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Analogy with C verification
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Data Races

Aliasing

Memory Errors

Functional properties

C

void client(list *a, list *b)
{

int old_len = b->len;
append(a, 100);
assert(b->len == old_len);

}
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Memory

list(a) list(b)

…acc(b.len)

Verification Ingredients

*
Predicates

Disjointness
of memory

Ownership /
Permissions

Auxiliary 
annotations

What is this like to use?



Verification Ingredients at Scale
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“Core proof”

Requires an expert

These steps are mandatory



Data Races?

Aliasing?

Memory Errors?No Memory Errors

Controlled Aliasing

No Data Races

Rust, and its type system
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Functional properties

Can we exploit this type system for verification?

Rust

fn client(a: &mut List, b: &mut List)
{

let old_len = b.len();
append(a, 100);
assert!(b.len() == old_len);

}



What would we like?
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Prusti: An Overview
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Specs

https://www.rust-lang.org/logos/rust-logo-blk.svg is licensed under CC BY 4.0

Leveraging Rust Types for Modular Specification and Verification
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https://www.rust-lang.org/logos/rust-logo-blk.svg
https://creativecommons.org/licenses/by/4.0/


The Prusti Approach

7

Functional specification

Auxiliary annotations

Pre/postconditionsSignature

Compiler analyses 
(e.g. borrow checker)

User specifications 
(optional)

Types Predicates and 
Ownership

Usable by 

non-experts

Rust Verification Ingredients



Core Proofs: Behind the Scenes
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Requires an expert

These steps are mandatory

Ownership, Predicates, Annotations  
all generated automatically

Users write functional specifications
(optionally)

Abstraction level: Rust expressions



Type Encoding
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struct List { val: i32, next: Option<Box<List>> }

predicate List(self: Ref) 
{

acc(self.val) ⁎
acc(self.next) ⁎
i32(self.val) ⁎
OptionBoxList(self.next)

}

i32

OptionBoxList

List

val

next

self

Viper

Rust



*

Signature Encoding

fn client(a: &mut List, b: &mut List)

method client(a: Ref, b: Ref)
requires List(a) ⁎ List(b)
ensures List(a) ⁎ List(b)

a: List b: List

Rust

method client(a: Ref, b: Ref)
requires List(a) ⁎ List(b) && a.sorted() && …
ensures List(a) ⁎ List(b) && a.sorted() 
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Viper



fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

Reborrowing Challenges
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Rust

FrozenMutable

Mutable

For the caller:



fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

Reborrowing Challenges
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Rust

Combined effect?Permissions?



s

fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// return a subtree

}

Reborrowing Challenges
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fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

s **ꟷ )(

Rust

Permissions: magic wand Novel specification: pledges

(see OOPSLA paper for details…)



Evaluation (no specifications)
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11’791 (21%)
supported 
functions

100% of functions:
core proof verifies

Total: 1M lines of Viper
Auxiliary annotations: 100K

Total: ~40K loc

500 most 
downloaded 
packages (crates)

No specification

https://www.rust-lang.org/logos/cargo.png is licensed under CC BY 4.0

https://www.rust-lang.org/logos/cargo.png
https://creativecommons.org/licenses/by/4.0/


Evaluation with specifications
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+ Specification

rosettacode.org



VIPER ENCODING AUTOMATION PLEDGES RUST SUBSET

What else is in the paper?
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Leveraging Rust Types for Modular Specification and Verification
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Conclusion

17prusti.ethz.ch

Dramatically simplifies Rust verification Enables verification by developers

Plenty more to work on! 
e.g. closures, unsafe code, 

reference counting, 
standard libraries, …

On the lookout for 
Master’s (ETH/UBC) and 

PhD students (UBC) 
- get in touch!

http://prusti.ethz.ch/

