Towards Verified Stochastic Variational Inference for Probabilistic Programs

Hongseok Yang KAIST, South Korea

Joint with Wonyeol Lee and Hangyeol Yu (KAIST), and Xavier Rival (INRIA/ENS/CNRS)

High-level message I

Nontrivial assumptions are often made implicitly by ML algorithms, such as variational inference algo.

Be careful.

High-level message 2

Good research opportunity for PL/SE/Verification — How to check those assumptions automatically?

Stochastic variational inference, and some pitfalls

 $def q_{\theta}(): // guide_1$ $\theta = pyro.param("\theta", 0.)$ $v = pyro.sample("v", Normal(\theta, 1.))$

def q_θ(): // guide_1 θ = pyro.param("θ", 0.) v = pyro.sample("v", Normal(θ, 1.))

argmine KL[qe(z) || p(z|x)]

where $KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}_{q_{\theta}(z)}[\log (q_{\theta}(z)/p(z|x))].$

$\operatorname{argmin}_{\theta} \operatorname{KL}[q_{\theta}(z) || p(z|x)]$

where $KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}_{q_{\theta}(z)}[\log (q_{\theta}(z)/p(z|x))].$

argmine KL[qe(z) || p(z|x)]

where $KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}_{q_{\theta}(z)}[\log (q_{\theta}(z)/p(z|x))].$

argmine KL[qe(z) || p(z|x)]

where $KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}_{q_{\theta}(z)}[\log (q_{\theta}(z)/p(z|x))].$

Optimisation by gradient descent:

$$\theta_{n+1} \leftarrow \theta_n - 0.01 \times \nabla_{\theta} KL[q_{\theta}(z)||p(z|x)]_{\theta=\theta_n}$$

argmine KL[qe(z) || p(z|x)]

where $KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}_{q_{\theta}(z)}[\log (q_{\theta}(z)/p(z|x))].$

Optimisation by gradient descent:

Optimisation by gradient descent:

Optimisation by gradient descent:

Optimisation by gradient descent:

Optimisation by gradient descent:

 $\theta_{n+1} \leftarrow \theta_n - 0.01 \times \nabla_{\theta} KL[q_{\theta}(z)||p(z|x)]_{\theta=\theta_n}$ Issue 2: Non-differentiable KL

Issues

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
- 2. Non-differentiable $KL[q_{\theta}(z)||p(z|x)]$.
- 3. Wrong estimate.

 $\begin{aligned} \mathsf{KL}[\mathsf{q}_{\theta} \mid\mid \mathsf{p}] &= \mathbb{E}_{\mathsf{q}_{\theta(z)}}[\log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right)] \\ &= \int dz \left(\mathsf{q}_{\theta}(z) \log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right) \right) \end{aligned}$

$\begin{aligned} \mathsf{KL}[\mathsf{q}_{\theta} \mid\mid \mathsf{p}] &= \mathbb{E}_{\mathsf{q}_{\theta(z)}}[\log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right)] \\ &= \int dz \left(\mathsf{q}_{\theta}(z) \log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right) \right) \end{aligned}$

Two reasons for being undefined.

$\begin{aligned} \mathsf{KL}[\mathsf{q}_{\theta} \mid\mid \mathsf{p}] &= \mathbb{E}_{\mathsf{q}_{\theta(z)}}[\log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right)] \\ &= \int \mathsf{d}z \left(\mathsf{q}_{\theta}(z) \log \left(\frac{\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right) \right) \end{aligned}$

Two reasons for being undefined.

• Bad integrand — $p(z|x)=0 \& q_{\theta}(z) \neq 0$ for some z.

$\begin{aligned} \mathsf{KL}[\mathsf{q}_{\theta} \mid\mid \mathsf{p}] &= \mathbb{E}_{\mathsf{q}_{\theta(z)}}[\log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right)] \\ &= \int \mathsf{d} z \left(\mathsf{q}_{\theta}(z) \log \left(\mathsf{q}_{\theta}(z)/\mathsf{p}(z|\mathsf{x}) \right) \right) \end{aligned}$

Two reasons for being undefined:

- Bad integrand $p(z|x)=0 \& q_{\theta}(z) \neq 0$ for some z.
- Bad integral Not integrable.

```
def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(0., 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
```

```
def q<sub>0</sub>(...): // guide_br
```

sigma = pyro.sample("sigma", Normal(θ , 0.05))

```
KL[q_{\theta}(z)||p(z|x)] undefined.
```

```
def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(0., 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
```

```
def q_{\theta}(...): // guide_br
```

sigma = pyro.sample("sigma", **Normal(θ, 0.05)**)

$KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand.

```
def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(0., 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
```

```
def q<sub>0</sub>(...): // guide_br
```

• • •

```
sigma = pyro.sample("sigma", Normal(\theta, 0.05))
```

$KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand. [Q] Fix it.

```
def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(0., 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
```

def
$$q_{\theta}(...)$$
: // guide_br
...
...
sigma = pyro.sample("sigma", Normal(θ , 0.05))

$KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand. [Q] Fix it.

```
def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(0., 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
```

def
$$q_{\theta}(...)$$
: // guide_br
...
...
sigma = pyro.sample("sigma", Normal(θ , θ . θ . θ)

Not integrable. $KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand. [Q] Fix it.

Bayesian regression from Pyro $\int_{0}^{10} d\sigma \frac{c^{2}}{\sigma^{2}} = \infty$ $\int_{0}^{10} d\sigma \frac{c^{2}}{\sigma^{2}} = \infty$

Not integrable. $KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand. [Q] Fix it.

•••

sigma = pyro.sample("sigma", **Normal(θ, 0.05)**)

Not integrable. $KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad Integrand. [Q] Fix it.

 $def q_{\theta}(...): // guide_br$

sigma = pyro.sample("sigma", Normal(θ , 0.05))

Not integrable. $KL[q_{\theta}(z)||p(z|x)]$ undefined. Bad-Integrand. [Q] Fix it.

Not integrable. KL[q_θ(z)||p(z|x)] undefined. Bad-Integrand. [Q] Fix it.

... sigma = pyro.sample("sigma", Normal(θ, 0.05))

$$def q_{\theta}(...): // guide_br$$

Bayesian regression from
$$\int_{-1}^{1} d\sigma \left(\mathcal{N}(\sigma; ..., \frac{c^2}{\sigma^2}) \right) = \infty$$

def p(...): // model_br
...
sigma = pyro.sample("sigma", Uniform(O:, 10.))
...
pyro.sample("obs", Normal(..., sigma), obs=...)
abs(sigma)

Issue 2: Non-differentiable KL

 $KL[q_{\theta}(z)||p(z|x)]$ may fail to be differentiable wrt. θ .

def $q_{\theta}(): // guide_1'$ $\theta = pyro.param("\theta", 4.)$ $v = pyro.sample("v", Uniform(\theta -1., \theta +1.))$

Issue 3:Wrong estimate

Supposed to be unbiased, but not.

That is,

 $\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)] \neq \mathbb{E}[\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]],$

when we expect equality.

Score estimator

$\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]$

= $(\nabla_{\theta} \log q_{\theta}(z_0)) \times \log(q_{\theta}(z_0)/p(z_0,x))$

where z_0 is sampled from q_{θ} .

Score estimator

$\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]$

= $(\nabla_{\theta} \log q_{\theta}(z_0)) \times \log(q_{\theta}(z_0)/p(z_0,x))$

where z_0 is sampled from q_{θ} .

Thm: $\nabla_{\theta} KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}[\nabla_{\theta} KL[q_{\theta}(z)||p(z|x)]]$

Score estimator

$\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]$

= $(\nabla_{\theta} \log q_{\theta}(z_0)) \times \log(q_{\theta}(z_0)/p(z_0,x))$

where z_0 is sampled from q_{θ} .

Thm: $\nabla_{\theta} KL[q_{\theta}(z)||p(z|x)] = \mathbb{E}[\nabla_{\theta} KL[q_{\theta}(z)||p(z|x)]]$ if some requirements are met.

Proof of the theorem

- $\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]$
- $= \nabla_{\theta} \int dz \; (q_{\theta}(z) \times \log (q_{\theta}(z)/p(z|x)))$
- = $\int dz \left(\nabla_{\theta}(q_{\theta}(z) \times \log (q_{\theta}(z)/p(z|x))) \right)$

 $= \mathbb{E}[(\nabla_{\theta} \log q_{\theta}(z_0)) \times \log(q_{\theta}(z_0)/p(z_0,x))]$

Proof of the theorem

Interchange of integration and differentiation. Might fail.

 $\nabla_{\theta} \operatorname{KL}[q_{\theta}(z)||p(z|x)]$

 $= \nabla_{\theta} \int dz \; (q_{\theta}(z) \times \log (q_{\theta}(z)/p(z|x)))$

= ∫ dz (∇θ(qθ(z) x log (qθ(z)/p(z|x))))

$= \mathbb{E}[(\nabla_{\theta} \log q_{\theta}(z_0)) \times \log(q_{\theta}(z_0)/p(z_0,x))]$

def $q_{\theta}(): // guide_1'$ $\theta = pyro.param("\theta", 4.)$ $v = pyro.sample("v", Uniform(\theta - 1., \theta + 1.))$

def $q_{\theta}()$: // guide_1' θ = pyro.param(" θ ", 4.) v = pyro.sample("v", Uniform(θ -1., θ +1.))

def $q_{\theta}()$: // guide_1' θ = pyro.param(" θ ", 4.) v = pyro.sample("v", Uniform(θ -1., θ +1.))

def q_θ(): // guide_1' θ = pyro.param("θ", 4.) v = pyro.sample("v", Uniform(θ -1., θ +1.))

def q_θ(): // guide_1' θ = pyro.param("θ", 4.) v = pyro.sample("v", Uniform(θ -1., θ +1.))

def q_θ(): // guide_1' θ = pyro.param("θ", 4.) v = pyro.sample("v", Uniform(θ -1., θ +1.))

How to check that these bad cases don't happen?

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
 - $p(z|x)=0 \& q_{\theta}(z) \neq 0$ for some z.
 - Not integrable.
- 2. Non-differentiable $KL[q_{\theta}(z)||p(z|x)]$.
- 3. Wrong gradient estimate.
 - Biased score estimator due to $\nabla_{\theta} \int ... \neq \int \nabla_{\theta} ...$

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
 - $p(z|x)=0 \& q_{\theta}(z)\neq 0$ for some z.
 - Not integrable.
- 2. Non-differentiable $KL[q_{\theta}(z)||p(z|x)]$.
- 3. Wrong gradient estimate.
 - Biased score estimator due to $\nabla_{\theta} \int ... \neq \int \nabla_{\theta} ...$

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
 - $p(z|x)=0 \& q_{\theta}(z)\neq 0$ for some z.

```
def p(): // model_1

v = pyro.sample("v", Normal(0., 5.))

if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)

else: pyro.sample("obs", Normal(-2., 1.), obs=0.)

def q<sub>\theta</sub>(): // guide_1

\theta = pyro.param("\theta", 0.)

v = pyro.sample("v", Normal(<math>\theta, 1.))
```

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
 - $p(z|x)=0 \& q_{\theta}(z)\neq 0$ for some z.

```
def p(): // model_1

v = pyro.sample("v", Normal(0., 5.))

if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)

else: pyro.sample("obs", Normal(-2., 1.), obs=0.)

def q<sub>\theta</sub>(): // guide_1

\theta = pyro.param("\theta", 0.)

v = pyro.sample("v", Normal(<math>\theta, 1.))
```

- I. Undefined $KL[q_{\theta}(z)||p(z|x)]$.
 - $p(z|x)=0 \& q_{\theta}(z) \neq 0$ for some z.
 - Not integrable.
- 2. Non-differentiable $KL[q_{\theta}(z)||p(z|x)]$.
- 3. Wrong gradient estimate.
 - Biased score estimator due to $\nabla_{\theta} \int ... \neq \int \nabla_{\theta} ...$

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

I. μ, σ are continuously differentiable wrt. θ .

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_1
```

v = pyro.sample("v", Normal(0., 5.))
if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)
else: pyro.sample("obs", Normal(-2., 1.), obs=0.)

def $q_{\theta}(): // guide_1$ $\theta = pyro.param("\theta", 0.)$ $v = pyro.sample("v", Normal(\theta, 1.))$

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

- I. μ, σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_1
    v = pyro.sample("v", Normal(0., 5.))
    if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)
    else: pyro.sample("obs", Normal(-2., 1.), obs=0.)
```

def $q_{\theta}()$: // guide_1 θ = pyro.param(" θ ", 0.) v = pyro.sample("v", Normal(θ , 1.))

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

V I. μ, σ are continuously differentiable wrt. θ .

2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_1 
v = pyro.sample("v", Normal(0., 5.))
if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)
else: pyro.sample("obs", Normal(-2., 1.), obs=0.)
<math display="block">def q_{\theta}(): // guide_1 
\theta = pyro.param("\theta", 0.) 
v = pyro.sample("v", Normal(\theta, 1.))
```

- V I. μ, σ are continuously differentiable wrt. θ .
- V 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
 - 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_1
v = pyro.sample("v", Normal(0., 5.))
if (v > 0): pyro.sample("obs", Normal(1., 1.), obs=0.)

else: pyro.sample("obs", Normal(-2., 1.), obs=0.)

def q_{\theta}(): // guide_1
\theta = pyro.param("\theta", 0.)
v = pyro.sample("v", Normal(\theta, 1.))
```

 μ ', σ ' - mean, standard deviation in p(z,x).

- V I. μ, σ are continuously differentiable wrt. θ .
- V 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

V 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_br'
```

sigma = pyro.sample("sigma", Normal(0., 5.))
pyro.sample("obs", Normal(0., abs(sigma)), obs=2.)

def $q_{\theta}(): // guide_br'$ $\theta = pyro.param("\theta", 2.)$ sigma = pyro.sample("sigma", Normal(θ , 0.05))

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

- I. μ, σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_br'
sigma = pyro.sample("sigma", Normal(0., 5.))
pyro.sample("obs", Normal(0., abs(sigma)), obs=2.)

def q<sub>θ</sub>(): // guide_br'
θ = pyro.param("θ", 2.)
sigma = pyro.sample("sigma", Normal(θ, 0.05))
```

- μ ', σ ' mean, standard deviation in p(z,x).
- V I. μ, σ are continuously differentiable wrt. θ .
 - 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
 - 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_br'
sigma = pyro.sample("sigma", Normal(0., 5.))
pyro.sample("obs", Normal(0., abs(sigma)), obs=2.)
```

```
def q<sub>θ</sub>(): // guide_br'
  θ = pyro.param("θ", 2.)
  sigma = pyro.sample("sigma", Normal(θ, 0.05))
```

- μ ', σ ' mean, standard deviation in p(z,x).
- V I. μ, σ are continuously differentiable wrt. θ .
- V 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
 - 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

```
def p(): // model_br'
sigma = pyro.sample("sigma", Normal(0., 5.))
pyro.sample("obs", Normal(0., abs(sigma)), obs=2.)
def ge(): // duide_br'
```

```
def q<sub>θ</sub>(): // guide_br'
 θ = pyro.param("θ", 2.)
 sigma = pyro.sample("sigma", Normal(θ, 0.05))
```

- μ ', σ ' mean, standard deviation in p(z,x).
- V I. μ, σ are continuously differentiable wrt. θ .
- V 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

no 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

Sufficient condition

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

KL not integrable.
 KL not differentiable.
 Biased due to $\nabla_{\theta} \int ... \neq \int \nabla_{\theta} ...$

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ, σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

- I. μ, σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

- Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.
- μ, σ mean, standard deviation in $q_{\theta}(z)$.
- μ ', σ ' mean, standard deviation in p(z,x).
- I. μ, σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

- Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.
- μ , σ mean, standard deviation in $q_{\theta}(z)$.
- μ ', σ ' mean, standard deviation in p(z,x).
- I. μ, σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.
- 3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

1. KL not integrable. 2. KL not differentiable. 3. Biased due to $\nabla_{\theta} \int ... \neq \int \nabla_{\theta} ...$

Assume $q_{\theta}(z)$, p(z,x) use only normal distributions.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

 μ , σ - mean, standard deviation in $q_{\theta}(z)$.

 μ ', σ ' - mean, standard deviation in p(z,x).

- I. μ , σ are continuously differentiable wrt. θ .
- 2. $|\mu'(z)| \le \exp(f(|z|))$ for affine f.

3. $\exp(g(|z|)) \le |\sigma'(z)| \le \exp(h(|z|))$ for affine g,h.

Useful in practice?

Our automatic verifier

- Works for Pyro programs.
- Proves the following bad cases don't happen:

 $p(z|x)=0 \& q_{\theta}(z) \neq 0$ for some z.

 Handles features of Python/PyTorch/Pyro, such as tensor broadcasting, but not all of them.

			Total #			Total dimension			
Name	Corresponding probabilistic model	LoC	for	plate	sample	score	sample	score	θ
br	Bayesian regression	27	0	1	10	1	10	170	9
csis	Compiled sequential importance sampling	31	0	0	2	2	2	2	480
lda	Latent Dirichlet allocation (LDA)	76	0	5	8	1	21008	64000	121400
vae	Variational autoencoder (VAE)	91	0	2	2	1	25600	200704	353600
sgdef	Sparse gamma deep exponential family	94	0	8	12	1	231280	1310720	231280
dmm	Deep Markov model	246	3	2	2	1	640000	281600	594000
ssvae	Semi-supervised VAE	349	0	2	4	1	24000	156800	844000
air	Attend-infer-repeat (AIR)	410	2	2	6	1	20736	160000	6040859

Table 1. Key features of the model-guide pairs from Pyro examples. LoC denotes the lines of code of model and guide. The columns "Total #" show the number of objects/commands of each type used in model and guide, and the columns "Total dimension" show the total dimension of tensors in model and guide, either sampled from sample or used inside score, as well as the dimension of θ in guide.

Analysed 8 representative Pyro programs from Pyro webpage.

Name	Valid?	Time
br	X	0.006
csis	0	0.007
lda	X	0.014
vae	0	0.005
sgdef	0	0.070
dmm	0	0.536
ssvae	0	0.013
air	Ο	4.093

		Uniform in p	
		Normal in q ₀	
Name	Valid?	Time	
br	X	0.006	
csis	0	0.007	
lda	X	0.014	
vae	0	0.005	
sgdef	0	0.070	
dmm	0	0.536	
ssvae	0	0.013	
air	0	4.093	

Reference

The details can be found in our archive paper:

Towards Verified Stochastic Variational Inference for Probabilistic Programs. <u>https://arxiv.org/abs/</u> <u>1907.08827</u>