
Leveraging Rust Types for Modular
Specification and Verification

Vytautas Astrauskas Peter Müller Federico Poli Alexander J. Summers

Department of Computer Science

Analogy with C verification

1

Data Races

Aliasing

Memory Errors

Functional properties

C

void client(list *a, list *b)
{

int old_len = b->len;
append(a, 100);
assert(b->len == old_len);

}

2

Memory

list(a) list(b)

…acc(b.len)

Verification Ingredients

*
Predicates

Disjointness
of memory

Ownership /
Permissions

Auxiliary
annotations

What is this like to use?

Verification Ingredients at Scale

3

Predicate

Owned field

Auxiliary
annotation

Predicate

Owned field

Owned field

Owned field

Owned field

Predicate

Predicate

Predicate

Predicate

Predicate

Predicate
Disjointness

Disjointness
Predicate

Owned field

Predicate

Predicate

Predicate

Predicate

Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness

Disjointness

Auxiliary
annotation

Disjointness

Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness
Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness

Auxiliary
annotation

“Core proof”

Requires an expert

These steps are mandatory

Data Races?

Aliasing?

Memory Errors?No Memory Errors

Controlled Aliasing

No Data Races

Rust, and its type system

4

Functional properties

Can we exploit this type system for verification?

Rust

fn client(a: &mut List, b: &mut List)
{

let old_len = b.len();
append(a, 100);
assert!(b.len() == old_len);

}

What would we like?

5

Prusti: An Overview

6

Specs

https://www.rust-lang.org/logos/rust-logo-blk.svg is licensed under CC BY 4.0

Leveraging Rust Types for Modular Specification and Verification
To appear at OOPSLA 2019, Athens, Greece (next week)

https://www.rust-lang.org/logos/rust-logo-blk.svg
https://creativecommons.org/licenses/by/4.0/

The Prusti Approach

7

Functional specification

Auxiliary annotations

Pre/postconditionsSignature

Compiler analyses
(e.g. borrow checker)

User specifications
(optional)

Types Predicates and
Ownership

Usable by

non-experts

Rust Verification Ingredients

Core Proofs: Behind the Scenes

8

Predicate

Owned field

Auxiliary
annotation

Predicate

Owned field

Owned field

Owned field

Owned field

Predicate

Predicate

Predicate

Predicate

Predicate

Predicate
Disjointness

Disjointness
Predicate

Owned field

Predicate

Predicate

Predicate

Predicate

Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness

Disjointness

Auxiliary
annotation

Disjointness

Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness
Disjointness

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Auxiliary
annotation

Disjointness

Auxiliary
annotation

Requires an expert

These steps are mandatory

Ownership, Predicates, Annotations
all generated automatically

Users write functional specifications
(optionally)

Abstraction level: Rust expressions

Type Encoding

9

struct List { val: i32, next: Option<Box<List>> }

predicate List(self: Ref)
{

acc(self.val) ⁎
acc(self.next) ⁎
i32(self.val) ⁎
OptionBoxList(self.next)

}

i32

OptionBoxList

List

val

next

self

Viper

Rust

*

Signature Encoding

fn client(a: &mut List, b: &mut List)

method client(a: Ref, b: Ref)
requires List(a) ⁎ List(b)
ensures List(a) ⁎ List(b)

a: List b: List

Rust

method client(a: Ref, b: Ref)
requires List(a) ⁎ List(b) && a.sorted() && …
ensures List(a) ⁎ List(b) && a.sorted()

10

Viper

fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

Reborrowing Challenges

11

Rust

FrozenMutable

Mutable

For the caller:

fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

Reborrowing Challenges

12

Rust

Combined effect?Permissions?

s

fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// return a subtree

}

Reborrowing Challenges

13

fn get(t: &mut BinaryTree) -> &mut BinaryTree {
// traverse somehow; return a subtree

}

s **ꟷ)(

Rust

Permissions: magic wand Novel specification: pledges

(see OOPSLA paper for details…)

Evaluation (no specifications)

14

11’791 (21%)
supported
functions

100% of functions:
core proof verifies

Total: 1M lines of Viper
Auxiliary annotations: 100K

Total: ~40K loc

500 most
downloaded
packages (crates)

No specification

https://www.rust-lang.org/logos/cargo.png is licensed under CC BY 4.0

https://www.rust-lang.org/logos/cargo.png
https://creativecommons.org/licenses/by/4.0/

Evaluation with specifications

15

+ Specification

rosettacode.org

VIPER ENCODING AUTOMATION PLEDGES RUST SUBSET

What else is in the paper?

16

Leveraging Rust Types for Modular Specification and Verification
To appear at OOPSLA 2019, Athens, Greece (next week)

Conclusion

17prusti.ethz.ch

Dramatically simplifies Rust verification Enables verification by developers

Plenty more to work on!
e.g. closures, unsafe code,

reference counting,
standard libraries, …

On the lookout for
Master’s (ETH/UBC) and

PhD students (UBC)
- get in touch!

http://prusti.ethz.ch/

