Leveraging Rust Types for Modular Specification and Verification

Vytautas Astrauskas

Peter Müller

Federico Poli

Alexander J. Summers

Analogy with C verification

```
void client(list *a, list *b)
{
    int old_len = b->len;
    append(a, 100);
    assert(b->len == old_len);
}
```


Verification Ingredients

Verification Ingredients at Scale

Rust, and its type system

```
fn client(a: &mut List, b: &mut List)
{
  let old_len = b.len();
  append(a, 100);
  assert!(b.len() == old_len);
}
Rust
```

Can we exploit this type system for *verification*?

What would we like?

Prusti: An Overview

Leveraging Rust Types for Modular Specification and Verification To appear at OOPSLA 2019, Athens, Greece (next week)

The Prusti Approach

Core Proofs: Behind the Scenes

Type Encoding

Signature Encoding

Reborrowing Challenges

Reborrowing Challenges

Reborrowing Challenges

Evaluation (no specifications)

Evaluation with specifications

rosettacode.org

+ Specification

Example	LOC	#Fns	Spec. LOC	Tim All		No Panic	No Overflow	Verified Additional Properties
100 doors	19	2	7	10.9	7.4	\checkmark	\checkmark	
Binary Search (generic)	16	1	2	16.2	12.9	\checkmark	\checkmark	
Heapsort	39	3	18	30.6	26.2	\checkmark	\checkmark	
Knight's tour	89	6	71	127.6	120.2	\checkmark	\checkmark	
Knuth Shuffle	16	2	3	9.5	6.2	\checkmark	\checkmark	
Langton's Ant	58	4	22	16.7	11.8	\checkmark	\checkmark	
Selection Sort (generic)	20	2	8	19.2	15.2	\checkmark	\checkmark	
Ackermann Func.	16	2	17	7.4	4.4	-	×	Correct result
Binary Search (monomorphic)	16	1	29	25.5	21.4	\checkmark	\checkmark	Correct result
Fibonacci Seq.	46	6	26	9.1	5.7	-	-	Correct result
Knapsack Problem/0-1	27	1	86	139.4	131.6	\checkmark	×	Correct computation
Linked List Stack	59	5	60	21.4	16.9	\checkmark	-	Correct behaviour
Selection Sort (monomorphic)	20	2	34	29.6	24.2	\checkmark	\checkmark	Sorted result
Towers of Hanoi	10	2	5	5.9	3.2	-	\checkmark	Correct param. range
Borrow First	7	1	1	6.6	3.6	\checkmark	\checkmark	
Message	13	1	0	7.2	4.2	×	-	

What else is in the paper?

Leveraging Rust Types for Modular Specification and Verification To appear at OOPSLA 2019, Athens, Greece (next week)

Conclusion

Plenty more to work on! e.g. closures, unsafe code, reference counting, standard libraries, ...

Dramatically simplifies Rust verification

Enables verification by developers

On the lookout for Master's (ETH/UBC) and PhD students (UBC) - get in touch!