
Towards Verified Stochastic
Variational Inference for
Probabilistic Programs

Hongseok Yang

KAIST, South Korea

Joint with Wonyeol Lee and Hangyeol Yu (KAIST),
and Xavier Rival (INRIA/ENS/CNRS)

High-level message 1

Nontrivial assumptions are often made implicitly by
ML algorithms, such as variational inference algo.

Be careful.

High-level message 2

Good research opportunity for PL/SE/Verification
— How to check those assumptions automatically?

Stochastic variational inference,
and some pitfalls

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

v

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

≈ def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

v

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

≈ def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

v

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:5

1 # define model and guide
2 def model():
3 v = pyro.sample("v", Normal(0., 5.))
4 if (v > 0):
5 pyro.sample("obs", Normal(1., 1.), obs=0.)
6 else:
7 pyro.sample("obs", Normal(-2., 1.), obs=0.)
8
9 def guide():
10 theta = pyro.param("theta", 3.)
11 v = pyro.sample("v", Normal(theta, 1.))

12 # perform stochastic variational inference
13 svi = SVI(model, guide,
14 Adam({"lr": 1.0e-2}),
15 loss=Trace_ELBO())
16 for step in range(2000):
17 svi.step()
18
19 # print result
20 print("trained theta =",
21 pyro.param("theta").item())

(a) Example model-guide pair for stochastic variational inference in Pyro.

model (prior)
model (posterior)
guide (optimal)

-10 -5 5 10

0.1

0.2

0.3

0.4

(b) Probability densities of the model and the
guide as a function of � 2 R.

(c) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 1. Example of performing stochastic variational inference.

model, the support is [0, 10], while that in the guide is R. But the KL divergence from a guide to a
model is de�ned only if for every random variable, its support in the guide is included in that in the
model. We point out that this support mismatch was found by our static analyser explained in §8.
Figures 2(b) and 2(c) show two attempts to resolve the unde�ned-KL issue. To �x the issue, we

change the distribution of sigma in the guide in (b), and in the model in (c). These revisions remove
the problem about the support of sigma, but do not eliminate that of the unde�ned KL. In both (b)
and (c), the KL divergence is 1. This happens mainly because sigma can be arbitrarily close to 0 in
the guide in both cases, which makes integrand in the de�nition of the KL divergence diverge to1.

An SVI-speci�c veri�cation challenge related to this example is how to prove the well-de�nedness
of the KL divergence and more generally the optimisation objective of an SVI algorithm. In §6.2,
we provide a partial answer to the question. We give a condition for ensuring the well-de�nedness
of the KL divergence. Our condition is more automation-friendly than the de�nition of KL, because
it does not impose the di�cult-to-check integrability requirement present in the de�nition of KL.
The second example appears in Figure 3(a). It uses the same model as in Figure 1(a), but has a

new guide that uses a uniform distribution parameterised by � 2 R. For this model-guide pair, the
KL divergence is well-de�ned for all � 2 R, and the optimal � ⇤ minimising the KL is � ⇤ = 1.

However, as shown in Figure 3(b), the gradient of the KL divergence is unde�ned for � 2 {�1, 1},
because the KL divergence is not di�erentiable at �1 and 1. For all the other � 2 R \ {�1, 1}, the KL
divergence and its gradient are both de�ned, but the score estimator cannot estimate this gradient
in an unbiased manner (i.e., in a way satisfying (1)), thereby losing the convergence guarantee to a
local optimum. The precise calculation is not appropriate in this section, but we just point out that
the expectation of the estimated gradient is always zero for all � 2 R \ {�1, 1}, but the true gradient

≈ def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

qθ with θ found
by optimisation

v

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

• Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

• Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

• Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Issue 1: Undefined KL

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Issue 1: Undefined KL

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Issue 1: Undefined KL

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Issue 1: Undefined KL

Issue 2: Non-differentiable KL

Typical optimisation objective:

argminθ KL[qθ(z) || p(z|x)]

where KL[qθ(z)||p(z|x)] = 𝔼qθ(z)[log (qθ(z)/p(z|x))].

Optimisation by gradient descent:

θn+1 ← θn - 0.01×∇θ KL[qθ(z)||p(z|x)]θ=θn

Issue 1: Undefined KL

Issue 2: Non-differentiable KL

Issue 3:
Wrong estimate

Issues

1. Undefined KL[qθ(z)||p(z|x)].

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong estimate.

Issue 1: Undefined KL

Two reasons for being undefined:

• Bad integrand — p(z)=0 & qθ(z)≠0 for some z.

• Bad integral — Not integrable.

KL[qθ || p] = 𝔼qθ(z)[log (qθ(z)/p(z|x))]

=∫dz (qθ(z) log (qθ(z)/p(z|x)))

Issue 1: Undefined KL

Two reasons for being undefined.

• Bad integrand — p(z)=0 & qθ(z)≠0 for some z.

• Bad integral — Not integrable.

KL[qθ || p] = 𝔼qθ(z)[log (qθ(z)/p(z|x))]

=∫dz (qθ(z) log (qθ(z)/p(z|x)))

Issue 1: Undefined KL

Two reasons for being undefined.

• Bad integrand — p(z|x)=0 & qθ(z)≠0 for some z.

• Bad integral — Not integrable.

KL[qθ || p] = 𝔼qθ(z)[log (qθ(z)/p(z|x))]

=∫dz (qθ(z) log (qθ(z)/p(z|x)))

Issue 1: Undefined KL

Two reasons for being undefined:

• Bad integrand — p(z|x)=0 & qθ(z)≠0 for some z.

• Bad integral — Not integrable.

KL[qθ || p] = 𝔼qθ(z)[log (qθ(z)/p(z|x))]

=∫dz (qθ(z) log (qθ(z)/p(z|x)))

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand. Fix?

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

[Q] Fix it.

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Uniform(0., 10.)

[Q] Fix it.

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Uniform(0., 10.)

Not integrable.

[Q] Fix it.

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Uniform(0., 10.)

Not integrable.

[Q] Fix it.

∫
10

0
dσ

c2

σ2
= ∞

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Normal(0., 5.0)

abs(sigma)

[Q] Fix it.

Not integrable.

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Normal(0., 5.0)

abs(sigma)

[Q] Fix it.

Not integrable.

Bayesian regression from Pyro webpage.

KL[qθ(z)||p(z|x)] undefined. Bad Integrand.

def p(…): // model_br
 …
 sigma = pyro.sample(“sigma”, Uniform(0., 10.))
 …
 pyro.sample(“obs”, Normal(…, sigma), obs=…)

def qθ(…): // guide_br
 …
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Normal(0., 5.0)

abs(sigma)

[Q] Fix it.

Not integrable.

∫
1

−1
dσ (𝒩(σ; …)

c2

σ2) = ∞

Issue 2: Non-differentiable KL

KL[qθ(z)||p(z|x)] may fail to be differentiable wrt. θ.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

v

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))

v

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))

θ

KL

v

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

model (prior)
model (posterior)

-10 -5 5 10

0.1

0.2

0.3

0.4

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))

Not diff.

θ

KL

v

Issue 3: Wrong estimate

Supposed to be unbiased, but not.

That is,

∇θ KL[qθ(z)||p(z|x)] ≠ 𝔼[∇θ KL[qθ(z)||p(z|x)]],

when we expect equality.

Score estimator
∇θ KL[qθ(z)||p(z|x)]

= (∇θlog qθ(z0)) x log(qθ(z0)/p(z0,x))

where z0 is sampled from qθ.

Thm: ∇θKL[qθ(z)||p(z|x)] = 𝔼[∇θ KL[qθ(z)||p(z|x)]]
if some requirements are met.

Score estimator
∇θ KL[qθ(z)||p(z|x)]

= (∇θlog qθ(z0)) x log(qθ(z0)/p(z0,x))

where z0 is sampled from qθ.

Thm: ∇θKL[qθ(z)||p(z|x)] = 𝔼[∇θ KL[qθ(z)||p(z|x)]]
if some requirements are met.

Score estimator
∇θ KL[qθ(z)||p(z|x)]

= (∇θlog qθ(z0)) x log(qθ(z0)/p(z0,x))

where z0 is sampled from qθ.

Thm: ∇θKL[qθ(z)||p(z|x)] = 𝔼[∇θ KL[qθ(z)||p(z|x)]]
if some requirements are met.

Proof of the theorem

∇θ KL[qθ(z)||p(z|x)]

= ∇θ∫dz (qθ(z) x log (qθ(z)/p(z|x)))

= ∫dz (∇θ(qθ(z) x log (qθ(z)/p(z|x))))

…

= 𝔼[(∇θ log qθ(z0)) x log(qθ(z0)/p(z0,x))]

Proof of the theorem

∇θ KL[qθ(z)||p(z|x)]

= ∇θ∫dz (qθ(z) x log (qθ(z)/p(z|x)))

= ∫dz (∇θ(qθ(z) x log (qθ(z)/p(z|x))))

…

= 𝔼[(∇θ log qθ(z0)) x log(qθ(z0)/p(z0,x))]

Interchange of integration and differentiation. Might fail.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

θ

KL

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

non-zero slope at θ=4

θ

KL

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

∇θKL[qθ(z)||p(z|x)]θ=4
= (∇θ log qθ(z0))θ=4…
= (∇θ log 0.5)…
= 0

θ

KL
non-zero slope at θ=4

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

∇θKL[qθ(z)||p(z|x)]θ=4
= (∇θ log qθ(z0))θ=4…
= (∇θ log 0.5)…
= 0

θ

KL
non-zero slope at θ=4

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

∇θKL[qθ(z)||p(z|x)]θ=4
= (∇θ log qθ(z0))θ=4…
= (∇θ log 0.5)…
= 0

θ

KL
non-zero slope at θ=4

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1’
 θ = pyro.param(“θ”, 4.)
 v = pyro.sample(“v”, Uniform(θ -1., θ +1.))Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:7

1 def model():
2 v = pyro.sample("v", Normal(0., 5.))
3 if (v > 0):
4 pyro.sample("obs", Normal(1., 1.), obs=0.)
5 else:
6 pyro.sample("obs", Normal(-2., 1.), obs=0.)
7
8 def guide():
9 theta = pyro.param("theta", 3.)
10 v = pyro.sample("v",

11 Uniform (theta-1., theta+1.))

(a) The model from Figure 1(a), and a guide
using a parameterised uniform distribution.

KL + const

-4 -2 0 2 4

3.5

4.0

4.5

5.0

(b) KL divergence from the guide to the model
(plus logp(obs=0)) as a function of � 2 R.

Fig. 3. Example model-guide pair for which the gradient of the KL divergence is undefined, or the score
estimator is biased.

A measure µ on a measurable space (X , �) is a function from � to [0,1] such that µ(;) = 0 and µ
satis�es the countable additivity condition: for a countable family of disjoint measurable subsets Bn ,

µ

⇣ 1ÿ
n=0

Bn

⌘
=

1’
n=0

µ(Bn).

A well-known example is the Lebesgue measure �n on Rn which maps each measurable subset of
Rn to its volume in the usual sense.2 When µ(X)  1, we call µ subprobability measure. If µ(X) = 1,
we may drop “sub”, and call µ probability measure.

The Lebesgue integral
Ø
is a partial operator that maps a measure µ on (X , �) and a real-valued

measurable function on the same space (X , �) to a real number. It is denoted by
Ø
µ(dx) f (x). To

follow the paper, it is enough to know that this integral generalises the usual Riemann integral
from calculus.3 For a measure � on (X , �), if � (A) =

Ø
µ(dx) (f (x) · 1[x 2A]) for non-negative f , we

say that f is the density of � with respect to µ and call µ reference measure.
In the paper, we use a few well-known methods for building measurable spaces.
The �rst method applies when we are given a set X and a collection of functions { fi : X !

Xi | i 2 I } to measurable spaces (Xi , �i). The method is to equip X with the smallest � -algebra �
making all fi ’s measurable:

� , � ({ f
�1
i (B) | i 2 I , B 2 �i }).

The second relies on two constructions, product and disjoint union. Suppose that we are given
measurable spaces (Xi , �i) for all i 2 I . We de�ne a product measurable space that has

Œ
i 2I Xi as

its underlying set and the following product � -algebra
À

i 2I �i as its � -algebra:Ã
i 2I

�i , �

⇣n÷
i
Ai

��� there is a �nite I0 ✓ I such that (8j 2 I \ I0.Aj = X j)^ (8i 2 I0.Ai 2 �i)
o⌘
.

The construction of the product � -algebra can be viewed as a special case of the �rst where we
consider the smallest � -algebra on

Œ
i 2I Xi that makes every projection map to Xi measurable.

2The Lebesgue measure �n is the unique measure on Rn that sets the volume of the unit cube (0, 1)n to 1 and is translation
invariant: for all measurable subsets A and r 2 Rn , �n (A) = �n ({r 0 � r | r 0 2 A}).
3Another useful fact is that when f is non-negative,

Ø
µ(dx) f (x) = sup

Õ
i (infx2Ai f (x)) · µ(Ai) where the supremum is

taken with respect to all �nite partitions {Ai }i of X into measurable subsets.

∇θKL[qθ(z)||p(z|x)]θ=4
= (∇θ log qθ(z0))θ=4…
= (∇θ log 0.5)…
= 0

θ

KL
non-zero slope at θ=4

How to check that these
bad cases don’t happen?

1. Undefined KL[qθ(z)||p(z|x)].

• p(z|x)=0 & qθ(z)≠0 for some z.

• Not integrable.

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong gradient estimate.

• Biased score estimator due to ∇θ∫…≠∫∇θ …

1. Undefined KL[qθ(z)||p(z|x)].

• p(z|x)=0 & qθ(z)≠0 for some z.

• Not integrable.

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong gradient estimate.

• Biased score estimator due to ∇θ∫…≠∫∇θ …

1. Undefined KL[qθ(z)||p(z|x)].

• p(z|x)=0 & qθ(z)≠0 for some z.

• Not integrable.

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong gradient estimator.

• Biased score estimator due to ∇θ∫…≠∫∇θ …

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

1. Undefined KL[qθ(z)||p(z|x)].

• p(z|x)=0 & qθ(z)≠0 for some z.

• Not integrable.

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong gradient estimator.

• Biased score estimator due to ∇θ∫…≠∫∇θ …

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

1. Undefined KL[qθ(z)||p(z|x)].

• p(z|x)=0 & qθ(z)≠0 for some z.

• Not integrable.

2. Non-differentiable KL[qθ(z)||p(z|x)].

3. Wrong gradient estimate.

• Biased score estimator due to ∇θ∫…≠∫∇θ …

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_1
 v = pyro.sample(“v”, Normal(0., 5.))
 if (v > 0): pyro.sample(“obs”, Normal(1., 1.), obs=0.)
 else: pyro.sample(“obs”, Normal(-2., 1.), obs=0.)

def qθ(): // guide_1
 θ = pyro.param(“θ”, 0.)
 v = pyro.sample(“v”, Normal(θ, 1.))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_br’
 sigma = pyro.sample(“sigma”, Normal(0., 5.))
 pyro.sample(“obs”, Normal(0., abs(sigma)), obs=2.)

def qθ(): // guide_br’
 θ = pyro.param(“θ”, 2.)
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_br’
 sigma = pyro.sample(“sigma”, Normal(0., 5.))
 pyro.sample(“obs”, Normal(0., abs(sigma)), obs=2.)

def qθ(): // guide_br’
 θ = pyro.param(“θ”, 2.)
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_br’
 sigma = pyro.sample(“sigma”, Normal(0., 5.))
 pyro.sample(“obs”, Normal(0., abs(sigma)), obs=2.)

def qθ(): // guide_br’
 θ = pyro.param(“θ”, 2.)
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

def p(): // model_br’
 sigma = pyro.sample(“sigma”, Normal(0., 5.))
 pyro.sample(“obs”, Normal(0., abs(sigma)), obs=2.)

def qθ(): // guide_br’
 θ = pyro.param(“θ”, 2.)
 sigma = pyro.sample(“sigma”, Normal(θ, 0.05))

no

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

1. KL not integrable.
2. KL not differentiable.
3. Biased due to ∇θ∫…≠∫∇θ …

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

1. KL not integrable.
2. KL not differentiable.
3. Biased due to ∇θ∫…≠∫∇θ …

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

1. KL not integrable.
2. KL not differentiable.
3. Biased due to ∇θ∫…≠∫∇θ …

Because … becomes a
good fn (C1 & dominated).

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

1. KL not integrable.
2. KL not differentiable.
3. Biased due to ∇θ∫…≠∫∇θ …

Sufficient condition

Assume qθ(z), p(z,x) use only normal distributions.

μ, σ - mean, standard deviation in qθ(z).

μ’, σ’ - mean, standard deviation in p(z,x).

1. μ, σ are continuously differentiable wrt. θ.

2. |μ’(z)| ≤ exp(f(|z|)) for affine f.

3. exp(g(|z|)) ≤ |σ’(z)| ≤ exp(h(|z|)) for affine g,h.

1. KL not integrable.
2. KL not differentiable.
3. Biased due to ∇θ∫…≠∫∇θ …∫ dz (𝒩(z; …) ⋅ exp(f(|z |))) < ∞

for all affine f

Useful in practice?

Our automatic verifier

• Works for Pyro programs.

• Proves the following bad cases don’t happen:

 p(z|x)=0 & qθ(z)≠0 for some z.

• Handles features of Python/PyTorch/Pyro, such
as tensor broadcasting, but not all of them.

0:28 Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang

Total # Total dimension
Name Corresponding probabilistic model LoC for plate sample score sample score �

br Bayesian regression 27 0 1 10 1 10 170 9
csis Compiled sequential importance sampling 31 0 0 2 2 2 2 480
lda Latent Dirichlet allocation (LDA) 76 0 5 8 1 21008 64000 121400
vae Variational autoencoder (VAE) 91 0 2 2 1 25600 200704 353600
sgdef Sparse gamma deep exponential family 94 0 8 12 1 231280 1310720 231280
dmm Deep Markov model 246 3 2 2 1 640000 281600 594000
ssvae Semi-supervised VAE 349 0 2 4 1 24000 156800 844000
air Attend-infer-repeat (AIR) 410 2 2 6 1 20736 160000 6040859

Table 1. Key features of the model-guide pairs from Pyro examples. LoC denotes the lines of code of model
and guide. The columns “Total #” show the number of objects/commands of each type used in model and
guide, and the columns “Total dimension” show the total dimension of tensors in model and guide, either
sampled from sample or used inside score, as well as the dimension of � in guide.

Thus, 8 Pyro examples fall within the scope of our analysis. These examples correspond to ad-
vanced probabilistic models from the machine-learning literature, such as variational autoencoder
(VAE) [Kingma and Welling 2014], semi-supervised VAE [Kingma et al. 2014], attend-infer-repeat
(AIR) [Eslami et al. 2016] and deep Markov models [Krishnan et al. 2017], all of which use sophisti-
cated neural networks and probabilistic modelling. We describe in detail the structure of these 8
examples in Table 1.

Prototype analyser and results. Our analyser is implemented in OCaml, and supports the main
data-structures and operations de�ned by Python, PyTorch, and Pyro. In particular, it precisely
abstracts the shape of PyTorch tensor objects, the shape transformation information of PyTorch
neural-network-related objects, the automatic broadcasting information of Pyro plate objects, and
the shape of allocated indices for sample names, using the zone abstraction described above. It also
supports various common Pyro probability distributions, and can precisely cope with standard Pyro
and PyTorch operations manipulating the Pyro distribution objects and PyTorch tensor objects.
While our prototype supports a wide range of Python, PyTorch, and Pyro features, we point out
that we did not implement a static analysis for the full Python (plus PyTorch and Pyro) language.
The analysis results are summarised in Table 2 and are discussed in detail in the following.

Run-times were measured on an Intel Core i7-7700 machine running Linux Ubuntu 16.04.

Discovery of invalid model-guide pairs. The analysis rejected two Pyro examples, br and lda, as
incorrect due to an invalid model-guide pair. br is the Bayesian regression example discussed in §2.
For br, the analysis discovers that a random variable sigma is sampled from Uniform(0.,10.)

in the model C , but from Normal(...) in the guide D� (Figure 2(a)). Since the support of sigma
in D� is not a subset of that in C (i.e., R * [0, 10]), the requirement (1) of Theorem 5.1 is violated.
Thus, the SVI objective, KL(D� kC), is unde�ned, and br has an invalid model-guide pair.

For lda, the analysis discovers that a randomvariable doc_topics is sampled from Dirichlet(...)
in the modelC , but from Delta(...) in the guide D� . Since the reference measures of doc_topics
in C and D� are di�erent (the Lebesgue measure vs. the counting measure), KL(D� kC) cannot be
computed by (4). For this reason, lda has an invalid model-guide pair. Our analyser tracks the
reference measure implicitly by regarding the support of any distribution with Lebesgue mea-
sure, as disjoint from that of any distribution with counting measure (which is sound due to the
aforementioned reason), and this allowed us to discover the incorrectness of lda.

Analysed 8 representative Pyro
programs from Pyro webpage.

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:29

Category #Same #Di� #Crash Time
No plates 9 0 0 0.001
Single for-plate 4 0 3 0.004
Nested for-plates 2 0 2 0.026
Single with-plate 5 0 0 0.001
Nested with-plates 7 2 0 0.002
Non-nested with-plates 2 0 0 0.002
Nested for-plate & with-plate 0 0 3 N/A
Total 29 2 8 0.003

(a) Results for Pyro test suite. 39 model-guide pairs are grouped
into 7 categories, based on which type of plate objects are used.
#Same (or #Di�) denotes the number of model-guide pairs for
which the output of our analyser, valid or invalid, is the same as
(or di�erent from) the documented output. #Crash denotes the
number of pairs for which our analyser crashes.

Name Valid? Time
br x 0.006
csis o 0.007
lda x 0.014
vae o 0.005
sgdef o 0.070
dmm o 0.536
ssvae o 0.013
air o 4.093

(b) Results for Pyro examples. The col-
umn “Valid?” shows the output of our
analysis, valid or invalid.

Table 2. Analysis results on two benchmark sets. The column “Time” shows the analysis time in seconds;
in (a), it is averaged over those model-guide pairs (in each category) for which our analyser does not crash.

In both cases, the found correctness issues are subtle and were not known before.

Veri�cation of probabilistic programs relying on model-guide pairs. Among the Pyro test suite,
the analysis successfully veri�es 31 examples among 39. Interestingly, two of these 31 successful
validations, highlighted in Table 2(a), correspond to cases that were �agged as “invalid model-guide
pairs” in the Pyro git repository. Upon inspection, these two examples turn out to be correct.

On the other hand, 8 examples from the Pyro test suite could not be veri�ed due to the crashes
of the analyser. One of these failures is due to the need to reason more precisely about the content
of a for loop (e.g., using some partitioning techniques), and seven are due to the use of plates with
subsampling, as ranges for for loops. Therefore these failures could be resolved using existing
static analysis techniques and a more precise handling of the semantics of Python constructions.

Moreover, 6 Pyro examples (among the 8 that we considered) were veri�ed successfully, which
means all correct Pyro examples were veri�ed. Finally, we corrected the two examples that were
rejected due to invalid model-guide pairs, and these two examples were also successfully veri�ed.

Analysis e�ciency. The analysis returned within a second on each program in the Pyro test suite,
and on most of the Pyro examples. In fact, the slowest analysis was observed on air, which was
analysed within 5 seconds. Most of the Pyro examples sample from and score with distributions of
very high dimension arranged in complex tensors, using nested for and plate’s. While they are not
large, they present a high degree of logical complexity, that is representative of realistic probabilistic
programs. The fact that such programs get analysed within seconds shows that the analysis and the
underlying abstract domain to describe zones, sampled dimensions, and distributions can generalise
predicates quickly so that precise loop invariants can be computed.

9 RELATEDWORK
As far as we know, the idea of using stochastic variational inference for probabilistic programs �rst
appeared in [Wingate andWeber 2013].When further insights into how to create generic (sometimes
also called black-box) SVI engines were found [Kucukelbir et al. 2015, 2017; Ranganath et al. 2014],
the idea was tried for realistic probabilistic programming languages, such as Stan [Kucukelbir et al.

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:29

Category #Same #Di� #Crash Time
No plates 9 0 0 0.001
Single for-plate 4 0 3 0.004
Nested for-plates 2 0 2 0.026
Single with-plate 5 0 0 0.001
Nested with-plates 7 2 0 0.002
Non-nested with-plates 2 0 0 0.002
Nested for-plate & with-plate 0 0 3 N/A
Total 29 2 8 0.003

(a) Results for Pyro test suite. 39 model-guide pairs are grouped
into 7 categories, based on which type of plate objects are used.
#Same (or #Di�) denotes the number of model-guide pairs for
which the output of our analyser, valid or invalid, is the same as
(or di�erent from) the documented output. #Crash denotes the
number of pairs for which our analyser crashes.

Name Valid? Time
br x 0.006
csis o 0.007
lda x 0.014
vae o 0.005
sgdef o 0.070
dmm o 0.536
ssvae o 0.013
air o 4.093

(b) Results for Pyro examples. The col-
umn “Valid?” shows the output of our
analysis, valid or invalid.

Table 2. Analysis results on two benchmark sets. The column “Time” shows the analysis time in seconds;
in (a), it is averaged over those model-guide pairs (in each category) for which our analyser does not crash.

In both cases, the found correctness issues are subtle and were not known before.

Veri�cation of probabilistic programs relying on model-guide pairs. Among the Pyro test suite,
the analysis successfully veri�es 31 examples among 39. Interestingly, two of these 31 successful
validations, highlighted in Table 2(a), correspond to cases that were �agged as “invalid model-guide
pairs” in the Pyro git repository. Upon inspection, these two examples turn out to be correct.

On the other hand, 8 examples from the Pyro test suite could not be veri�ed due to the crashes
of the analyser. One of these failures is due to the need to reason more precisely about the content
of a for loop (e.g., using some partitioning techniques), and seven are due to the use of plates with
subsampling, as ranges for for loops. Therefore these failures could be resolved using existing
static analysis techniques and a more precise handling of the semantics of Python constructions.

Moreover, 6 Pyro examples (among the 8 that we considered) were veri�ed successfully, which
means all correct Pyro examples were veri�ed. Finally, we corrected the two examples that were
rejected due to invalid model-guide pairs, and these two examples were also successfully veri�ed.

Analysis e�ciency. The analysis returned within a second on each program in the Pyro test suite,
and on most of the Pyro examples. In fact, the slowest analysis was observed on air, which was
analysed within 5 seconds. Most of the Pyro examples sample from and score with distributions of
very high dimension arranged in complex tensors, using nested for and plate’s. While they are not
large, they present a high degree of logical complexity, that is representative of realistic probabilistic
programs. The fact that such programs get analysed within seconds shows that the analysis and the
underlying abstract domain to describe zones, sampled dimensions, and distributions can generalise
predicates quickly so that precise loop invariants can be computed.

9 RELATEDWORK
As far as we know, the idea of using stochastic variational inference for probabilistic programs �rst
appeared in [Wingate andWeber 2013].When further insights into how to create generic (sometimes
also called black-box) SVI engines were found [Kucukelbir et al. 2015, 2017; Ranganath et al. 2014],
the idea was tried for realistic probabilistic programming languages, such as Stan [Kucukelbir et al.

Uniform in p
Normal in qθ

Towards Verified Stochastic Variational Inference for Probabilistic Programs 0:29

Category #Same #Di� #Crash Time
No plates 9 0 0 0.001
Single for-plate 4 0 3 0.004
Nested for-plates 2 0 2 0.026
Single with-plate 5 0 0 0.001
Nested with-plates 7 2 0 0.002
Non-nested with-plates 2 0 0 0.002
Nested for-plate & with-plate 0 0 3 N/A
Total 29 2 8 0.003

(a) Results for Pyro test suite. 39 model-guide pairs are grouped
into 7 categories, based on which type of plate objects are used.
#Same (or #Di�) denotes the number of model-guide pairs for
which the output of our analyser, valid or invalid, is the same as
(or di�erent from) the documented output. #Crash denotes the
number of pairs for which our analyser crashes.

Name Valid? Time
br x 0.006
csis o 0.007
lda x 0.014
vae o 0.005
sgdef o 0.070
dmm o 0.536
ssvae o 0.013
air o 4.093

(b) Results for Pyro examples. The col-
umn “Valid?” shows the output of our
analysis, valid or invalid.

Table 2. Analysis results on two benchmark sets. The column “Time” shows the analysis time in seconds;
in (a), it is averaged over those model-guide pairs (in each category) for which our analyser does not crash.

In both cases, the found correctness issues are subtle and were not known before.

Veri�cation of probabilistic programs relying on model-guide pairs. Among the Pyro test suite,
the analysis successfully veri�es 31 examples among 39. Interestingly, two of these 31 successful
validations, highlighted in Table 2(a), correspond to cases that were �agged as “invalid model-guide
pairs” in the Pyro git repository. Upon inspection, these two examples turn out to be correct.

On the other hand, 8 examples from the Pyro test suite could not be veri�ed due to the crashes
of the analyser. One of these failures is due to the need to reason more precisely about the content
of a for loop (e.g., using some partitioning techniques), and seven are due to the use of plates with
subsampling, as ranges for for loops. Therefore these failures could be resolved using existing
static analysis techniques and a more precise handling of the semantics of Python constructions.

Moreover, 6 Pyro examples (among the 8 that we considered) were veri�ed successfully, which
means all correct Pyro examples were veri�ed. Finally, we corrected the two examples that were
rejected due to invalid model-guide pairs, and these two examples were also successfully veri�ed.

Analysis e�ciency. The analysis returned within a second on each program in the Pyro test suite,
and on most of the Pyro examples. In fact, the slowest analysis was observed on air, which was
analysed within 5 seconds. Most of the Pyro examples sample from and score with distributions of
very high dimension arranged in complex tensors, using nested for and plate’s. While they are not
large, they present a high degree of logical complexity, that is representative of realistic probabilistic
programs. The fact that such programs get analysed within seconds shows that the analysis and the
underlying abstract domain to describe zones, sampled dimensions, and distributions can generalise
predicates quickly so that precise loop invariants can be computed.

9 RELATEDWORK
As far as we know, the idea of using stochastic variational inference for probabilistic programs �rst
appeared in [Wingate andWeber 2013].When further insights into how to create generic (sometimes
also called black-box) SVI engines were found [Kucukelbir et al. 2015, 2017; Ranganath et al. 2014],
the idea was tried for realistic probabilistic programming languages, such as Stan [Kucukelbir et al.

Dirichlet in p
Delta in qθ

Uniform in p
Normal in qθ

Reference

The details can be found in our archive paper:

Towards Verified Stochastic Variational Inference
for Probabilistic Programs. https://arxiv.org/abs/
1907.08827

https://arxiv.org/abs/1907.08827
https://arxiv.org/abs/1907.08827

