise)



DeepPoly approximation [POPL’19]

Shape:  associate a lower polyhedral 𝑎[i	and an upper polyhedral 𝑎[j constraint with each 𝑥[

• less precise than Polyhedra, restriction 
needed to ensure scalability 

• captures affine transformation precisely 
unlike Octagon, TVPI

• custom transformers for ReLU, sigmoid, 
tanh, and maxpool activations 

Concretization of abstract element 𝑎:

Domain invariant:  store auxiliary concrete lower and upper bounds 𝑙[, 𝑢[ for each 𝑥[

19

Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚K) Ο(𝑤rstK 𝐿)

ReLU Ο(exp	(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤rst: max #neurons in a layer, 𝐿: # layers



Example:  analysis of a toy neural network

𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0
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1. 4 constraints per neuron
2. Pointwise transformers => parallelizable.
3. Backsubstitution => helps precision.
4. Non-linear activations => approximate and minimize the area



𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

21



ReLU activation

𝑥I 𝑥J

𝑥N 𝑥O

max	(0, 𝑥I)

max	(0, 𝑥N)

Pointwise transformer for 𝑥W ≔ 𝑚𝑎𝑥(0, 𝑥[) that uses 𝑙[, 𝑢[
𝑖𝑓	𝑢[ ≤ 0, 𝑎Wi = 𝑎Wj = 0, 𝑙W = 𝑢W = 0,	
𝑖𝑓	𝑙[ ≥ 0, 𝑎Wi = 𝑎Wj = 𝑥[, 𝑙W = 𝑙[, 𝑢W = 𝑢[,	
𝑖𝑓	𝑙[ < 0	𝑎𝑛𝑑	𝑢[ > 0

choose (b) or (c) depending on the area

Constant runtime 22



Affine transformation after ReLU

𝑥J

𝑥L

𝑥O

0

1

1

Imprecise upper bound	𝑢L by substituting 𝑢J, 𝑢O for 𝑥J and 𝑥O in 𝑎Lj 23



Backsubstitution

𝑥J

𝑥L

𝑥O

0

1

1

24



Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤rstK 𝐿

𝑥J

𝑥L

𝑥O

0

1

1𝑥I

𝑥N

max	(0, 𝑥I)

max	(0, 𝑥N)

0

0

𝑥H

𝑥K

1

−1

1

1

25



𝑥H 𝑥I 𝑥J 𝑥HH

𝑥K

𝑥L 𝑥M

𝑥N 𝑥O 𝑥P 𝑥H2 𝑥HK

1 max	(0, 𝑥I) 1 1

−1 −1 1

max	(0, 𝑥L)

max	(0, 𝑥N) max	(0, 𝑥P)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

26



Checking for robustness

Prove 𝑥HH − 𝑥HK > 0	for all inputs in −1,1 ×[−1,1]

Computing lower bound for 𝑥HH − 𝑥HK using 𝑙HH, 𝑢HK gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for 𝑥HH − 𝑥HK, proving robustness 27

hx12 � x10,

x12  x10,

l12 = 0,

u12 = 0i



Abstract interpretation + solvers

28

Key Idea: refine abstract interpretation results by calling the solver

• Refine neuron bounds before ReLU transformer is applied => less area

𝑥H2

𝑥P𝑙P 𝑙P| 𝑢P| 𝑢P



Verification against geometric attacks

29

Rotate 𝐼2
between
-5° and +5°

𝐼"

Sampling +
Lipschitz 
optimization ERAN

𝐼"

Sampling +
Lipschitz 
optimization ERAN

𝐼"

Sampling +
Lipschitz 
optimization ERAN

Rotate 𝐼2
between
-5° and 0°

Rotate 𝐼2
between
0° and +5°

ℛ

ℛ

ℛ

𝑃(ℛ)

𝑃(ℛ)

𝑃(ℛ)



Medium sized benchmarks 
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Dataset Model Type #Neurons #Layers Defense

MNIST 6 ×	100 feedforward 610 6 None
6 ×	200 feedforward 1,210 6 None
9 ×	200 feedforward 1,810 9 None

ConvSmall convolutional 3,604 3 DiffAI
ConvBig convolutional 34,688 6 DiffAI

CIFAR10 ConvSmall convolutional 4,852 3 Wong et al.
ConvBig convolutional 62,464 6 PGD



Results on medium benchmarks (100 test images)
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Dataset Model #correct 𝝐 DeepPoly kPoly
%✅ time(s) %✅ time(s)

MNIST 6 ×	100 99 0.026 21 0.3 44 151
6 ×	200 99 0.015 32 0.5 56 387
9 ×	200 97 0.015 29 0.9 54 1040

ConvSmall 100 0.12 13 6.0 28 1018
ConvBig 100 0.3 93 12.3 93 286

CIFAR10 ConvSmall 38 0.03 35 0.4 35 1.4
ConvBig 65 0.008 39 49 40 2882



Large benchmarks
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Dataset Model Type #Neurons #Layers Defense

CIFAR10 ResNetTiny residual 311K 12 PGD
ResNet18 residual 558K 18 PGD

ResNetTiny residual 311K 12 DiffAI
SkipNet18 residual 558K 18 DiffAI
ResNet18 residual 558K 18 DiffAI
ResNet34 residual 967K 34 DiffAI



Results on large benchmarks (500 test images)
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Model Training #correct 𝝐 Hbox[ICML’18] GPUPoly

% ✅ time(s) %✅ time(s)

ResNetTiny PGD 391 0.002 0 0.3 322 30
ResNet18 PGD 419 0.002 0 6.8 324 1400

ResNetTiny DiffAI 184 0.03 118 0.3 127 7.6

SkipNet18 DiffAI 168 0.03 130 6.1 140 57
ResNet18 DiffAI 193 0.03 129 6.3 139 37
ResNet34 DiffAI 174 0.03 103 16 114 79
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Based on Pixel
Intensity changes Box

DeepZ [NeurIPS’18]

DeepPoly [POPL’19]

RefineZono [ICLR’19]: MILP + DeepZ

ERAN verification framework
https://github.com/eth-sri/eran

K-Poly [submitted]: MILP + DeepPoly

Yes

Fully connected
Convolutional
Residual
LSTM

ReLU
Sigmoid
Tanh
Maxpool

Neural Network

Sound w.r.t. floating point arithmetic

Extensible to other verification tasks

Possible sensor valuesAircraft
sensors

Safety Property 

GPUPoly [submitted]

No

Based on Geometric
transformations: vector 
fields, rotations, etc.

Based on Audio processing

Input region

Network verification with ERAN

State-of-the-art complete and 
incomplete verification



In-progress work in verification/training (sample)
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Verification Precision: More precise convex relaxations by considering multiple ReLUs

Verification Scalability: GPU-based custom abstract domains for handling large nets

Theory: Proof on Existence of Accurate and Provable Networks with Box

Provable Training: Procedure for training Provable and Accurate Networks

Applications: e.g., reinforcement learning, geometric, audio, sensors
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Using AI to Train Robust Deep Learning

Differentiable Abstract Interpretation for Provably Robust Neural Networks
ICML 2018
(Matthew Mirman, Timon Gehr, Martin Vechev)

Training Method Accuracy % Certified %
Baseline 98.4 2.8
Madry et al. 98.8 11.2
DiffAI (our method) 99.0 96.4

Convolutional Network with 124,000 neurons, L∞ with  ϵ = 0.1	

Idea: define abstract loss to include AI result, apply automatic differentiation on AI



Released Frameworks

http://github.com/eth-sri/diffai

Framework for verification of deep neural networks,
supports various numerical domains, floating-point
sound, different perturbations, largest dataset to date:
50+ networks. Currently the most scalable and
precise verifier.

Framework for training deep neural nets to be more 
robust using symbolic analysis. Different defenses 
and attacks (PGD, PGD + DiffAI). Currently the 
most scalable framework.

http://github.com/eth-sri/eran



Challenges and Open Problems

Specification
Typically, some norm: L0,		L1,		L∞
How about geometric changes? Distributions?
¼ guarantees: unbounded number of images?

Verification

What is a good abstraction?
How do we leverage testing results?
How to battle approximation loss downstream?
Creative combinations with complete methods?

Networks
Classification? Reinforcement Learning?
Regression?  Recurrent?
Combinations of models?

Accuracy vs. Robustness?
Provability vs. Accuracy?Trade-offs



Input region 𝐿)(𝐼2, 𝜖)
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All images 𝐼 where the intensity at each pixel differs from the intensity at the 
corresponding pixel in 𝐼2 by ≤ 𝜖

𝐼2 𝐼2 + 0.1 𝐼2 + 0.2 𝐼2 + 0.3 𝐼2 + 0.4 𝐼2 + 0.5 𝐼2 + 0.6 𝐼2 + 0.8𝐼2 + 0.7



Input regions

8

7

𝐼"

𝐼 ∈ 𝐿)(𝐼2, 𝜖)

9

𝐼 ∈ 𝑅𝑜𝑡𝑎𝑡𝑒(𝐼2, 𝜖,𝛼, 𝛽)
41

Neural network f

Neural network f

Neural network f



Input region 𝑅𝑜𝑡𝑎𝑡𝑒(𝐼2, 𝜖,𝛼, 𝛽)
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All images 𝐼 which are obtained by rotation each image in 𝐿) 𝐼2, 𝜖 by an angle 
between 𝛼 and 𝛽 using bilinear interpolation


